CN1315162C - 在衬底表面上形成氮氧化层和氧化层的方法 - Google Patents

在衬底表面上形成氮氧化层和氧化层的方法 Download PDF

Info

Publication number
CN1315162C
CN1315162C CNB028281977A CN02828197A CN1315162C CN 1315162 C CN1315162 C CN 1315162C CN B028281977 A CNB028281977 A CN B028281977A CN 02828197 A CN02828197 A CN 02828197A CN 1315162 C CN1315162 C CN 1315162C
Authority
CN
China
Prior art keywords
substrate
layer
predetermined thickness
oxide layer
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028281977A
Other languages
English (en)
Chinese (zh)
Other versions
CN1620718A (zh
Inventor
K·威克茨瑞克
F·格雷奇
S·吕克格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10207122A external-priority patent/DE10207122B4/de
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN1620718A publication Critical patent/CN1620718A/zh
Application granted granted Critical
Publication of CN1315162C publication Critical patent/CN1315162C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • H10D64/685Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0144Manufacturing their gate insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/0181Manufacturing their gate insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
CNB028281977A 2002-02-20 2002-12-20 在衬底表面上形成氮氧化层和氧化层的方法 Expired - Fee Related CN1315162C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10207122A DE10207122B4 (de) 2002-02-20 2002-02-20 Ein Verfahren zur Herstellung von Schichten aus Oxid auf einer Oberfläche eines Substrats
DE10207122.5 2002-02-20
US10/208,308 2002-07-30
US10/208,308 US6703278B2 (en) 2002-02-20 2002-07-30 Method of forming layers of oxide on a surface of a substrate
PCT/US2002/040807 WO2003073491A1 (en) 2002-02-20 2002-12-20 Method of forming layers of oxide of different thicknesses on a surface of a substrate

Publications (2)

Publication Number Publication Date
CN1620718A CN1620718A (zh) 2005-05-25
CN1315162C true CN1315162C (zh) 2007-05-09

Family

ID=27766671

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028281977A Expired - Fee Related CN1315162C (zh) 2002-02-20 2002-12-20 在衬底表面上形成氮氧化层和氧化层的方法

Country Status (6)

Country Link
EP (1) EP1476899B1 (enExample)
JP (1) JP4145802B2 (enExample)
CN (1) CN1315162C (enExample)
AU (1) AU2002351408A1 (enExample)
TW (1) TWI278038B (enExample)
WO (1) WO2003073491A1 (enExample)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678321B1 (ko) 2005-12-14 2007-02-02 동부일렉트로닉스 주식회사 서로 다른 두께의 게이트 유전층들을 형성하는 방법
DE102017104906A1 (de) * 2017-03-08 2018-09-13 Olav Birlem Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten
CN108257860A (zh) * 2018-01-19 2018-07-06 武汉新芯集成电路制造有限公司 一种栅极氧化层的制作方法
US11430701B2 (en) 2020-09-25 2022-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Gate oxide structures in semiconductor devices
US12119222B2 (en) 2021-01-14 2024-10-15 Changxin Memory Technologies, Inc. Method for preparing semiconductor structure and semiconductor structure
CN114765107A (zh) * 2021-01-14 2022-07-19 长鑫存储技术有限公司 半导体结构的制备方法及半导体结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033943A (en) * 1996-08-23 2000-03-07 Advanced Micro Devices, Inc. Dual gate oxide thickness integrated circuit and process for making same
US6087236A (en) * 1998-11-24 2000-07-11 Intel Corporation Integrated circuit with multiple gate dielectric structures
US6235590B1 (en) * 1998-12-18 2001-05-22 Lsi Logic Corporation Fabrication of differential gate oxide thicknesses on a single integrated circuit chip

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004417A (ko) * 1999-06-28 2001-01-15 김영환 반도체장치의 듀얼 게이트산화막 형성 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033943A (en) * 1996-08-23 2000-03-07 Advanced Micro Devices, Inc. Dual gate oxide thickness integrated circuit and process for making same
US6087236A (en) * 1998-11-24 2000-07-11 Intel Corporation Integrated circuit with multiple gate dielectric structures
US6235590B1 (en) * 1998-12-18 2001-05-22 Lsi Logic Corporation Fabrication of differential gate oxide thicknesses on a single integrated circuit chip

Also Published As

Publication number Publication date
JP2005518675A (ja) 2005-06-23
CN1620718A (zh) 2005-05-25
EP1476899A1 (en) 2004-11-17
TW200304187A (en) 2003-09-16
AU2002351408A1 (en) 2003-09-09
EP1476899B1 (en) 2007-03-07
TWI278038B (en) 2007-04-01
JP4145802B2 (ja) 2008-09-03
WO2003073491A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
KR100618815B1 (ko) 이종의 게이트 절연막을 가지는 반도체 소자 및 그 제조방법
US7687869B2 (en) Semiconductor device and method of manufacturing the same
US7446379B2 (en) Transistor with dopant-bearing metal in source and drain
US6784101B1 (en) Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation
US7030024B2 (en) Dual-gate structure and method of fabricating integrated circuits having dual-gate structures
CN101675513B (zh) 高k栅极介电质互补金属氧化物半导体结构的阈值调整
US20080296704A1 (en) Semiconductor device and manufacturing method thereof
JP4719161B2 (ja) トランジスタの製造方法
US20070187774A1 (en) Manufacturing method for an integrated semiconductor structure and corresponding integrated semiconductor structure
US8293632B2 (en) Manufacturing method of semiconductor device
CN1849705A (zh) 用于分别优化在同一半导体芯片内的pmos和nmos晶体管的薄栅极电介质的方法以及由此制造的器件
CN1284214C (zh) Mos晶体管栅角的增强氧化方法
CN101038879A (zh) 半导体器件及其制造方法
CN100485962C (zh) 半导体器件及其制造方法
TWI761505B (zh) 製造半導體裝置的方法
US20050101147A1 (en) Method for integrating a high-k gate dielectric in a transistor fabrication process
US6821868B2 (en) Method of forming nitrogen enriched gate dielectric with low effective oxide thickness
US6703278B2 (en) Method of forming layers of oxide on a surface of a substrate
CN1264225C (zh) 具有含氮栅绝缘膜的半导体器件及其制造方法
JP4540320B2 (ja) 半導体装置の製造方法
CN1315162C (zh) 在衬底表面上形成氮氧化层和氧化层的方法
US20060249795A1 (en) Semiconductor device and fabricating method thereof
TWI280624B (en) Method for manufacturing semiconductor device
US7056816B2 (en) Method for manufacturing semiconductor device
CN100399544C (zh) 栅氧化膜的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ADVANCED MICRO DEVICES INC

Free format text: FORMER OWNER: ADVANCED MICRO DEVICES INC.

Effective date: 20100708

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: CALIFORNIA, USA TO: GRAND CAYMAN ISLAND RITISH CAYMAN ISLANDS

TR01 Transfer of patent right

Effective date of registration: 20100708

Address after: Grand Cayman, Cayman Islands

Patentee after: Globalfoundries Semiconductor Inc.

Address before: American California

Patentee before: Advanced Micro Devices Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070509

Termination date: 20161220