CN1309280C - 等离子体处理装置 - Google Patents
等离子体处理装置 Download PDFInfo
- Publication number
- CN1309280C CN1309280C CNB038032120A CN03803212A CN1309280C CN 1309280 C CN1309280 C CN 1309280C CN B038032120 A CNB038032120 A CN B038032120A CN 03803212 A CN03803212 A CN 03803212A CN 1309280 C CN1309280 C CN 1309280C
- Authority
- CN
- China
- Prior art keywords
- waveguide
- microwave
- plasma processing
- antenna member
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012545 processing Methods 0.000 title claims abstract description 47
- 230000005540 biological transmission Effects 0.000 claims abstract description 31
- 239000003989 dielectric material Substances 0.000 claims abstract description 28
- 230000006978 adaptation Effects 0.000 claims description 29
- 230000005855 radiation Effects 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 230000000149 penetrating effect Effects 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000004020 conductor Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000005684 electric field Effects 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910001369 Brass Inorganic materials 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 4
- 239000010951 brass Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910017083 AlN Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000004380 ashing Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/02—Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
- H01P3/06—Coaxial lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/40—Radiating elements coated with or embedded in protective material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/526—Electromagnetic shields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Abstract
本发明提供通过使用高电介质材料可提高波导管耐热性的等离子体处理装置,该等离子体处理装置的特征为配备以下部件,即可真空抽气的处理容器(44),和在所述处理容器内设置的,载置被处理体(W)的载置台(46),和在所述处理容器顶板开口部设置的微波透过板(72),和经所述微波透过板用于把微波供给所述处理容器内的平面天线部件(76),和覆盖所述平面天线部件的上方地接地的护板盖板(80),和用于把来自微波发生源的微波供给所述平面天线部件的波导管(90),所述波导管由使用高电介质材料的高电介质波导管(94)形成,据此可以提高波导管的耐热性。
Description
技术领域
本发明涉及由微波产生的等离子体对半导体晶片等作用而施以处理的等离子体处理装置。
背景技术
近年来,在伴随着半导体产品的高密度化以及高微细化的半导体产品的制造工序,为了成膜,蚀刻,灰化等的处理往往使用等离子体装置,尤其是,由于在0.1~数10mTorr左右比较低压力的高真空状态下也可以稳定建立等离子体,所以有倾向使用由微波产生高密度等离子体,对晶片进行处理的等离子体装置。
这样的等离子体处理装置在特开平1-184923号公报、特开平3-191073号公报、特开平5-343334号公报或本申请者的特开平9-181052号公报上公开。在这里,参照图11概略地说明用微波的普通等离子体处理装置。图11是示出现有的普通等离子体处理装置的构成图。
在图11,该等离子体处理装置2在可真空抽气的处理容器4内设立载置半导体晶片W的载置台6,在与该载置台6对置的顶板部上气密地设置透过微波的、由例如圆板状氮化铝等构成的微波透过窗8。具体讲,该微波透过窗8经O形环等密封部件14气密地安装在比上述处理容器4的上端设置的例如铝制环状支持框部件10更向半径方向内方突出的支持架部12上。
而且,在该微波透过窗8的上面设置厚度数mm左右的圆板状平面天线部件16和根据需要设置用于缩短该平面天线部件16的径向微波波长的例如由电介质构成的慢波材料18。该平面天线部件16或慢波材料18为了要覆盖其上方,而且要堵塞处理容器4上方,用导体设置防护盖体20。此外,在上述慢波材料18的上方设置在内部形成冷却水流动的冷却水流路22的顶板冷却水套24,冷却防护盖体20等。而且,在天线部件16上形成由多个大体圆形或狭缝状贯通孔构成的微波辐射孔26。而且,在平面天线部件16中心部上连接同轴波导管28的内导体30。在该同轴波导管28经模式变换器32与矩形导波管34连接的同时,在该矩形导波管34上顺序连接匹配电路36、隔离器(isolator)38以及微波发生源40。该匹配电路36与微波振荡模式内的TE模式相对应。据此,使通过微波发生源40发生的例如2.45GHz的TE模式的微波经矩形波导管34传输到匹配电路36以及模式变换器32,通过该模式变换器32从TE模式变换为TEM模式之后,经同轴波导管28导入天线部件16。而且边使该TEM模式的微波向天线部件16的径向呈辐射状传输,边从在天线部件16上设置的微波辐射孔26辐射微波,使其通过微波透过窗8,使微波导入下方的处理容器4内,通过该微波可以在处理容器4内建立等离子体,对半导体晶片W施以蚀刻、成膜、灰化等规定的等离子体处理。
可是,由于在上述所示的等离子体处理装置,对于矩形波导管34或同轴波导管28,在其它部件,例如模式变换器32或平面天线部件16等的连接部分产生不连续部分,由于该不连续部分引起微波的多重反射等,不可避免产生因线路电阻部分产生的焦耳热引起的发热。在这种情况下,由于该同轴波导管28或其中的内导体30是由例如在黄铜表面施以镀银等形成的导体等构成,线膨胀率较大,大体为17.2×10-6/C°左右,其结果,上述同轴波导管28因热膨胀而产生变形,在上述接合部分也产生变形或不合适情况,此外,也常常发生所谓微波泄漏等的问题。
作为其它问题有如下所示。作为这种等离子体处理装置2,把TEM模式的微波导入处理容器4内。其理由是,因为电磁波的玻印亭矢量(Poynting Vector)的方向与电流的流动方向一致,所以可以只考虑电流相位,设计天线。然而,由于历来众所周知使用TE模式用的匹配电路36,所以在等离子体装置2内采用该TE模式用的匹配电路36,而且,在微波传播路径的途中插入模式变换器32,使TE模式的微波变换为TEM模式,供给平面天线部件16。
因此,由于必然地需要模式变换器32,所以存在所谓不但价高,而且也产生微波模式变换损耗的问题。
匹配电路36由于是TE模式用的,有必要设置在比模式变换器32更前级一侧。因此必须使该匹配电路36设置在远离特性阻抗变大的平面天线部件16的地方,为此也往往不能有效地进行阻抗匹配的操作。
发明内容
本发明着眼于上述所示的问题点,是应当有效地解决它的发明。
本发明的第一目的是通过用高电介质材料,提供可提高波导管耐热性的等离子体处理装置。
本发明的第二目的是通过用与TEM模式对应的短线匹配器(slugmatching),提供不需要与现有的(例如)TE模式对应的匹配电路的同时,可以接近平面天线部件而设置匹配器的等离子体处理装置。
本申请的第一发明的特征为,配备可真空抽气的处理容器,和在上述处理容器内设置的、载置被处理体的载置台,和在上述处理容器的顶板开口部上设置的微波透过板,和用于经上述微波透过板把微波供给上述处理容器内的平面天线部件,和覆盖上述平面天线部件的上方而接地的防护盖体,和用于把从微波发生源来的微波供给上述平面天线部件的波导管;上述波导管由使用了介电系数在100以上的高电介质材料的高电介质波导管构成。
这样一来,因为采用了用高电介质材料的高电介质波导管作为波导管,所以可以使波导管自身的线膨胀率作得比现有的导体制波导管的还小,其结果是热变形变小,可提高其耐热性。因此,可防止波导管变形或微波泄漏的发生。
这种情况下,例如在上述波导管中途介入模式变换器,在该模式变换器和上述平面天线部件之间用上述高电介质波导管。
例如,上述高电介质波导管通过筒状波导管主体,和在该波导管主体内插通的波导轴形成,在上述波导管主体和上述波导轴内至少一方由上述高电介质材料形成。
例如,上述高电介质材料的介电系数在1000以上。
例如,上述高电介质材料利用选自PZT(含Pb、Zr、Ti、O的复合材料),BST(含Ba、Sr、Ti、O的复合材料)和SBT(含Sr、Bi、Ta、O的复合材料)的组中的1种以上的材料形成。
例如,在上述平面天线部件上同心圆状或涡卷状地形成由贯通孔构成的微波辐射孔。
例如,在上述平面天线部件上同心圆状或涡卷状地形成多个辐射孔对,该辐射孔对通过使由贯通孔构成的大体相互垂直的2个微波辐射孔接近而形成。
例如在上述波导管上设置用电介质材料的短线匹配器。
本申请的第二发明是等离子体处理装置,其特征为,配备可真空抽气的处理容器,和在上述处理容器内设置的,载置被处理体的载置台,和在上述处理容器的顶板开口部上设置的微波透过板,和经上述微波透过板用于把微波供给上述处理容器内的平面天线部件,和覆盖上述平面天线部件的上方而接地的防护盖体,和用于把从微波发生源来的微波供给上述平面天线部件的波导管;其构成是这样的,以便在上述波导管的途中设置使用电介质材料的短线匹配器。
这样一来,在波导管中途通过设置用电介质材料的短线匹配器,可以不要现有方式用的TE模式用匹配电路。
这种情况,例如与上述平面天线部件接近设置上述短线匹配器。
据此,可以与平面天线部件接近设置该TEM模式用短线匹配置,可提高阻抗匹配效率。
例如,上述短线匹配器由沿着上述微波传播方向相互间隔配置的电介质材料所形成的2匹配部件构成,上述2匹配部件可一体地向上述微波传输方向移动,同时,也可单个地移动。
例如,上述波导管由同轴波导管形成,上述微波从上述微波发生源以TEM模式的振动模式进行传输。
据此,因为可以从微波发生源以TEM模式传输微波,所以不必要在中途设置变换器,不但有利于成本降低,而且可没有模式变换损耗。
例如,在上述波导管中途设置模式变换器,在将上述模式变换器和上述平面天线部件连接的部分波导管处插入设置上述短线匹配器。
附图说明
图1是示出第一发明的等离子体处理装置的构成图。
图2是示出平面天线部件一例的平面图。
图3是示出其它例平面天线部件的平面图。
图4是示出第一发明用高电介质波导管的微波传输状况的模拟模型图。
图5是示出图4高电介质波导管的微波传输状况的模拟结果的图。
图6是示出其它种类的高电介质波导管的微波传输状况的模拟模型图。
图7是示出第二发明的等离子体处理装置的构成图。
图8是示出短线匹配器用的位置控制机构的构成图。
图9是示出第二发明的第一变形例的局部放大图。
图10是示出第二发明的第二变形例的局部构成图。
图11是示出现有的普通等离子体处理装置构成图。
具体实施方式
以下,根据附图详述本发明的等离子体处理装置的一实施例。
首先,对本申请的第一发明加以说明。
图1是示出第一发明的等离子体处理装置的构成图。图2是示出平面天线部件一例的平面图,图3是示出其它例平面天线部件的平面图,图4是示出第一发明用的高电介质波导管的微波传输状况的模拟模型图,图6是示出其它种类的高电介质波导管的微波传输状况的模拟模型图。在本发明,所谓高电介质指的是具有比通常的电介质高的介电系数的电介质。例如是介电系数在100以上、优选1000以上的电介质。如果本发明的高电介质是介电系数在100以上,也可以是强电介质。
如图所示,该等离子体处理装置42,例如侧壁或底部由铝等的导体构成,具有全体呈筒状成形的处理容器44,该处理容器44在接地的同时,作为内部密闭的处理空间S构成。
在该处理容器44内,收容有上面载置作为被处理体(例如晶片W)的载置台46。该载置台46利用经过例如氧化铝膜处理的铝等以凸形状形成为平坦地作成的大体圆柱状,其下部通过利用相同的铝等作成圆柱状的支持台48支持,同时,该支持台48经绝缘材料50设置在处理容器44内的底部。
在上述载置台46的上面设置用于将晶片保持在此的静电卡盘或紧固机构(未图示),该载置台46通过供电线52,经匹配盒54与例如13.56MHz的偏压用高频电源56连接。此外,常有不设置该偏压用高频电源56的情况。即使在未设置偏压用高频电源56的情况,通过设置偏压用电极,作成接地或电悬浮状态,也可以提高等离子体的着火性能。
在支持上述载置台46的支持台48上设置用于冷却等离子体处理时的晶片的冷却水流动的冷却水套58。根据需要在该载置台46中也可以设置加热用加热器。
在上述处理容器44的侧壁上作为气体供给装置设置用于把等离子体用气体,例如氩气或处理气体例如沉积气体导入容器的例如石英管制的气体供应喷嘴60,通过该喷嘴60可供给流量控制后的等离子体气体以及处理气体。作为处理气体的沉积气体例如在使氮化硅成膜的情况下,可以用SiH4、O2、N2气等。
在容器侧壁上设置在对其内部搬入、搬出晶片时开闭的闸阀62,同时,设置冷却该侧壁的冷却水套64。在容器底部设置与未图示的真空泵连接的排气口66,根据需要可以使处理容器44内真空抽气到规定压力。
而且,处理容器44的顶板开口,形成开口部,经O型环等密封部件70,沿着该开口部的周缘部设置圆形环状的支持框架部件68。在该支持框架部件68上经O型环等密封部件74气密地设置由例如AlN等陶瓷材料形成的对微波具有透过性的厚度为20mm左右的微波透过板72作为电介质。据此,使处理容器内保持气密。
而且,圆板状的平面天线部件76在将其周缘部载置在上述支持框架部件68的上端的状态下被支持在该微波透过板72的上方。而且在该天线部件76的上面设置圆板状的介电系数大的具有高介电率特性的慢波材料78。覆盖该天线部件76和慢波材料78上的方,设置例如盖状地形成的防护盖体80,其下端部被上述框架部件68上端支持。在该防护盖体80上形成在内部流动冷却水的冷却水流路82,冷却该防护盖体80或上述慢波材料78等。该防护盖体80接地。上述平面天线部件76与上述处理容器44内的上述载置台46对置设置。
在与8英寸大小晶片对应的情况下,该平面天线部件76,例如由直径300~400mm,厚度1~数mm,例如5mm的导电性材料形成的圆板,例如由表面镀银的铜板或铝板构成,在该圆板上同心圆状或螺旋状形成由例如长槽狭缝状、或圆形的贯通孔构成的多个微波辐射孔84。
具体讲,该平面天线部件76的微波辐射孔84如图2或图3所示地形成。在图2所示的情况下,微波辐射孔84由细长狭缝状的贯通孔(参照图2(B))形成,如图2(A)所示地以同心圆状形成多个微波辐射孔84。该微波辐射孔84的长度例如为入/4左右。入是在这里用的微波在上述慢波材料78中的波长。
在图3所示的情况下,形成使上述所示形状的2个微波辐射孔84方向相差大体90°并接近的辐射孔对86(参照图3(B)),如图3(A)所示地呈同心圆状设置多个该辐射孔对86。在这种情况下,微波辐射孔对86内各自的微波辐射孔84的方向相对平面天线部件96的径向,设定在规定角度θ,例如+45度或-45度左右。该微波辐射孔84的形状不限于细长狭缝状,也可以是圆形、椭圆形等。
返回到图1,在上述防护盖体80的上部中心形成开口部88,在该开口部88上与作为本发明特征的波导管90连接,同时,在该波导管90的端部连接例如2.45GHz的微波发生源92。据此,经波导管90可以把上述微波发生源92产生的微波传输到上述平面天线部件76。另外,可以用8.35GHz、1.98GHz作为微波的频率。
具体讲,上述波导管90由下述两波导管构成,即:与上述防护盖体80的中央开口部88直接地连接固定并向上方立起的截面圆形的高电介质波导管94,和在该高电介质波导管94的上端部经进行微波振动模式变换的模式变换器向水平方向连接固定的截面矩形的矩形波导管98。
首先,在上述微波发生源92和上述模式变换器96之间连接的上述矩形波导管98全体用例如表面进行镀过银等的黄铜等导体以截面矩形状形成,在该矩形波导管98上从微波发生源92向上述模式变换器96顺序地在中途介入对微波进行绝缘的隔离器100,以及用于进行微波传输线路的阻抗匹配的TE模式用的匹配电路102。该匹配电路102例如通过将金属针组合后的短截线调谐器(stub tuner)形成。因此,通过微波发生源92产生的微波其振动模式在TE模式状态下在上述矩形波导管98内传播。
与此相反,连接上述模式变换器96和上述平面天线部件76之间的高电介质波导管96其内包含高电介质材料而形成。具体讲,该高电介质波导管94是传输TEM模式的微波的、由截面实质上作成圆形环状的筒状或管状的波导管主体104和插通该波导管主体104内中心部的截面圆形的棒状波导轴106形成。
这种情况下,上述波导轴106的直径D1例如为大体3mm左右。上述波导管主体104的内径D2例如为10mm左右,其壁厚例如为0.3mm左右。这些数据只不过示出一例,这些尺寸也可以由前后的微波传输线路的特性阻抗决定。
上述波导轴106和波导管主体104内至少任一方由高电介质体材料例如陶瓷形成。即:也可以用高电介质材料形成波导轴106和波导管主体104内的任一方,或者也可以用高电介质材料形成两者。在用高电介质材料形成上述波导轴106时,也可以用螺丝在其下端面与平面天线部件76接合,或者通过金属蒸镀接合与平面天线部件76接合。
如果考虑微波的传输效率,则可以用介电系数例如1000以上的材料作为该电介质材料,作为其一例,可以用选自由PZT(含Pb、Zr、Ti、O的复合材料)、BST(含Ba、Sr、Ti、O的复合材料)、SBT(含Sr、Bi、Ta、O的复合材料)等够构成的组中的1种以上的材料。
这种高电介质材料的线膨胀率比现有装置用的同轴波导管金属材料的线膨胀率还小一个量级左右,例如为1.02×10-6/℃左右。热变形量减小。这样一来,用了高电介质材料的高电介质波导管94,如后述所示,发挥作为引导微波的波导管的功能,有效地传输微波。
其次,对用以上所示构成的等离子体处理装置进行的处理方法加以说明。
首先,经闸阀62,通过传送臂(未图示),把半导体晶片W收容到处理容器内,通过上下移动升降杆(未图示),把晶片W载置在载置台46上面的载置面上。
而且,使处理容器44内维持在规定的过程压力,从气体供给喷嘴60边控制各自的流量,边供给例如氩气或例如SiH4,O2,N2等沉积气体。同时使从微波发生源92来的微波顺序地经矩形波导管98、模式变换器96以及高电介质波导管94供给平面天线部件76,把通过慢波材料78而缩短波长的微波导入处理空间S,据此产生等离子体,进行规定的等离子体处理,例如通过等离子体CVD进行成膜处理。
在这里,关于微波传输,通过微波发生源92产生的微波在矩形波导管98内以TE模式传输,该TE模式的微波通过模式变换器96,变换为TEM模式,在该状态下,在截面呈圆形环状的高电介质波导管94内向平面天线部件76进行传输。
在这里,在处理空间S的等离子体状态或压力状态等的各种主要因素下,在波导管90内产生微波的反射波,上述匹配电路102动作,发挥所谓的匹配功能,以便抵偿该反射波。
在上述高电介质波导管94和模式变换器96或平面天线部件76的接合部分产生微波传输损耗,产生高电介质材料的介电损耗,使该波导管90自身升温,然而,因为作为该构成材料的高电介质材料的线膨胀率小,所以该波导管90的热变形非常小,可以提高其耐热性。
如上述所示,由于热变形量小,所以可防止微波泄漏等的发生。
针对上述所示的高电介质波导管94实际上传输微波这一点在这里通过模拟加以验证,对其评价结果加以说明。
在图4中,图4示出在模拟中用的高电介质波导管模型,图5(A)示出该模型截面的电场强度分布的图,图5(B)示出该模型的截面的磁场强度分布的图,图5(C)是示出表示在该模型截面的能量移动的玻印亭矢量的图。
在图4示出的该模型的高电介质波导管94,外侧截面呈圆环形的波导管主体104在这里完全用导体形成。位于中心部的截面圆形的波导轴106的上下端部分106A、106A用导体形成,通过介电保数ε为1000的高电介质材料形成被该上下端部分106A、106A夹持的中央部分106B。在这里,波导轴106的直径D1设定在4mm,波导管主体104的内径D2设定在10mm。设定在该波导轴106和波导管主体104之间的空间作为存在空气的空间。
在把以TEM模式振动的2.45GHz的微波供给这样的高电介质波导管94的地方在入射面,得到反射率0.9%的结果。即:可以确认99.1%的微波在该高电介质波导管94传输,几乎不产生传输损耗。
对这时的电场分布,如图5(A)所示,电场随着从外侧的波导管主体104向中心,大体呈2次曲线上升而变大,在波导轴106表面附近成为最大。而且,在该波导轴106内电场非常少,不过产生一点点。
对这时的磁场分布,如图5(B)所示,外侧的波导管主体104以及在其和波导轴106之间的空间部分的磁场非常少,与此相反,判明在波导轴106内,向其中心方向,磁场以非常大的振幅分布。可是,因为中心轴的电场非常小,所以示出能量移动的玻印亭矢量,如图5(C)所示,几乎为零,电磁波在大气中移动。在图5(C),箭矢越大,示出越大的能量移动。
图6示出在模拟中用的其它状态的高电介质波导管模型。在这里,中心的波导轴106的构造是与图4所示同样设定。与此相反,关于外侧的截面圆环状的波导管主体104,上下端部分104A、104A用导体形成,用高电介质材料形成被该上下端部104A、104A夹持的中央部分104B。在这里,波导轴106以及波导管104的各尺寸是与图4所示的状相同。在这里,波导轴106的中央部分106B以及波导管主体104的中央部分104B的高电介质材料的介电係数ε都设定在1000。
在这种状况下,供给以TEM模式振动的2.45GHZ的微波处,在入射面,得到反射率0.1%的结果。即,可以确认99.9%的微波在该高电介质波导管94中传输,几乎不产生传输损耗。
据此判明;用全部导体形成中心的波导轴106,用高电介质材料形成外侧的波导管主体104中央部分104B时,几乎不产生传输损耗,充分地传输微波。
用介电係数ε为5000的高电介质材料,进行与上述同样的模拟的结果,与上述同样,对微波传输也可以得到良好的结果。
如以上所述,认为高电介质波导管94可以传输微波的理由如以下所示。首先,在导体的情况下,对微波产生趋肤效应,成为传导电流而流过,而在高电介质材料的状况,作为位移电流流过。即:该位移电流虽然与电场的时间微分成比例产生,而如果想要在介电系数大的高电介质材料中产生电场,则产生抵偿它那样的作用(按照电场变为零那样作用)(参照图5(A)),认为其成为与电流流过相同的举动。
如以上所示,因高电介质波导管94可以不会产生那种程度传输损耗地将微波充分且有效地传输,所以,可以用该高电介质波导管94来取代为了传输TEM模式的微波而在现有方式用的同轴波导管,因此,可以大幅度提高其耐热性。
其次,对本申请的第二发明加以说明。
图7是示出第二发明的等离子体处理装置的构成图,图8是示出在短线匹配器中用的位置控制机构的构成图。
该第二发明的特征在于设置TEM模式用的短线匹配器取代现有的等离子体处理装置用的TE模式匹配电路(图1中的匹配电路102或图11中的匹配电路36)这一点。
在该第二发明,因为处理容器44内的构造是与图1所示状况同样的构造,所以在图7对于同一构造部分附同一参考符号,省略其说明。
该第二发明的波导管90与现有装置同样的形成。即:该波导管90由与上述防护盖体80的中央开口部88直接连接固定而向上方立起的截面圆形的完全导体形成的同轴波导管110、和在该同轴波导管110的上端部经进行微波振动模式变换的模式变换器96而向水平方向连接固定的截面矩形的矩形波导管98构成。该矩形波导管98是与图1所示的情况相同。
首先,连接在上述微波发生源92和上述模式变换器96之间的上述矩形波导管98全体用例如表面施以镀银的黄铜等的导体以截面矩形状形成,在该矩形波导管98上只插入设置对微波进行绝缘的隔离器100,在这里不插入设置图1所用的匹配电路102。而且,在上述同轴波导管110内插入设置作为本发明特征的短线匹配器112来取代该匹配电路102。具体讲,该周知的现有同轴波导管110是传输TEM模式的微波的,它通过由截面实质上做成圆形环状的筒状或管状的波导管114,和插通该波导管主体114内中心部的截面圆形的棒状波导轴116形成。在这里与上述第一发明的情况不同,上述波导管主体114以及波导轴116都利用由例如表面施以镀银的黄铜等构成的导体来形成。
而且,上述短线匹配器112在与上述平面天线部件76接近的状态下,设置在该直上的同轴波导管110上。该短线匹配器112具有在导体制的上述波导管主体114内设置的由电介质材料形成的2个匹配部件118A、118B,它们沿着微波的传输方向合适间隔配置。各匹配部件118A、118B通过由例如介电系数2.6左右的特氟隆(注册商标Teflon)形成的电介质材料以规定厚度的圆板状形成,在其中心部分别形成贯通孔120,通过在该贯通孔120上插通上述导体制的波导轴116,使上述各匹配部件118A、118B可移动。
各匹配部件118A、118B的外径设定在比波导管主体114的内径稍小,其厚度H1设定在例如λ/4(λ:波长)左右。
而且,上述各匹配部件118A、118B通过位置控制机构122两者可以一体地、或者单个地沿着微波的传输方向移动。具体地讲,上述各匹配部件118A、118B各自通过插通在上述波导管主体114侧壁设置的2个长孔124而设置的支持杆126支持。各支持杆126的基部分别用螺合到旋转自如地由基台128支持的2个螺杆130A、130B上,通过各自单个地正逆方向转动这些螺杆130A、130B,上述各匹配部件118A、118B可以单个地移动。而且在上述各螺杆130A、130B的端部上分别安装螺丝驱动马达132A、132B,这些螺丝驱动马达132A、132B能单个地正逆方向转动上述各螺杆130A、130B。
在上述基台128的一侧上在形成齿轨134的同时,该齿轨134与通过齿轨驱动马达136旋转的小齿轮138轮齿咬合,通过使该小齿轮正逆方向旋转,使该基台128沿着未图示的导向器向图8中的上下方向在规定的冲程内移动。
该波导管主体114内设置用于检测微波反射波功率或相位的探测器140,接收该探测器140的输出,例如由微计算机等构成的匹配控制部142控制上述各马达132A、132B、136的旋转动作。
在这样构成的等离子体处理装置,关于微波的传输,通过微波发生波92产生的微波在矩形波导管98内以TE模式传输,该TE模式的微波通过模式变换器96变换为TEM模式,在该状态下,使截面圆形环状的导体制的同轴波导管110应当向平面天线部件76进行传输。
在这里,在处理空间S内的等离子体状态或压力状态等的各种主要因素下,在波导管90内产生微波的反射波,使上述短线匹配器112动作,发挥所谓的匹配功能,以便抵消该反射波。
具体讲,通过波导管主体114内设置的探测器140检测微波反射波的功率或相位,匹配控制部142通过旋转驱动齿条驱动马达136、螺丝驱动马达132A、132B,使上述匹配部件118A、118B一体地或单个地移动而加以调整,以便消除它。例如,为了使两匹配部件118A、118B一体地移动,可以使齿条驱动马达136旋转,移动基台128,与此相反,为了使两匹配部件118A、118B分别地移动,也可以分别逐个旋转驱动螺丝驱动马达132A、132B。
具体地讲,在将微波传输路径的反射系数和阻抗多要素平面表示而形成的史密斯(Smith)图表上,例如,通过使两匹配部件118A、118B一体地移动,使相位变化,或者,通过只使任一方的匹配部件118A或118B移动,应当描绘出实部(电阻值)一定,虚部(电抗)变化的轨跡。
这样,通过设置TEM模式用的短线匹配器112,可以不要现有方式用的TE模式用的匹配电路。
而且,该短线匹配器112,如上述所示,是TEM模式用的,可以在平面天线部件16的正上方与该部件接近处设置,因此可以提高阻抗匹配的效率。
在这里,如果用介电系数大的材料作为在上述匹配部件118A、118B用的电介质材料,则可以按其所占份额扩大阻抗匹配的调整范围。而且,作为该电介质材料,除了特氟隆(注册商标)之外,也可以用石英、兰宝石、SAPPHAL(注册商标)或氧化铝、氮化铝等陶瓷材料。
也可以使该种短线匹配器112沿着上述同轴波导管跨越数段,例如2段设置。
在上述第二发明,以在现有的同轴波导管110上设置短线匹配器112的情况作为例加以说明,然而,并不限于此,也可以在图1说明的第一发明的装置例上设置短线匹配器112。
图9是示出这样的第二发明的第一变形例的局部放大图。
在这里,如图1说明所示,设置由波导管主体104和波导轴106形成的高电介质波导管94,以便连络模式变换器104和平面天线部件76,在该部分,设置与图7说明的相同构成的短线匹配器112。当然,在这种情况下,不要现有的匹配电路102(参照图1)。
根据该构成,可以合并持有第一发明的效果和第二发明的效果。即,除了所谓提高高电介质波导管94的耐热性,减少其热变形,可防止微波泄漏的第一发明的效果之外,还具有所谓不需要现有的TE模式用匹配电路、可以提高阻抗匹配效率的第二发明的效果。
在上述第一变形例,虽然由高电介质波导管94只连接在模式变换器96和平面天线部件76之间,然而并不限于此,也可以在平面天线部件76和微波发生源92之间全部由高电介质波导管连接。
图10是示出这样的第二发明的第二变形例的局部构成图。
如图示所示,在这里,在平面天线部件76和微波发生源92之间全部利用由波导管主体104和波导轴106构成的高电介质波导管94形成。而且,在上述平面天线部件76的正上方部分的高电介质波导管94上设置上述短线匹配器112。
因为在这种情况下,从微波发生源92传输的微波振动模式从最初开始为TEM模式,所以没有必要在中途设置模式变换器96(参照图9)。在图10,使波导管主体104以90°弯曲地显示,然而因为在这里不用模式变换器96,所以也可以不弯曲,以直线状形成波导管主体104。
因此,在这种第二变形例的情况下可以不要模式变换器96,不仅可以该部分有助于降低装置成本,而且也没有与模式变换相伴产生的损耗,所以提高微波的传输效率。
可是,由于也把导体制的矩形波导管98(参照图1或图10)的部分换成高电介质波导管94,所以也可以提高该部分的耐热性,没有热变形,可以防止这部分的微波泄漏。
在本实施例,以在半导体晶片上进行膜处理的情况为例加以说明,然而并不限于此,也可以在等离子体蚀刻处理、等离子体灰化处理等其它等离子体处理中使用。作为被处理体也不限于半导体晶片,也可以对玻璃基板、LCD基板等使用。
如以上说明所示,根据本发明的等离子体处理装置,可以发挥如下所示的优良的作用效果。
根据本申请的第一发明,因为采用高电介质材料的高电介质波导管作为波导管,所以可以使波导管自身的线膨胀系数比现有的导体制的波导管小,其结果,热变形等变少,可提高其耐热性。因此,可以防止波导管变形或微波泄漏的发生。
根据本申请的第二发明,因为在波导管中途设置用电介质材料的短线匹配器,所以可以不要现有方式使用的TE模式用匹配电路。
可以使TEM模式用短线匹配器接近平面天线部件设置,可提高阻抗匹配的效率。
因为可以从微波发生源开始用TEM模式传输微波,所以没有必要在中途设置模式变换器,由此,不但可有助于成本降低,而且也没有模式变换的损耗。
Claims (13)
1、一种等离子体处理装置,其特征为,配备以下部件:
可真空抽气的处理容器;
在所述处理容器内设置的、载置被处理体的载置台;
在所述处理容器的顶板开口部上设置的微波透过板;
经所述微波透过板,用于将微波供给所述处理容器内的平面天线部件;
覆盖着所述平面天线部件的上方并接地的防护盖体;和
用于将来自微波发生源的微波供给所述平面天线部件的波导管,
所述波导管由使用了介电系数在100以上的高电介质材料的高电介质波导管构成。
2、根据权利要求1所述的等离子体处理装置,其特征为,
所述高电介质波导管由筒状波导管主体和插通在该波导管主体内的波导轴构成,在所述波导管主体和所述波导轴内、至少任一方由所述高电介质材料形成。
3、根据权利要求1或2所述的等离子体处理装置,其特征为,
在所述波导管中途介插模式变换器,在该模式变换器和所述平面天线部件之间用所述高电介质波导管。
4、根据权利要求1或2所述的等离子体处理装置,其特征为,
所述高电介质材料的介电系数在1000以上。
5、根据权利要求1或2所述的等离子体处理装置,其特征为,
所述高电介质材料利用选自由PZT(含Pb、Zr、Ti、O的复合材料)、BST(含Ba、Sr、Ti、O的复合材料)、SBT(含Sr、Bi、Ta、O的复合材料)形成的组中的一种以上材料形成。
6、根据权利要求1或2所述的等离子体处理装置,其特征为,
在所述平面天线部件上由贯通孔构成的微波辐射孔以同心圆状或涡卷状形成。
7、根据权利要求1或2所述的等离子体处理装置,其特征为,
在所述平面天线部件上,以同心圆状或涡卷状而形成有多个辐射孔对,该辐射孔对通过使由贯通孔构成的相互垂直的2个微波辐射孔接近而形成。
8、根据权利要求1或2所述的等离子体处理装置,其特征为,
在所述波导管上设置使用了电介质材料的短线匹配器。
9、一种等离子体处理装置,其特征为,配备以下部件:
可真空抽气的处理容器;
在所述处理容器内设置的、载置被处理体的载置台;
在所述处理容器的顶板开口部上设置的微波透过板;
经所述微波透过板,用于将微波供给所述处理容器内的平面天线部件;
覆盖着所述平面天线部件的上方而接地的防护盖体;和
用于将来自微波发生源的微波供给所述平面天线部件的波导管,
其构成为,在所述波导管中途设置使用了电介质材料的短线匹配器。
10、根据权利要求9所述的等离子体处理装置,其特征为,
所述短线匹配器与所述平面天线部件接近而设置。
11、根据权利要求9所述的等离子体处理装置,其特征为,
所述短线匹配器由沿着所述微波传输方向间隔配置的、由电介质材料形成的2个匹配部件构成,所述2个匹配部件可一体地向所述微波传输方向移动,同时,也可单个地移动。
12、根据权利要求9所述的等离子体处理装置,其特征为,
所述波导管由同轴波导管形成,所述微波从所述微波发生源开始以TEM模式的振动模式传输。
13、根据权利要求9所述的等离子体处理装置,其特征为,
在所述波导管中途设置模式变换器,在将所述模式变换器和所述平面天线部件加以连接的部分的波导管上设置所述短线匹配器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP029947/2002 | 2002-02-06 | ||
JP2002029947A JP4062928B2 (ja) | 2002-02-06 | 2002-02-06 | プラズマ処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1628495A CN1628495A (zh) | 2005-06-15 |
CN1309280C true CN1309280C (zh) | 2007-04-04 |
Family
ID=27677897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB038032120A Expired - Fee Related CN1309280C (zh) | 2002-02-06 | 2003-01-27 | 等离子体处理装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7430985B2 (zh) |
JP (1) | JP4062928B2 (zh) |
KR (1) | KR100646458B1 (zh) |
CN (1) | CN1309280C (zh) |
WO (1) | WO2003067939A1 (zh) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6965287B2 (en) * | 2004-03-31 | 2005-11-15 | Tokyo Electron Limited | Low reflection microwave window |
JP4149427B2 (ja) * | 2004-10-07 | 2008-09-10 | 東京エレクトロン株式会社 | マイクロ波プラズマ処理装置 |
JP4852997B2 (ja) * | 2005-11-25 | 2012-01-11 | 東京エレクトロン株式会社 | マイクロ波導入装置及びプラズマ処理装置 |
US7873329B2 (en) * | 2006-04-25 | 2011-01-18 | ThruVision Systems Limited | Transceiver having mixer/filter within receiving/transmitting cavity |
CN100580858C (zh) * | 2006-11-21 | 2010-01-13 | 中国原子能科学研究院 | 微波离子源 |
JP4965287B2 (ja) * | 2007-03-14 | 2012-07-04 | 東京エレクトロン株式会社 | 載置台 |
JP2008305736A (ja) * | 2007-06-11 | 2008-12-18 | Tokyo Electron Ltd | プラズマ処理装置、プラズマ処理装置の使用方法およびプラズマ処理装置のクリーニング方法 |
JP5376816B2 (ja) * | 2008-03-14 | 2013-12-25 | 東京エレクトロン株式会社 | マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置 |
JP4694596B2 (ja) * | 2008-06-18 | 2011-06-08 | 東京エレクトロン株式会社 | マイクロ波プラズマ処理装置及びマイクロ波の給電方法 |
WO2010021382A1 (ja) * | 2008-08-22 | 2010-02-25 | 東京エレクトロン株式会社 | マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置 |
WO2010110256A1 (ja) * | 2009-03-27 | 2010-09-30 | 東京エレクトロン株式会社 | チューナおよびマイクロ波プラズマ源 |
US9237638B2 (en) | 2009-08-21 | 2016-01-12 | Tokyo Electron Limited | Plasma processing apparatus and substrate processing method |
JP5710209B2 (ja) | 2010-01-18 | 2015-04-30 | 東京エレクトロン株式会社 | 電磁波給電機構およびマイクロ波導入機構 |
EP2363913A1 (en) * | 2010-03-03 | 2011-09-07 | Astrium Limited | Waveguide |
US8980047B2 (en) * | 2010-07-02 | 2015-03-17 | Samsung Electronics Co., Ltd. | Microwave plasma processing apparatus |
DE102010063167B4 (de) | 2010-12-15 | 2022-02-24 | Endress+Hauser SE+Co. KG | Mit hochfrequenten Mikrowellen arbeitendes Füllstandsmessgerät |
JP5698563B2 (ja) * | 2011-03-02 | 2015-04-08 | 東京エレクトロン株式会社 | 表面波プラズマ発生用アンテナおよび表面波プラズマ処理装置 |
US9543123B2 (en) * | 2011-03-31 | 2017-01-10 | Tokyo Electronics Limited | Plasma processing apparatus and plasma generation antenna |
KR102007059B1 (ko) * | 2011-12-12 | 2019-08-02 | 도쿄엘렉트론가부시키가이샤 | 플라즈마 발생용 안테나, 플라즈마 처리 장치 및 플라즈마 처리 방법 |
JP6010406B2 (ja) * | 2012-01-27 | 2016-10-19 | 東京エレクトロン株式会社 | マイクロ波放射機構、マイクロ波プラズマ源および表面波プラズマ処理装置 |
JP6144902B2 (ja) | 2012-12-10 | 2017-06-07 | 東京エレクトロン株式会社 | マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置 |
JP5725574B2 (ja) * | 2013-03-05 | 2015-05-27 | 東京エレクトロン株式会社 | マイクロ波導波装置、プラズマ処理装置及びプラズマ処理方法 |
JP2014192372A (ja) * | 2013-03-27 | 2014-10-06 | Tokyo Electron Ltd | マイクロ波加熱処理装置 |
US20150118416A1 (en) * | 2013-10-31 | 2015-04-30 | Semes Co., Ltd. | Substrate treating apparatus and method |
JP6356415B2 (ja) | 2013-12-16 | 2018-07-11 | 東京エレクトロン株式会社 | マイクロ波プラズマ源およびプラズマ処理装置 |
JP6296787B2 (ja) * | 2013-12-25 | 2018-03-20 | 東京エレクトロン株式会社 | 基板処理装置及び基板処理方法 |
JP6501493B2 (ja) * | 2014-11-05 | 2019-04-17 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP6444782B2 (ja) * | 2015-03-17 | 2018-12-26 | 東京エレクトロン株式会社 | チューナおよびマイクロ波プラズマ源 |
JP2016177997A (ja) * | 2015-03-20 | 2016-10-06 | 東京エレクトロン株式会社 | チューナ、マイクロ波プラズマ源、およびインピーダンス整合方法 |
JP2016225047A (ja) * | 2015-05-27 | 2016-12-28 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP6883953B2 (ja) * | 2016-06-10 | 2021-06-09 | 東京エレクトロン株式会社 | マイクロ波プラズマ処理装置およびマイクロ波プラズマ処理方法 |
CN108074789B (zh) * | 2016-11-15 | 2019-10-11 | 北京北方华创微电子装备有限公司 | 一种微波传输装置和半导体处理设备 |
CN108735567B (zh) * | 2017-04-20 | 2019-11-29 | 北京北方华创微电子装备有限公司 | 表面波等离子体加工设备 |
KR20180136302A (ko) * | 2017-06-14 | 2018-12-24 | 삼성전자주식회사 | 플라즈마 공정 장치 및 이를 이용한 반도체 장치 제조 방법 |
JP2021064508A (ja) * | 2019-10-11 | 2021-04-22 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US20220359162A1 (en) * | 2020-01-27 | 2022-11-10 | Hitachi High-Tech Corporation | Plasma processing apparatus |
CN113612012B (zh) * | 2021-07-28 | 2023-09-29 | 中国科学院合肥物质科学研究院 | 一种可移动栅格式表面波离子回旋天线结构 |
CN116631655B (zh) * | 2023-07-25 | 2023-11-28 | 中国科学院合肥物质科学研究院 | 一种兆瓦级稳态高功率锥形水负载 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58221501A (ja) * | 1982-06-17 | 1983-12-23 | Hitachi Cable Ltd | 低損失誘電体伝送線路 |
US4441091A (en) * | 1979-07-18 | 1984-04-03 | Hitachi Cable Ltd. | Low loss leakage transmission line |
JPH11204296A (ja) * | 1998-01-14 | 1999-07-30 | Sumitomo Metal Ind Ltd | マイクロ波プラズマ処理装置 |
JP2002231637A (ja) * | 2001-01-30 | 2002-08-16 | Nihon Koshuha Co Ltd | プラズマ処理装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3078428A (en) * | 1959-09-30 | 1963-02-19 | Bell Telephone Labor Inc | Spurious mode suppressing wave guide |
CH613565A5 (zh) * | 1977-02-11 | 1979-09-28 | Patelhold Patentverwertung | |
JPH07220897A (ja) * | 1994-01-27 | 1995-08-18 | Matoritsukusu:Kk | マイクロ波ガスプラズマ放電方法、装置及びプラズマ放電部 |
US5523652A (en) * | 1994-09-26 | 1996-06-04 | Eaton Corporation | Microwave energized ion source for ion implantation |
JP3396345B2 (ja) * | 1995-09-25 | 2003-04-14 | 三菱重工業株式会社 | プラズマ発生装置 |
US5830591A (en) * | 1996-04-29 | 1998-11-03 | Sengupta; Louise | Multilayered ferroelectric composite waveguides |
JPH11214196A (ja) * | 1998-01-29 | 1999-08-06 | Mitsubishi Electric Corp | プラズマ発生装置 |
AU1315300A (en) * | 1998-10-16 | 2000-05-08 | Paratek Microwave, Inc. | Voltage tunable laminated dielectric materials for microwave applications |
US6329957B1 (en) * | 1998-10-30 | 2001-12-11 | Austin Information Systems, Inc. | Method and apparatus for transmitting and receiving multiple frequency bands simultaneously |
JP3477573B2 (ja) | 2000-03-24 | 2003-12-10 | 東京エレクトロン株式会社 | プラズマ処理装置、プラズマ生成導入部材及びスロット電極 |
US6401653B1 (en) * | 2000-04-18 | 2002-06-11 | Daihen Corporation | Microwave plasma generator |
US6737809B2 (en) * | 2000-07-31 | 2004-05-18 | Luxim Corporation | Plasma lamp with dielectric waveguide |
JP4366856B2 (ja) * | 2000-10-23 | 2009-11-18 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP4481538B2 (ja) * | 2001-09-28 | 2010-06-16 | 東京エレクトロン株式会社 | 電磁界供給装置およびプラズマ処理装置 |
US7034629B2 (en) * | 2001-12-31 | 2006-04-25 | Christos Tsironis | High frequency, high reflection pre-matching tuners with variable zero initialization |
-
2002
- 2002-02-06 JP JP2002029947A patent/JP4062928B2/ja not_active Expired - Fee Related
-
2003
- 2003-01-27 WO PCT/JP2003/000739 patent/WO2003067939A1/ja active Application Filing
- 2003-01-27 US US10/502,807 patent/US7430985B2/en not_active Expired - Fee Related
- 2003-01-27 CN CNB038032120A patent/CN1309280C/zh not_active Expired - Fee Related
- 2003-01-27 KR KR1020047012104A patent/KR100646458B1/ko not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4441091A (en) * | 1979-07-18 | 1984-04-03 | Hitachi Cable Ltd. | Low loss leakage transmission line |
JPS58221501A (ja) * | 1982-06-17 | 1983-12-23 | Hitachi Cable Ltd | 低損失誘電体伝送線路 |
JPH11204296A (ja) * | 1998-01-14 | 1999-07-30 | Sumitomo Metal Ind Ltd | マイクロ波プラズマ処理装置 |
JP2002231637A (ja) * | 2001-01-30 | 2002-08-16 | Nihon Koshuha Co Ltd | プラズマ処理装置 |
Also Published As
Publication number | Publication date |
---|---|
US20050082004A1 (en) | 2005-04-21 |
WO2003067939A1 (fr) | 2003-08-14 |
JP2003234327A (ja) | 2003-08-22 |
JP4062928B2 (ja) | 2008-03-19 |
KR20040081185A (ko) | 2004-09-20 |
US7430985B2 (en) | 2008-10-07 |
CN1628495A (zh) | 2005-06-15 |
KR100646458B1 (ko) | 2006-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1309280C (zh) | 等离子体处理装置 | |
CN1602543A (zh) | 等离子体处理装置 | |
CN1614746A (zh) | 螺旋谐振器型等离子体处理设备 | |
CN1217390C (zh) | 等离子体处理装置、等离子体处理方法和滞波板 | |
KR100700763B1 (ko) | 정합기 및 플라즈마처리장치 | |
TW502561B (en) | Plasma treatment apparatus | |
CN1278386C (zh) | 热处理装置和热处理方法 | |
CN1160479C (zh) | 等离子体增强的化学处理反应器和方法 | |
CN101043784A (zh) | 混合等离子体反应器 | |
CN1460289A (zh) | 等离子体处理装置以及半导体制造装置 | |
TW200414274A (en) | Plasma processing apparatus | |
CN1819736A (zh) | 用于等离子体处理装置的侧rf线圈和侧加热器 | |
CN101042990A (zh) | 等离子体处理装置和方法 | |
CN100352316C (zh) | 等离子体处理装置和等离子体处理方法 | |
CN1210768C (zh) | 等离子体处理装置 | |
CN101189707A (zh) | 等离子体处理装置 | |
CN101080133A (zh) | 感应耦合等离子体反应器 | |
WO2003030241A1 (fr) | Appareil de traitement de plasma | |
CN1230042C (zh) | 感应耦合等离子体腐蚀装置 | |
CN1132962C (zh) | 淀积膜形成系统和方法 | |
KR101463984B1 (ko) | 플라즈마 처리 시스템 | |
CN1550035A (zh) | 电磁场供给装置及等离子体处理装置 | |
CN1230877C (zh) | 等离子体装置及其制造方法 | |
JP3872650B2 (ja) | プラズマ処理装置及び方法 | |
US20230059495A1 (en) | Optimization of Radiofrequency Signal Ground Return in Plasma Processing System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070404 Termination date: 20160127 |
|
EXPY | Termination of patent right or utility model |