CN1278386C - 热处理装置和热处理方法 - Google Patents

热处理装置和热处理方法 Download PDF

Info

Publication number
CN1278386C
CN1278386C CNB018165753A CN01816575A CN1278386C CN 1278386 C CN1278386 C CN 1278386C CN B018165753 A CNB018165753 A CN B018165753A CN 01816575 A CN01816575 A CN 01816575A CN 1278386 C CN1278386 C CN 1278386C
Authority
CN
China
Prior art keywords
heating plate
gas
container
cooling block
annealing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018165753A
Other languages
English (en)
Other versions
CN1531743A (zh
Inventor
河南博
田村登
小岛康彦
石坂忠大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN1531743A publication Critical patent/CN1531743A/zh
Application granted granted Critical
Publication of CN1278386C publication Critical patent/CN1278386C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • C23C16/466Cooling of the substrate using thermal contact gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明提供一种热处理装置,其包括:容器;设置在上述容器内、在载置被处理体的同时、可以加热上述被处理体的加热板;向上述加热板供给电力的供电器件;在隔着间隙载置上述加热板的同时、可以冷却上述加热板的冷却块;和用于向上述空隙导入热传导气体的气体导入路。

Description

热处理装置和热处理方法
技术领域
本发明涉及对半导体单晶片等被处理体实施单片成膜处理等的热处理装置和热处理方法。
背景技术
一般来说,在半导体集成电路的制造中,对半导体单晶片等的被处理体进行成膜处理、蚀刻处理、氧化扩散处理等各种处理。在高集成化、高微细化及薄膜化日新月异的今天,提高上述处理中的膜质成为重大课题。在这种状况下,开发了原子层堆积法(Atomic Layer Deposition:以下称ALD)作为得到良好膜质的膜的成膜方法。
ALD就是利用针对吸附面的原料气体的第一层的吸附能和第二层以后的吸附能之差,以原子水平或分子水平堆积每层所期望的膜。具体地说,就是通过控制成膜时的温度、压力,即,使温度、压力反复地上升、下降,一边除去第二层以后的剩余原料气体一边成膜。
下面,以使用四氯化钛(TiCl4)和氨(NH3)作为原料进行氮化钛(TiN)成膜的情况为例来详细叙述ALD。
进行ALD的热处理装置在特开平6-244143号公报、特开平7-78766号公报、特开平7-153706号公报等都有公开。图6是表示用于进行上述ALD的热处理装置的结构的一个示例。
如图6所示,热处理装置102例如具有截面略呈圆形状的铝制的容器104。形成的容器104下部直径比上部直径小。由此,容器104内部的容量尽可能小,以便得到高的排气效率。在容器104的侧壁设置有用于导入处理气体的石英制的管嘴106。通过管嘴106向处理空间S供给处理气体。
在容器104的侧壁设置有门阀108。该门阀108是用于将作为被处理体的半导体单晶片搬入到容器104或搬出容器104。门阀108可以进行密封地开关。
在容器104的下部,如上所述,形成比上部窄的下部空间110。中空圆筒状的轴112从容器104的底部竖直贯通下部空间110。轴112贯通容器104的底部,容器104的底部和轴112的接合部利用O形环等密封部件114密封。
在轴112的上部,例如,固定有厚度t1为数cm的圆板状载置台116。载置台116的上面可以载置半导体单晶片W。另外,在载置台116的内部设置有按规定图案配置的由电阻体形成的加热器118。载置台116由烧结的例如由氮化铝等形成的陶瓷构成。轴112使用与载置台116同样的材料,例如由氮化铝构成,通过固相接合120与载置台116接合。另外,载置台116设置有贯通其上下的由石英等形成的升降支杆126,可通过空气汽缸128进行升降。
加热器118与穿过中空轴112内部的电线122连接,通过电线122给加热器118提供电力。因此,轴112的内部形成大气环境氛围,充分进行电线122的散热,可防止烧损。
设定轴112的长度L1要考虑到下端设置的密封部件114的耐热性。也就是说,例如,长度L1设定为30cm左右,在设置载置台116的上端和下端之间,能确保足够的温度差。另外,为了保护密封部件114,容器104的底部设置有冷却水流动的冷却套124。
容器104下部侧壁形成连接于下部空间110的排气口130。排气口130与连接于未图示的排气装置的排气管132相连。通过排气装置,包含下部空间110的容器104内可以设定为高真空。
下面,利用上述热处理装置102,说明通过ALD来进行TiN成膜的工序。
首先,将载置台116维持在适于TiCl4附着的温度例如600℃,在短时间内例如在数秒钟内把TiCl4气体导入到容器104内。因此,根据需要,TiCl4气体即使与载气一起导入也可以。由此,单晶片W的表面附着有多层TiCl4分子层。
接着,将容器104内排气到例如1.33×10-3Pa(10-5Torr)左右的高真空,同时,使载置台116的温度降温到适于NH3附着的温度例如300℃。在该排气过程中,由于吸附能之差,单晶片W的表面附着的TiCl4分子层残留下第1层分子层后飞散。由此,在单晶片W表面附着有1层的TiCl4层。
通过排气,容器104内的压力达到1.33×10-3Pa左右,而且载置台116的温度为300℃左右,在短时间内例如在数秒钟内把NH3气体导入到容器104内。通过气体的导入,容器104内的压力回到133Pa(1Torr)左右。因此,根据需要,NH3气体即使与载气一起导入也可以。由此,单晶片表面的1层TiCl4分子和NH3气体进行反应形成1层TiN层,TiN层上面附着有多层的NH3分子层。
接着,容器104内排气到1.33×10-3Pa左右的同时,载置台116升温到例如600℃。这时,除了TiN膜上附着的第1层的NH3分子以外,第2层以上的NH3分子层飞散。
接着,在数秒内把TiCl4气体导入到容器104内。这时,TiN膜上的1层NH3分子层和TiCl4进行反应形成1层TiN膜,同时,该TiN膜上附着有多层TiCl4分子层。因此,这时单晶片W表面形成2层TiN膜。
然后,进行与上述同样的操作,即反复地进行规定次数各原料的分别供给和排气、以及载置台116的升降温,使TiN膜一层一层地堆积,得到所期望厚度的TiN膜。上述操作例如要反复进行100~数百次左右。
如上所述,由于通过ALD可以一层一层地成膜,所以能高精度地控制膜厚。而且能得到整体膜质高的膜。另外,因为能使每1分子层堆积,所以即使膜质稍有变化等,也可以拥有特性梯度。
可是,如上所述,ALD需要反复多次地进行载置台116的升降温、容器104内气体的供给和排气。因此,为了得到高生产性及高生产率,必须在短时间内且迅速地进行升降温及排气。
但是,在上述热处理装置102中,因为载置台116的厚度t1为数cm左右,所以热容量比较大、升降温要花费时间。另外,载置台116的降温是借助于与该载置台116接合的轴112,并通过容器104底部的冷却套124来进行散热的。但是,由陶瓷形成的轴112的热传导率比较低,就这点来说,载置台116的降温要花费时间。
为了提高降温速度,通常考虑到缩短轴112、使用热传导性良好的材料。但是,过于缩短轴112的长度时,由于热会损伤耐热温度为150℃~200℃左右的密封部件114。另外,轴112使用与陶瓷制的载置台116的线膨胀率不同的其它材料时,会在相互的接合部120附近产生破损。
另外,通过确保轴112的长度L1为某种程度,下部空间110的容积也增大了,所以容器104整体的容积也增大了。因此,达到规定的真空状态的排气也要花费时间。
这样,现有的热处理装置的问题是:载置台、进而被处理体的升降温要花费时间,另外,容器内的真空排气也要花费时间。
发明内容
为了达到上述目的,本发明的目的在于提供一种可以使被处理体高速升降温的热处理装置和热处理方法。
另外,本发明的目的在于提供一种可以使容器内高速排气的热处理装置和热处理方法。
为了解决上述问题,本发明第一方面提供一种热处理装置,其特征在于,包括:容器;设置在上述容器内、在载置被处理体的同时、可以加热上述被处理体的加热板;向上述加热板供给电力的供电器件;在隔着间隙载置上述加热板的同时、可以冷却上述加热板的冷却块;和用于向上述空隙导入热传导气体的气体导入路。
在优选的实施方式中,上述气体导入路贯通上述冷却块,与上述加热板相对向地具备气体导入口。
在优选的实施方式中,上述加热板降温时,上述热传导气体导入到上述空隙。
在优选的实施方式中,上述加热板升温时,停止上述热传导气体的导入。
在优选的实施方式中,还具备用于调节上述热传导气体的流量的流量调节装置。
在优选的实施方式中,还具备用于测定上述热传导气体的压力的压力计,根据来自上述压力计的压力数据来调节上述流量。
在优选的实施方式中,还利用从上述气体导入路向上述加热板供给的电力和从上述气体导入路导入的上述热传导气体的流量来控制上述加热板的温度。
在优选的实施方式中,上述加热板通过夹紧部件,以能够容许上述加热板和上述冷却块之间的热膨胀率差的方式间接地固定于上述冷却块。
在优选的实施方式中,还包括:向上述容器内交互地导入多种反应气体的器件;和使上述容器内的上述反应气体的分压降低的器件。
在优选的实施方式中,上述容器具有平板状的底部,将上述冷却块以与上述底部无间隙地接触的方式设置在上述底部。
在优选的实施方式中,具有与上述加热板相连接并被上述冷却块包围的轴。
在优选的实施方式中,上述轴形成为中空,与上述加热板内部的上述加热器连接的导线穿过上述中空。
本发明第二方面提供一种使用热处理装置的热处理方法,该热处理装置包括:容器;加热板,该加热板设置在上述容器内,在该加热板的一个面上载置被处理体,并在该加热板的内部设置加热器,可以加热所载置的上述被处理体;冷却块,该冷却块以与上述加热板的另一个面相接的方式载置上述加热板,并在该冷却块的内部设置冷却机构,可以冷却上述加热板,其特征在于:在上述加热板和上述冷却块之间存在空隙,并在上述加热板降温时向上述间隙中导入热传导气体,在上述加热板升温时停止供给热传导气体的导入。
本发明第三方面提供一种使用热处理装置的热处理方法,该热处理装置包括:容器;加热板,该加热板设置在上述容器内,在该加热板的一个面上载置被处理体,并在该加热板的内部设置加热器,可以加热所载置的上述被处理体;冷却块,该冷却块以与上述加热板的另一个面相接的方式载置上述加热板,并在该冷却块的内部设置冷却机构,可以冷却上述加热板,其特征在于,包括:向上述容器内导入第一反应气体的第一工序;使上述容器内的上述第一反应气体的分压降低的第二工序;向上述容器内导入第二反应气体的第三工序;并且,向上述加热板和上述冷却块之间存在的空隙中供给热传导气体,并在上述加热板降温时向上述间隙中导入热传导气体,在上述加热板升温时停止热传导气体的导入。
在优选的实施方式中,还包括使上述容器内的上述第二反应气体的分压降低的工序,顺序反复进行上述第一工序、上述第二工序、上述第三工序。
附图说明
图1表示本实施方式的热处理装置的剖面结构。
图2是图1所示的热处理装置的局部放大图。
图3是本实施方式的处理方法的图表。
图4A~图4H是表示膜形成情况的示意图。
图5表示本发明的其它实施方式的热处理装置的结构。
图6表示现有的热处理装置的剖面结构。
具体实施方式
以下,参照附图说明本发明的实施方式的热处理装置。本实施方式的热处理装置是通过原子层堆积法(Atomic Layer Deposition:ALD)、在半导体单晶片(以下称单晶片W)的表面形成由四氯化钛(TiCl4)和氨(NH3)生成氮化钛(TiN)膜。
图1表示本发明实施方式的热处理装置10的剖面结构。并且,图2是图1所示的热处理装置10的局部放大图。
在此,热处理装置10具备控制器11,控制与热处理装置10成膜处理有关的全体动作。另外,为了容易理解,省略了控制器11的详细动作。
如图1所示,热处理装置10具备略呈圆筒状的例如由铝制成的容器12。在容器12的侧壁设置有由石英制成的多个的例如2个管嘴13。通过管嘴13,从未图示的原料气体源把原料气体按规定流量导入到处理空间S。另外,也可以使用淋浴喷头代替管嘴13。
另外,在容器12的侧壁设置有搬入搬出口14,该搬入搬出口14是用于把作为被处理体的单晶片W搬入容器12或搬出容器12。在搬入搬出口14设置有可以进行密封开关的门阀15。
在容器12的底部设置有由热传导性良好的材料例如铝制的圆柱状的冷却块16。在冷却块16上面和容器12顶部之间形成处理空间S。
在冷却块16的下部设置有冷却水等冷却介质流动的冷却介质室17。冷却介质室17与贯通容器12底部并延长的冷却介质导入管道18及冷却介质排出管道19相连。冷却介质导入管道18及冷却介质排出管道19与容器12底部的连接部都是通过O形环等密封部件20来密封的。控制器11调节流向冷却介质室17的冷却介质的流量、控制冷却功率。
冷却块16的上面形成平坦的面,在该面上设置有加热板21。加热板21由例如氮化铝等陶瓷构成并形成平板状。加热板21上载置有作为被处理体的单晶片W。
如图2所示,加热器板21在内部设置有按规定图案配置的薄电阻加热器22,可以加热载置于加热板21上的单晶片W。由此,加热板21的厚度t2较薄例如为5mm左右。能使用特开2001-196152号公报记述的方法制造加热板21。另外,冷却介质室17和加热板21之间的距离L2,根据冷却功率来设定,例如可以设定为5~15cm。
另外,如图1所示,加热板21的周边部利用环状的夹紧部件23押好。夹紧部件23使用与加热器板21同样的材料,此时,由氮化铝构成。夹紧部件23通过螺丝24固定在冷却块16上。
如图2所示,贯通冷却块16及容器12底部形成第一贯通孔25。配线管26通过第一贯通孔25内部,其下端延伸到容器12的外部。配线管26使用与加热板21同样的材料,此时,由氮化铝构成。配线管26的上端26A通过固相接合27气密性地密封在加热板21的下面,配线管26的内部成为大气环境氛围。
回到图1,与加热板21内部的电阻加热器22相连的导线28通过配线管26的内部。导线28接在电源29上。控制器11控制电源29,从而控制加热板21的温度。另外,虽然未图示,但接在温度测定用热电偶上的导线等的其它配线穿过配线管26。
配线管26和容器12底部的连接部通过O形环等的密封部件30而密封。
另外,如图2所示,在配线管26的周围贯通冷却块16及容器12的底部,形成第二及第三贯通孔31、32。例如不锈钢制的气体导入管33和气体吸引管34分别通过第二及第三贯通孔31、32。回到图1,通过O形环等密封部件35、36分别密封气体导入管33及气体吸引管34和容器12底部的连接部。
气体导入管33在容器12外部通过质量流控制器等的流量控制装置37及阀38连接在热传导气体源39上。在热传导气体源39中容纳有氦气(He)。控制器11控制着流量控制装置37及阀38,从而控制热传导气体的供给及供给量。
另一方面,气体吸引管34与泵40相连。另外,气体吸引管34通过APC(Auto Pressure Controller)与泵40相连也可以。
如图2所示,冷却块16上只载置加热板21。因此,在加热板21和冷却块16之间存在不规则的一点点空隙41。临近该空隙41设置气体导入管33上端的气体出口33A,He等热传导气体可以导入到空隙41内。在加热板21降温时,通过在空隙41内导入热传导气体,可以提高加热板21和冷却块16之间的热传导效率,加热板21的冷却速度加快。
气体吸引管34上端的吸引口34A临近空隙41设置,特别是吸引、排出空隙41存在的He等热传导气体。由此,防止了导入至空隙41内的热传导气体漏到处理空间S内。另外,控制器11,如后述的那样,对泵40等进行控制,对应于热传导气体的导入而进行排气。
回到图1,贯通冷却块16、容器12的底部及加热板21设置多个例如3根升降支杆孔42,各升降支杆孔42中可以插入由石英制成的升降支杆43。另外,升降支杆43的下端部与共同的连接环44相连。通过用未图示的螺丝管使连接环44升降,从而使升降支杆43一体升降。通过升降动作,升降支杆43的前端在加热板21上面出没,进行单晶片W的交接。
在各升降支杆孔42和容器12底部的连接部设置有例如金属制的伸缩软管45,通过伸缩软管45的伸缩,可以在维持容器12内的密封性的状态下,进行升降支杆43的升降。
在容器12底部形成排气口46。排气口46与未图示的真空泵等排气装置相连。控制器11控制排气装置,使容器12内排气,例如达到真空程度的压力。
下面,参照图3及图4来说明使用上述结构的热处理装置10的成膜方法。
图3是表示加热板21的温度纵剖面图、容器12内的压力纵剖面图及原料气体的供给定时的图表的一个示例。另外,图4是表示TiN膜形成情况的示意图。
首先,未处理的单晶片W保持在未图示的搬送臂上,通过打开的门阀15和搬入搬出口14搬入到容器12内。搬入的单晶片W在上升的升降支杆43上进行交接,再通过升降支杆43下降载置在加热板21上。
搬送臂退出后,控制器11关闭门阀15,通过未图示的排气装置开始容器12内的排气。由此开始进行成膜处理。
另外,在以下说明的成膜处理中,冷却块16中的冷却介质室17内经常流动着冷却介质,从而对冷却块16进行冷却。
首先,将容器12内排气到规定的压力例如133Pa(1Torr)左右,而且加热板21升温到适于TiCl4附着的温度例如600℃。在该状态下,在数秒钟例如3秒钟向容器12内供给TiCl4气体。另外,对供给时间没有特别的限制,但数秒钟就足够了。由此,如图4A所示,在单晶片W的表面上附着有多层TiCl4分子层50。
接着,控制器11使容器12内的压力下降到例如1.33×10-3Pa(10-5Torr)左右。同时,控制器11切断或降低供给加热板21的电力,使加热板21降温到适于NH3附着的温度例如300℃。
降温时,控制器11将He等热传导气体导入到空隙41,提高加热板21和冷却块16之间的热传导效率,促进加热板21的降温。并且同时,控制器11通过气体吸引管34吸引空隙41的热传导气体。这时的降温速度例如为100℃/分钟左右。
这样,如图4B所示,在排气过程中,附着于单晶片W表面的TiCl4分子层50由于吸附能之差除了第1层外而飞散。由此,单晶片W的表面附着有1层的TiCl4分子层50。
这样做,容器12内的压力成为1.33×10-3Pa左右,而且加热板21的温度降低到300℃左右,在该状态下,NH3气体在短时间内例如3秒钟左右被导入到容器12内。另外,对NH3的导入时间没有特别的限制,但数秒钟就足够了。
由此,如图4C所示,单晶片W表面的1层TiCl4分子层50和导入的NH3分子进行反应,形成1层TiN层51。而且,在形成的TiN层51上附着有多层NH3分子层52。
接着,通过导入NH3气体,容器12内的压力变成133Pa左右,再接着下降到1.33×10-3Pa左右。同时,加热板21再次升温到600℃左右。这时的升温速度例如为100℃/分钟左右。另外,加热板21升温前,控制器11停止对空隙41的气体供给及从空隙41气体的排出。由此,加热板21和冷却块16之间的热传导效率降低,防止加热板21的升温速度降低。
通过上述的排气过程,如图4D所示,TiN层51上附着的NH3分子层52除了第1层外而飞散。因此,这时TiN层51上只附着1层NH3分子层52。
接着,再次向容器12内导入TiCl4气体。这时,如图4E所示,TiN层51上的一层NH3分子层52和TiCl4反应形成新的TiN层51,同时,在该TiN层51上附着多层TiCl4分子层50。因此,这时单晶片W上形成2层的TiN层51。
然后,如图4F所示,通过NH3气体的导入形成第3层TiN层51。而且,如图4G所示,除了附着于第3层上的第1层NH3分子层52外,排气除去。这样,与上述一样,按规定次数反复进行各原料气体的供给、排气、以及加热板21的升降温,一层一层地堆积TiN层51,由此得到所期望厚度的TiN层51。上述操作要反复进行例如100~数百次。
如以上说明的那样,在本实施方式的热处理装置10中,虽然加热板21由陶瓷构成,但厚度薄至5mm左右。因此,加热板21的热容量比较小。而且,加热板21的下面全部与冷却块16接触,确保热传导面比较大。由此,加热板21具有高的降温速度及高的效率。
而且,加热板21降温时,热传导气体导入到加热板21和冷却块16之间的空隙41。由此,提高了两部件间的热传导效率,进而提高了加热板21的降温速度。另外,导入至空隙41的热传导气体通过连接于空隙41上的气体吸引管34而被吸引,防止漏向气体的处理领域S。另外,加热板21升温时,停止热传导气体的导入,防止降低升温速度。
另外,冷却块16不是由陶瓷而是由热传导性比较高的金属材料构成的。因此,加热板21的冷却机构即冷却块16可以小型化。而且,即使小型化,也可防止基于大的温度梯度的发生所造成的热膨胀率之差产生的破损。
如上所述,冷却块16可以小型化,例如能使高度L2为10cm左右。因此,容器12的容积比较小。因此,可以进行容器12内部的高速排气(抽成真空),获得高的效率。
另外,加热板21通过夹紧部件23间接地固定在冷却块16上。通过夹紧部件23,允许加热板21和冷却块16之间存在热膨胀率差,防止加热板21升降温时的破损或劣化。
另外,在上述TiN膜的成膜处理中,使用的气体及温度、压力等成膜条件没有一例过量。因此,使用的气体种类如果是可以形成TiN膜的物质,什么样的物质都可以。当然,为了符合上述情况可分别设定成膜条件。
另外,上述的实施方式作为形成TiN膜的实施方式。但是,对此没有限定。当然,在形成其它膜种的膜的情况下,也能适用本发明。
另外,加热板21由耐热性及耐腐蚀性良好的AlN陶瓷构成。但是,对此没有限制,加热板21也能由其它的陶瓷材料或陶瓷以外的材料构成。
另外,在上述成膜处理中,附着于面上的剩余的分子层通过达到高真空状态的排气而除去,只剩下第1层的分子层。但是,也可以通过利用惰性气体的清除而进行排气工序。这种情况下,可以将清除进行中的容器12内的原料气体的分压降低至规定压力。另外,作为惰性气体来说,可以列举出氩、氦、氙、氖、氮等。
另外,冷却块16具备冷却介质室17,通过向冷却介质室17内流入冷却介质而被冷却。但是,对使冷却块16冷却的冷却机构没有限制,什么样的机构都可以。
另外,用于供给或吸引热传导气体的气体出口33A及吸引口34A分别配置在配线管26的周围。但是,如果可以进行加热板21的均匀冷却,气体出口33A及吸引口34A配置在什么样的位置上都可以。
在上述的实施方式中,控制器11控制向加热板21和冷却块16之间导入气体的导入开始和导入停止,对其流量不能进行细微控制。但是,在由于急速的温度变化而使被处理体即基板或加热板21受到损伤、劣化的情况下,控制器11通过流量控制装置37和阀38调节气体的流量,缓和温度梯度也可以。另外,没有气体流量,基于气体的压力,控制器11控制加热板21的升降温速度也可以。这时,例如,如图5所示,可以在流量控制装置37的排气侧设置压力计47。控制器11接受从压力计47来的气体压力数据,控制流量控制装置37。
另外,作为被处理体,虽然以半导体单晶片为例进行了说明,但对此没有限制,当然,液晶表示基板、玻璃基板等也能适用本发明。
产业上的可利用性
可以将本发明有效地用于半导体装置等电子装置的制造中。
本发明基于2000年9月29日申请的特愿2000-300398号,包含其说明书、权利要求范围、附图及摘要。本说明书中引述并包含上述申请的内容。

Claims (15)

1.一种热处理装置,其特征在于:包括:
容器;
设置在所述容器内、在载置被处理体的同时、可以加热所述被处理体的加热板;
向所述加热板供给电力的供电器件;
在隔着间隙载置所述加热板的同时、可以冷却所述加热板的冷却块;和
用于向所述空隙导入热传导气体的气体导入路。
2.如权利要求1所述的热处理装置,其特征在于:所述气体导入路贯通所述冷却块,与所述加热板相对向地具备气体导入口。
3.如权利要求1所述的热处理装置,其特征在于:所述加热板降温时,所述热传导气体导入到所述空隙。
4.如权利要求1所述的热处理装置,其特征在于:所述加热板升温时,停止导入所述热传导气体。
5.如权利要求1所述的热处理装置,其特征在于:还具备用于调节所述热传导气体的流量的流量调节装置。
6.如权利要求5所述的热处理装置,其特征在于:还具备用于测定所述热传导气体的压力的压力计,根据来自所述压力计的压力数据来调节所述流量。
7.如权利要求1所述的热处理装置,其特征在于:
还利用从所述气体导入路向所述加热板供给的电力和从所述气体导入路导入的所述热传导气体的流量来控制所述加热板的温度。
8.如权利要求1所述的热处理装置,其特征在于:所述加热板通过夹紧部件,以能够容许所述加热板和所述冷却块之间的热膨胀率差的方式间接地固定于所述冷却块。
9.如权利要求1所述的热处理装置,其特征在于:还包括:
向所述容器内交互地导入多种反应气体的器件;
使所述容器内的所述反应气体的分压降低的器件。
10如权利要求1所述的热处理装置,其特征在于:
所述容器具有平板状的底部,
将所述冷却块以与所述底部无间隙地接触的方式设置在所述底部。
11.如权利要求1所述的热处理装置,其特征在于:具有与所述加热板相连接并被所述冷却块包围的轴。
12.如权利要求11所述的热处理装置,其特征在于:所述轴形成为中空,与所述加热板内部的所述加热器连接的导线穿过所述中空。
13.一种使用热处理装置的热处理方法,该热处理装置包括:容器;加热板,该加热板设置在所述容器内,在该加热板的一个面上载置被处理体,并在该加热板的内部设置加热器,可以加热所载置的所述被处理体;冷却块,该冷却块以与所述加热板的另一个面相接的方式载置所述加热板,并在该冷却块的内部设置冷却机构,可以冷却所述加热板,其特征在于:
在所述加热板和所述冷却块之间存在空隙,并在所述加热板降温时向所述间隙中导入热传导气体,在所述加热板升温时停止供给热传导气体的导入。
14.一种使用热处理装置的热处理方法,该热处理装置包括:容器;加热板,该加热板设置在所述容器内,在该加热板的一个面上载置被处理体,并在该加热板的内部设置加热器,可以加热所载置的所述被处理体;冷却块,该冷却块以与所述加热板的另一个面相接的方式载置所述加热板,并在该冷却块的内部设置冷却机构,可以冷却所述加热板,其特征在于:包括:
向所述容器内导入第一反应气体的第一工序;
使所述容器内的所述第一反应气体的分压降低的第二工序;和
向所述容器内导入第二反应气体的第三工序,
并且,向所述加热板和所述冷却块之间存在的空隙中供给热传导气体,并在所述加热板降温时向所述间隙中导入热传导气体,在所述加热板升温时停止热传导气体的导入。
15.如权利要求14所述的热处理方法,其特征在于:
还包括使所述容器内的所述第二反应气体的分压降低的工序,
顺序反复进行所述第一工序、所述第二工序、所述第三工序。
CNB018165753A 2000-09-29 2001-09-28 热处理装置和热处理方法 Expired - Fee Related CN1278386C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP300398/2000 2000-09-29
JP300398/00 2000-09-29
JP2000300398 2000-09-29

Publications (2)

Publication Number Publication Date
CN1531743A CN1531743A (zh) 2004-09-22
CN1278386C true CN1278386C (zh) 2006-10-04

Family

ID=18782090

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018165753A Expired - Fee Related CN1278386C (zh) 2000-09-29 2001-09-28 热处理装置和热处理方法

Country Status (6)

Country Link
US (1) US6991684B2 (zh)
JP (1) JP5246985B2 (zh)
KR (1) KR100569646B1 (zh)
CN (1) CN1278386C (zh)
AU (1) AU2001292302A1 (zh)
WO (1) WO2002027772A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000842B2 (ja) * 2001-03-02 2012-08-15 東京エレクトロン株式会社 サセプタの駆動温度制御のための方法並びに装置
US6821347B2 (en) * 2002-07-08 2004-11-23 Micron Technology, Inc. Apparatus and method for depositing materials onto microelectronic workpieces
US6955725B2 (en) * 2002-08-15 2005-10-18 Micron Technology, Inc. Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces
US6926775B2 (en) * 2003-02-11 2005-08-09 Micron Technology, Inc. Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces
US7335396B2 (en) * 2003-04-24 2008-02-26 Micron Technology, Inc. Methods for controlling mass flow rates and pressures in passageways coupled to reaction chambers and systems for depositing material onto microfeature workpieces in reaction chambers
US7344755B2 (en) * 2003-08-21 2008-03-18 Micron Technology, Inc. Methods and apparatus for processing microfeature workpieces; methods for conditioning ALD reaction chambers
US7235138B2 (en) * 2003-08-21 2007-06-26 Micron Technology, Inc. Microfeature workpiece processing apparatus and methods for batch deposition of materials on microfeature workpieces
US7422635B2 (en) * 2003-08-28 2008-09-09 Micron Technology, Inc. Methods and apparatus for processing microfeature workpieces, e.g., for depositing materials on microfeature workpieces
US7056806B2 (en) * 2003-09-17 2006-06-06 Micron Technology, Inc. Microfeature workpiece processing apparatus and methods for controlling deposition of materials on microfeature workpieces
US7581511B2 (en) * 2003-10-10 2009-09-01 Micron Technology, Inc. Apparatus and methods for manufacturing microfeatures on workpieces using plasma vapor processes
US7258892B2 (en) 2003-12-10 2007-08-21 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, e.g., CVD deposition
JP2005209825A (ja) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd 半導体製造装置
US20050249873A1 (en) * 2004-05-05 2005-11-10 Demetrius Sarigiannis Apparatuses and methods for producing chemically reactive vapors used in manufacturing microelectronic devices
US8133554B2 (en) * 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US7699932B2 (en) * 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces
US7966969B2 (en) * 2004-09-22 2011-06-28 Asm International N.V. Deposition of TiN films in a batch reactor
US20060165873A1 (en) * 2005-01-25 2006-07-27 Micron Technology, Inc. Plasma detection and associated systems and methods for controlling microfeature workpiece deposition processes
JP4792764B2 (ja) * 2005-02-23 2011-10-12 パナソニック電工株式会社 焦電素子製造装置
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
JP5248874B2 (ja) * 2007-03-20 2013-07-31 東京エレクトロン株式会社 熱処理炉及び縦型熱処理装置
US7629256B2 (en) * 2007-05-14 2009-12-08 Asm International N.V. In situ silicon and titanium nitride deposition
JP5264122B2 (ja) * 2007-08-23 2013-08-14 日本エア・リキード株式会社 熱処理装置およびこれを用いた液化ガス供給装置
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
CN101866826B (zh) * 2010-04-29 2012-04-11 中微半导体设备(上海)有限公司 一种用于真空处理系统的流体传输装置
KR101877494B1 (ko) * 2010-12-24 2018-07-13 엘지이노텍 주식회사 진공 열처리 장치
JP5584362B2 (ja) * 2011-06-29 2014-09-03 パナソニック株式会社 加熱装置、真空加熱方法及び薄膜製造方法
CN104114283A (zh) * 2012-02-06 2014-10-22 诺信公司 用于粉末喷涂舱的过喷收集设备
JP5874469B2 (ja) * 2012-03-19 2016-03-02 東京エレクトロン株式会社 トラップ装置及び成膜装置
CN105575873B (zh) * 2014-10-15 2020-02-14 北京北方华创微电子装备有限公司 压环机构及半导体加工设备
CN105977195B (zh) * 2016-06-30 2018-12-18 上海华力微电子有限公司 一种快速降低热板温度的方法
US10571337B2 (en) * 2017-05-26 2020-02-25 Applied Materials, Inc. Thermal cooling member with low temperature control
CN109037100A (zh) * 2018-07-10 2018-12-18 武汉华星光电半导体显示技术有限公司 基板冷却装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567267A (en) * 1992-11-20 1996-10-22 Tokyo Electron Limited Method of controlling temperature of susceptor
JPH06244143A (ja) 1993-02-15 1994-09-02 Tokyo Electron Ltd 処理装置
JPH07153706A (ja) 1993-05-27 1995-06-16 Applied Materials Inc サセプタ装置
JP3165938B2 (ja) 1993-06-24 2001-05-14 東京エレクトロン株式会社 ガス処理装置
JP3446772B2 (ja) * 1993-06-29 2003-09-16 東京エレクトロン株式会社 載置台および減圧処理装置
JP3181473B2 (ja) * 1993-08-19 2001-07-03 東京エレクトロン株式会社 プラズマ処理装置
US5791895A (en) * 1994-02-17 1998-08-11 Novellus Systems, Inc. Apparatus for thermal treatment of thin film wafer
JP3247270B2 (ja) * 1994-08-25 2002-01-15 東京エレクトロン株式会社 処理装置及びドライクリーニング方法
JPH09213781A (ja) * 1996-02-01 1997-08-15 Tokyo Electron Ltd 載置台構造及びそれを用いた処理装置
JPH11323549A (ja) 1998-05-14 1999-11-26 Nhk Spring Co Ltd 基板保持装置
WO2000026960A1 (fr) 1998-10-29 2000-05-11 Tokyo Electron Limited Dispositif de traitement sous vide
AU1490301A (en) * 1999-11-15 2001-05-30 Lam Research Corporation Temperature control system for plasma processing apparatus
JP2001196152A (ja) 2000-01-13 2001-07-19 Sumitomo Electric Ind Ltd セラミックスヒータ

Also Published As

Publication number Publication date
AU2001292302A1 (en) 2002-04-08
CN1531743A (zh) 2004-09-22
WO2002027772A1 (fr) 2002-04-04
JP5246985B2 (ja) 2013-07-24
KR20030043975A (ko) 2003-06-02
KR100569646B1 (ko) 2006-04-11
JPWO2002027772A1 (ja) 2004-02-05
US6991684B2 (en) 2006-01-31
US20040035359A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CN1278386C (zh) 热处理装置和热处理方法
CN1314834C (zh) 处理装置、处理方法及载置部件
CN1230868C (zh) 具有改善的颗粒污染性能的半导体处理设备
CN2597491Y (zh) 热处理装置
US20100154711A1 (en) Substrate processing apparatus
CN2573509Y (zh) 热处理装置
CN1685477A (zh) 热处理装置
JP3984820B2 (ja) 縦型減圧cvd装置
CN1791972A (zh) 等离子体处理装置
CN101499411B (zh) 等离子体处理装置
TW201145447A (en) Semiconductor thin-film manufacturing method, seminconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
CN1732288A (zh) 形成高质量的低温氮化硅层的方法和设备
JPWO2007018139A1 (ja) 半導体装置の製造方法および基板処理装置
KR100975717B1 (ko) 기상성장장치와 기상성장방법
WO1993013548A1 (en) Wafer susceptor
KR20170077013A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
CN1738922A (zh) 利用等离子体cvd的成膜方法和成膜装置
TW201610222A (zh) 半導體製造裝置及半導體的製造方法
CN1934680A (zh) 结晶性硅薄膜的形成方法及装置
CN1237203C (zh) 制造半导体或液晶的装置
CN1682357A (zh) 形成半导体基体上的绝缘膜的方法
JP2003142407A (ja) 薄膜成長装置用のリフトピン、その形成方法およびリフトピン頭部
EP1148151A2 (en) Ceramic heater device and film forming device using the same
US20030175426A1 (en) Heat treatment apparatus and method for processing substrates
JP4218360B2 (ja) 熱処理装置及び熱処理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061004

Termination date: 20190928