CN1306669C - 半导体激光器 - Google Patents

半导体激光器 Download PDF

Info

Publication number
CN1306669C
CN1306669C CNB2003101196957A CN200310119695A CN1306669C CN 1306669 C CN1306669 C CN 1306669C CN B2003101196957 A CNB2003101196957 A CN B2003101196957A CN 200310119695 A CN200310119695 A CN 200310119695A CN 1306669 C CN1306669 C CN 1306669C
Authority
CN
China
Prior art keywords
semiconductor laser
algainp
covering
layer
etch stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101196957A
Other languages
English (en)
Other versions
CN1499684A (zh
Inventor
西口晴美
八木哲哉
吉田保明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1499684A publication Critical patent/CN1499684A/zh
Application granted granted Critical
Publication of CN1306669C publication Critical patent/CN1306669C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • H01S5/2216Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/3436Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)P

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供一种可以无障碍地在半导体激光器的上包层上形成条状凸部,而且能够抑制乃至防止向上包层一侧扩展光分布的装置。在半导体激光器中,n-GaAs衬底1的上边,顺序地将n-AlGaInP包层(2)、AlGaInP/GaInPMQW有源层(3)、AlGaInP第1上包层(4)、p-AlxGa1-xAs-ESL5、具备条状凸部(6)的p-AlGaInP第2上包层(7)、以及p-GaAs接触层(8)层叠起来。除p-AlGaInP第2上包层(7)的条状凸部(6)以外的部分,都用绝缘膜(9)覆盖起来。P-AlxGa1-xAs-ESL5的折射率为大约与各包层(2、4、7)的折射率相等。

Description

半导体激光器
技术领域
本发明涉及一种应用于光盘系统、光通信系统等的半导体激光器。
背景技术
因具有pn结部分的化合物半导体的电子迁移而发射激光的半导体激光器,同固体激光器和气体激光器比较,因为驱动电压低,而且小型和重量轻,正在广泛用作光盘系统和光通信系统等的激光源。
这样的半导体激光器具有:例如,在由n型(以下,称为n-)。)GaAs构成的衬底上边,顺序层叠由n-AlGaInP构成的下包层、具有多重量子阱构造的有源层、由p型(以下,称为p-)。)AlGaInP构成的第1上包层、由p-AlGaInP和GaInP构成的多重量子阱构造的蚀刻阻挡层、由p-AlGaInP构成具有条状凸部的第2上包层、由p-GaAs构成的接触层、以及p-电极的构造(例如,参照专利文献1)。另外,第2上包层的上面,在条状凸部以外的部分用绝缘膜覆盖起来。
【专利文献1】
特开平10-125995号公报(第0016段和图1)
尽管,在例如专利文献1上记载的现有半导体激光器中,由于设置有由p-AlGaInP和GaInP构成的多重量子阱构造的蚀刻阻挡层,因而存在发光效率降低这样问题。按照本申请发明人的见识,可以推测,设置这样蚀刻阻挡层的场合跟不设置的场合比较,发光效率降低约7%(参照后述的图10)。
这是因为,设置这样的蚀刻阻挡层时,有源层内应集中的光分布扩展到上包层一侧(参照后述的图7),在接触层等中发生光吸收的缘故。但是,如不设置蚀刻阻挡层的话,就会发生不能适当进行用以在第2上包层上形成条状凸部的选择蚀刻这样的问题。
一般来说,在p-GaAs构成的接触层中的光吸收,如果加厚p-AlGaInP构成的第2上包层使光分布不会到达接触层的话,就可以防止或者抑制光吸收。但是在利用具有由有条状凸部的p-AlGaInP构成的第2上包层与其两侧层的折射率差,使其封闭激光的波导机构的引导激光中,使用由电阻率很高的材料构成包层的场合,条状凸部的电阻将提高,发生高输出时的输出特性和温度特性恶化这样的不良情况。
发明内容
本发明就是为解决上述现有问题而做出的发明,将提供一种可在半导体激光器的上包层无障碍地形成条状凸部,而且能够抑制或者防止向上包层一侧扩展光分布,甚至于会降低对接触层等的光汲取或者光吸收的装置作为要解决的课题。
为解决上述课题而做出本发明的一种半导体激光器,具有:有源层;位于有源层下侧的下包层;位于有源层上侧的第1上包层;位于第1上包层上侧的蚀刻阻挡层;以及位于蚀刻阻挡层上侧、具备条状凸部的第2上包层,在所述凸部下方形成条状的光波导,其特征是
所述各包层分别含有AlGInP;
蚀刻阻挡层为单层,包含任意的Al组成比x的AlxGa1-xAs,而且所述Al组成比x在0.45~0.9的范围内。
另外,不设置蚀刻阻挡层的场合,第2上包层与第1上包层的材料不同,而且用具有与第1上包层折射率大约相等折射率的材料形成就行。
附图说明
图1是本发明实施例1的半导体激光器立体图,并切除其一部分。
图2是图1中所示半导体激光器的正视剖面图。
图3是本发明实施例2的半导体激光器正视剖面图。
图4是表示实施例1的半导体激光器内的能级或者带隙能量分布曲线图。
图5是表示实施例1的半导体激光器内的光分布曲线图。
图6是表示具备ESL的现有半导体激光器内的能级或者带隙能量分布的曲线图。
图7是表示具备ESL的半导体激光器内的光分布的曲线图。
图8是表示不具备ESL的普通半导体激光器内的能级或者带隙能量分布的曲线图。
图9是表示不具备ESL的普通半导体激光器内的光分布的曲线图。
图10是表示实施例1的半导体激光器(AlGaAs-ESL),具备ESL的现有半导体激光器(AlGaInP/GaInP-ESL)以及不具备ESL的普通半导体激光器(无ESL)的光输出与输入电流的关系(P-I特性)的曲线图。
具体实施方式
以下,边参照附图边具体地说明本发明的实施例。
实施例1
图1是本发明实施例1的半导体激光器立体图。并且,图2是图1中半导体激光器的光波导近旁部分正视剖面图。
如图1和图2所示,半导体激光器中,实质上在由n-GaAs构成的衬底1(以下称为n-GaAs1衬底。)上边,顺序地将实质上由n-AlGaInP构成的下包层2(以下称为n-AlGaInP包层2。);实质上由AlGaInP和GaInP构成的具有多重量子阱(以下称为MQW。)构造的有源层3(以下称为AlGaInP/GaInPMQW有源层3。);实质上由p-AlGaInP构成的第1上包层4(以下称为AlGaInP第1包层4。);实质上由p-AlxGa1-xAs(x为0~1范围内的Al组成比)构成的单层的蚀刻阻挡层5(以下称为p-AlxGa1-xAs-ESL5。);实质上由p-AlGaInP构成并具备条状凸部6的第2上包层7(以下称为p-AlGaInP第2包层7。);以及实质上由p-GaAs构成的接触层8(以下称为p-GaAs接触层8。)层叠起来。
这里,除p-AlGaInP第2包层7的条状凸部6外的部分都用绝缘膜9覆盖起来。而且,p-GaAs接触层8和绝缘膜9上边,设有p-电极10。并且,n-GaAs衬底1的下面设有n-电极14。另外,在半导体激光器端面近旁部分形成端面窗口区11。
就该半导体激光器来说,如给p-电极10与n-电极14之间施加电压并从p-电极10向n-电极14流过阈值以上的电流在条状凸部6下方的AlGaInP/GaInPMQW有源层3附近就发生激光振荡,产生激光12。该激光12通过在条状凸部6下方AlGaInP/GaInPMQW有源层3附近形成的条状光波导,从端面窗口区11向外部发射。
就该半导体激光器来说,单层的p-AlxGa1-xAs-ESL5虽然用与各包层2、3、7的材料(AlGaInP)不同的材料形成但是其折射率却与各包层2、4、7的折射率大约相等。按照本发明申请人的见识,假设p-AlxGa1-xAs-ESL5的Al组成比x为0.45以上且0.9以下,p-AlxGa1-xAs折射率将与p-AlGaInP或n-AlGaInP大约相等。因此,就本半导体激光器来说,把p-AlxGa1-xAs-ESL5的Al组成比x设定为0.7。
本半导体激光器中的各层3、4、5、7的折射率n如下。
AlGaInP/GaInPMQW有源层3:n=3.65(阱层)
P-AlGaInP第1上包层4:n=3.39
P-AlxGa1-xAs-ESL5:n=3.38(x=0.7)
P-AlGaInP第2包层7:n=3.39
另外,现有半导体激光器中的,由p-AlGaInP和GaInP构成的MQW构建的蚀刻阻挡层来说,其折射率n与有源层大约相等,为3.65左右。
图4和图5中,分别表示实施例1的半导体激光器中,设定p-AlxGa1-xAs-ESL5的Al组成比x为0.7,层厚为20nm时的半导体激光器内能级或者带隙能量分布(能带构造)和半导体激光器内激光的光分布(计算结果)。
为了比较,图6和图7中,分别表示半导体激光器具备由p-AlGaInP和GaInP构成的MQW构造的蚀刻阻挡层的半导体激光器中的半导体激光内的能级或者带隙能量分布和半导体激光器内的激光的光分布(计算结果)。
另外,为了参考,图8和图9中,分别表示不具备蚀刻阻挡层的普通半导体激光器的半导体激光器内能级或者带隙能量分布和半导体激光器内的激光的光分布(计算结果)。
并且,图10中,表示实施例1的半导体激光器(AlGaAs-ESL)、具备蚀刻阻挡层的上述现有半导体激光器(AlGaInP/GaInP-ESL)、以及不具备蚀刻阻挡层的普通半导体激光器(无ESL)的光输出与输入电流的关系(P-I特性)(计算结果)。
由图6和图7很清楚,对具备由p-AlGaInP和GaInP构成的MQW构造蚀刻阻挡层的现有半导体激光器而言,光分布扩展到上包层一侧。相对于此,对实施例1的半导体激光器而言,由图4和图5很清楚,光分布几乎没有向上包层一侧扩展,跟不具备蚀刻阻挡层的普通半导体激光器场合(参照图8、图9)同样。
并且,由图10很清楚,实施例1的半导体激光器发光效率跟不具备蚀刻阻挡层的普通半导体激光器场合同样,与具备由p-AlGaInP和GaInP构成的MQW构造的蚀刻阻挡层的现有半导体激光器场合比较约高了7%。因而,实施例1的半导体激光器有益于其提高输出(高功率)和提高效率。
另外,实施例1的半导体激光器中的上述计算结果虽然是设定p-AlxGa1-xAs-ESL5的Al组成比x为0.7时的情况,但是假设Al组成比x为0.45(n=3.57左右)~0.9(n=3.24左右)的范围内,也获得同样的效果。
以下,说明本半导体激光器的制造方法。该半导体激光器的制造工序中,首先,用MOCVD法等晶体生长法,在n-GaAs衬底1上边,顺序形成:n-AlGaInP包层2;AlGaInP/GaInPMQW有源层3;P-AlGaInP第1包层4;p-AlxGa1-xAs-ESL5;p-AlGaInP第2包层7;以及p-GaAs接触层8。其次,在半导体激光器的端面近旁,采用通过Zn扩散使AlGaInP/GaInPMQW有源层3无序化的办法形成端面窗口区11。而且,利用由保护层或绝缘膜等构成且具备规定图形的掩摸,通过选择性蚀刻p-AlGaInP第2上包层7,形成条状凸部6。
这里,例如使用硫酸系或盐酸系等蚀刻剂,对p-AlGaInP第2包层7进行选择性蚀刻。该蚀刻只要到达p-AlxGa1-xAs-ESL5就停止。接着,形成氮化膜等的绝缘膜9。进而,通过照相制版和蚀刻法除去条状凸部6上的绝缘膜9,形成开口部。然后形成用全等构成的P-电极10和n-电极14。因此,制成半导体激光器。
实施例2
以下,说明本发明的实施例2。
图3是本发明实施例2的半导体激光器的光波导近旁部分的正视剖面图。如图3所示对于该半导体激光器,在n-GaAs衬底1的上边,顺序将n-AlGaInP包层2;AlGaInP/GaInPMQW有源层3;P-AlGaInP第1包层4;实质上由p-AlxGa1-xAs(x为0~1范围内的Al组成比)构成且具备条状凸部6的第2包层13(以下称为p-AlxGa1-xAs第2上包层13。);以及p-GaAs接触层8层叠起来。
这里,除p-AlxGal-xInP第2包层13的条状凸部6外的部分都用绝缘膜9覆盖起来。而且,p-GaAs接触层8和绝缘膜9上边,设有p-电极10。另外,虽图未示出,但在n-GaAs衬底1的下面设有n-电极 ,并且在半导体激光器端面近旁形成端面窗口区(参照图1)。
就本实施例2的半导体激光器来说,与上述实施例1的半导体激光器场合同样,如给p-电极10与n-电极之间施加电压,从p-电极10向n-电极流过阈值以上的电流激光在条状凸部6下方就通过在AlGaInP/GaInPMQW有源层3附近形成的条状光波导,从端面窗口区向外部发射。
就该半导体激光器来说,p-AlxGa1-xAs第2包层13虽然用P-与AlGaInP第1包层4不同的材料形成,但是其折射率却与P-AlGaInP第1包层4的折射率大约相等。按照与实施例1场合同样的理由,假设p-AlxGa1-xAs第2包层13的Al组成比x为0.45以上且0.9以下,p-AlxGa1-xAs的折射率将与p-AlGaInP或n-AlGaInP的射折率大约相等。因此,就本半导体激光器来说,把p-AlxGa1-xAs第2包层13的Al组成比x设定为0.7。
本半导体激光器中的各层3、4、13的折射率n如下。
AlGaInP/GaInMQW有源层3:n=3.65(阱层)
P-AlGaInP第1包层4:n=3.39
P-AlxGa1-xAs第2包层13:n=3.38(x=0.7)
本半导体激光器中,因为p-AlxGa1-xAs第2包层13是,与例如实施例1场合的那种普通p-AlGaInP第2包层7n=3.39相同程度的折射率,在半导体激光器内的光分布,变成与不具备蚀刻阻挡层的普通半导体激光器场合(参照图8、图9)相同程度。所以,可以推断其发光效率也变为与不具备蚀刻阻挡层的普通半导体激光器场合(参照图10)同样良好,跟具备由p-AlGaInP和GaInP构成的MQW构造r蚀刻阻挡层的现有半导体激光器场合比较,约为高了7%。所以,实施例2的半导体激光器有益于其提高输出和提高效率。
进而,本实施例2的半导体激光器中,作为p-AlxGa1-xAs第2包层13的材料的p-AlxGa1-xAs跟作为现有半导体激光器的上包层材料的p-AlGaInP比较,容易提高载流子浓度。因为,通过提高载流子浓度,可以降低p-AlxGa1-xAs第2包层13的条状凸部6的电阻,能够提高高温时和高输出功率时的输出特性。另外,实施例2中,虽然设定p-AlxGa1-xAs第2包层13的Al组成比x为0.7,但是假设Al组成比x为0.45(n=3.57左右)~0.9(n=3.24左右)范围内,也获得同样的效果。
以下,说明实施例2的半导体激光器制造方法。该半导体激光器的制造工序中,首先,用MOCVD法等晶体生长法,在n-GaAs衬底1上边,顺序形成:n-AlGaInP包层2;AlGaInP/GaInPMQW有源层3;p-AlGaInP第1包层4;p-AlxGa1-xAs第2包层13;以及p-GaAs接触层8。其次,在半导体激光器的端面近旁,采用通过Zn扩散使AlGaInP/GaInMQW有源层3无序化的办法形成端面窗口区(参照图1)。而且,利用由保护层或绝缘膜等构成且具备规定图形的掩模通过选择性蚀刻p-AlGaInP第2上包层13,形成条状凸部6。
这里,例如使用氢氟酸系等的蚀刻剂,对p-AlxGax-1A3第2包层13进行选择性蚀刻。该蚀刻要是到达P-AlGaInP第1包层4就几乎停止。接着,形成氮化膜等的绝缘膜9。进而,通过照相制版和蚀刻,除去条状凸部6上的绝缘膜9,形成开口部。然后,形成由金等构成的P-电极10和n-电极(参照图1)。因此,制成半导体激光器。
按照本发明的半导体激光器,单层的蚀刻阻挡层由与各包层材料不同的材料形成,而且具有与各包层的折射率大约相等的折射率,因而能够无障碍地在第2包层上形成条状凸部,而且能够抑制或者防止向上包层一侧扩展光分布,降低对p-GaAs接触层等的光汲取或者光吸收。

Claims (2)

1.一种半导体激光器,具有:有源层;位于有源层下侧的下包层;位于有源层上侧的第1上包层;位于第1上包层上侧的蚀刻阻挡层;以及位于蚀刻阻挡层上侧、具备条状凸部的第2上包层,在所述凸部下方形成条状的光波导,其特征是:
所述各包层分别含有AlGaInP;
蚀刻阻挡层为单层,包含任意的Al组成比x的Alxa1-xAs,而且所述Al组成比x在0.45~0.9的范围内。
2.按照权利要求1所述的半导体激光器,其特征是有源层包括GaInP。
CNB2003101196957A 2002-11-06 2003-11-06 半导体激光器 Expired - Fee Related CN1306669C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP322380/2002 2002-11-06
JP322380/02 2002-11-06
JP2002322380A JP2004158615A (ja) 2002-11-06 2002-11-06 半導体レーザ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100778206A Division CN100426608C (zh) 2002-11-06 2003-11-06 半导体激光器

Publications (2)

Publication Number Publication Date
CN1499684A CN1499684A (zh) 2004-05-26
CN1306669C true CN1306669C (zh) 2007-03-21

Family

ID=32310389

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2006100778206A Expired - Fee Related CN100426608C (zh) 2002-11-06 2003-11-06 半导体激光器
CNB2003101196957A Expired - Fee Related CN1306669C (zh) 2002-11-06 2003-11-06 半导体激光器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2006100778206A Expired - Fee Related CN100426608C (zh) 2002-11-06 2003-11-06 半导体激光器

Country Status (6)

Country Link
US (1) US7173273B2 (zh)
JP (1) JP2004158615A (zh)
KR (2) KR100682426B1 (zh)
CN (2) CN100426608C (zh)
DE (1) DE10351394A1 (zh)
TW (1) TWI246812B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060038057A (ko) * 2004-10-29 2006-05-03 삼성전기주식회사 반도체 레이저 소자 및 그 제조 방법
DE102008014193A1 (de) 2008-03-14 2009-09-24 Universität Stuttgart Vertikal-Resonator-Laser
JP2009094548A (ja) * 2009-02-05 2009-04-30 Mitsubishi Electric Corp 半導体レーザ装置
JP2010278136A (ja) * 2009-05-27 2010-12-09 Sony Corp 半導体レーザ
CN106340807A (zh) * 2016-10-25 2017-01-18 山东华光光电子股份有限公司 一种用于绿光标线仪的808nm半导体激光器结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244497A (ja) * 1993-02-19 1994-09-02 Sanken Electric Co Ltd 半導体レーザ装置
JPH0730188A (ja) * 1993-07-09 1995-01-31 Hitachi Ltd 半導体レーザ素子
US5528617A (en) * 1994-01-24 1996-06-18 Nec Corporation Semiconductor laser with alinp or algainp burying layer
JPH0936479A (ja) * 1995-07-21 1997-02-07 Matsushita Electric Ind Co Ltd 半導体レーザおよびその製造方法
JPH10125995A (ja) * 1996-10-18 1998-05-15 Nec Corp 半導体レーザ装置
JP2001053382A (ja) * 1999-08-05 2001-02-23 Fuji Photo Film Co Ltd 半導体レーザ装置
JP2001177193A (ja) * 1999-12-15 2001-06-29 Fuji Photo Film Co Ltd 半導体レーザ装置
US20020061044A1 (en) * 2000-10-12 2002-05-23 Fuji Photo Film Co., Ltd. Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357535A (en) * 1992-01-14 1994-10-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser including an aluminum-rich AlGaAs etch stopping layer
GB2310316A (en) * 1996-02-15 1997-08-20 Sharp Kk Semiconductor laser
JPH11147798A (ja) * 1997-11-14 1999-06-02 Sony Corp 結晶成長方法および半導体発光素子の製造方法
JPH11204834A (ja) * 1997-11-14 1999-07-30 Sony Corp 半導体発光素子の製造方法
JP3753216B2 (ja) * 1997-11-25 2006-03-08 富士写真フイルム株式会社 半導体レーザ装置
JP2000031585A (ja) * 1998-07-15 2000-01-28 Rohm Co Ltd 半導体レーザ装置
US6304587B1 (en) * 1999-06-14 2001-10-16 Corning Incorporated Buried ridge semiconductor laser with aluminum-free confinement layer
JP2001223436A (ja) * 2000-02-09 2001-08-17 Fuji Photo Film Co Ltd 半導体レーザ装置
JP2002171028A (ja) * 2000-11-30 2002-06-14 Nichia Chem Ind Ltd レーザ素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244497A (ja) * 1993-02-19 1994-09-02 Sanken Electric Co Ltd 半導体レーザ装置
JPH0730188A (ja) * 1993-07-09 1995-01-31 Hitachi Ltd 半導体レーザ素子
US5528617A (en) * 1994-01-24 1996-06-18 Nec Corporation Semiconductor laser with alinp or algainp burying layer
JPH0936479A (ja) * 1995-07-21 1997-02-07 Matsushita Electric Ind Co Ltd 半導体レーザおよびその製造方法
JPH10125995A (ja) * 1996-10-18 1998-05-15 Nec Corp 半導体レーザ装置
JP2001053382A (ja) * 1999-08-05 2001-02-23 Fuji Photo Film Co Ltd 半導体レーザ装置
JP2001177193A (ja) * 1999-12-15 2001-06-29 Fuji Photo Film Co Ltd 半導体レーザ装置
US20020061044A1 (en) * 2000-10-12 2002-05-23 Fuji Photo Film Co., Ltd. Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof

Also Published As

Publication number Publication date
TW200412698A (en) 2004-07-16
CN100426608C (zh) 2008-10-15
KR20040040377A (ko) 2004-05-12
US20040108508A1 (en) 2004-06-10
JP2004158615A (ja) 2004-06-03
KR100895056B1 (ko) 2009-04-30
DE10351394A1 (de) 2004-06-09
TWI246812B (en) 2006-01-01
KR100682426B1 (ko) 2007-02-15
US7173273B2 (en) 2007-02-06
CN1848567A (zh) 2006-10-18
KR20060112257A (ko) 2006-10-31
CN1499684A (zh) 2004-05-26

Similar Documents

Publication Publication Date Title
JP3724620B2 (ja) 発光ダイオードの製造方法
KR101201377B1 (ko) 발광 소자 및 그 제조 방법
CN1612368A (zh) 半导体发光元件
KR101199677B1 (ko) 반도체 발광 소자 및 그 제조 방법
US20020145147A1 (en) Light emitting diode and manufacturing method thereof
CN1585219A (zh) 半导体激光器及其生产方法
JP2004153241A (ja) 半導体発光素子及びその製造方法
CN1248322C (zh) 半导体发光器件
CN1118119C (zh) 自激脉冲半导体激光器
CN1320712C (zh) 半导体激光器件及其制造方法
CN1266816C (zh) 第iii族氮化物半导体激光器及其制造方法
CN1306669C (zh) 半导体激光器
CN1130808C (zh) 能抑制驱动电流改变的光发射半导体元件
JP3332785B2 (ja) 半導体発光素子およびその製造方法
CN101283493A (zh) 高输出红色半导体激光器
CN1125519C (zh) 半导体装置及其制造方法
JPH11251629A (ja) 半導体発光素子の製造方法
CN113690354A (zh) GaAs基发光二极管芯片及其制造方法
JP2874948B2 (ja) 半導体発光素子の製造方法
CN1320665C (zh) 半导体发光元件
CN1233078C (zh) 半导体发光器件及其制造方法
JP2006135214A (ja) 半導体発光素子用エピタキシャルウェハ及び半導体発光素子
CN1933265A (zh) 单片2波长半导体激光器及其制造方法
JP2004356279A (ja) 半導体発光素子の製造方法
US7084433B2 (en) Semiconductor laser device capable of maintaining the operation current low and method of manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070321

Termination date: 20121106