CN1303110A - 稀土合金粉末的压型体制造方法、成形装置及稀土磁铁 - Google Patents

稀土合金粉末的压型体制造方法、成形装置及稀土磁铁 Download PDF

Info

Publication number
CN1303110A
CN1303110A CN00129884A CN00129884A CN1303110A CN 1303110 A CN1303110 A CN 1303110A CN 00129884 A CN00129884 A CN 00129884A CN 00129884 A CN00129884 A CN 00129884A CN 1303110 A CN1303110 A CN 1303110A
Authority
CN
China
Prior art keywords
rare earth
powder
punch
compact
earth alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00129884A
Other languages
English (en)
Other versions
CN1171249C (zh
Inventor
原田务
森本仁
田中淳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Publication of CN1303110A publication Critical patent/CN1303110A/zh
Application granted granted Critical
Publication of CN1171249C publication Critical patent/CN1171249C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/008Applying a magnetic field to the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种稀土合金粉末的成形方法是多次反复地进行将稀土合金粉末填充到通过将粉体成形装置的下冲头部分地插入冲模的贯穿孔道内而形成的模腔内的粉末填充工序,以及边外加取向磁场边对稀土合金粉末施加压力的取向压缩工序,其特征是在进行第n级取向压缩工序时所形成的压型体的上端面设置在冲模磁性体部分下端面的上侧,因此可控制由于压型体的存在而产生的径向磁场的不均匀。使用多级填充制造磁铁时达到高的取向度。

Description

稀土合金粉末的压型体制造方法、      成形装置及稀土磁铁
本发明涉及稀土合金粉末的压型体制造方法、稀土磁铁以粉末成形装置,尤其涉及具有对稀土合金粉末以多级填充及多级成形的方式的、用于稀土磁铁的粉体压制方法。
迄今,在将磁性粉末填充到粉体成形装置(压制装置)的模腔内并单纯地将其压缩时,粉末粒子的磁矩变成了朝向无序方位。对此,若在模腔内形成磁场,并且在该磁场内将磁性粉末进行取向压缩,则可制作使粉末粒子沿最佳方位取向的压型体。如果能由磁性能优良的稀土合金粉末制作这样的压型体,则可制造高性能的各向异性的磁铁。
图1示出了使磁性粉末沿径向方向取向时所使用的有代表性的成形装置。图1的装置包括:具有贯穿孔道的冲模10;具有与冲模10的贯通孔道的内壁面相对向的外周面的磁性体磁芯12;与冲模10的贯通孔道相对、由下方插入的圆筒形下冲头14;与冲模10贯通孔道相对、由上方插入的圆筒形上冲头16。磁性体磁芯12是由上磁芯12a及下磁芯12b组成,上磁芯12a及下磁芯12b分别插入上冲头16及下冲头14的磁芯孔中。上磁芯12a及下磁芯12b是由强磁性材料形成的,而上冲模16及下冲模14则由非磁性材料形成。
图1所示的冲模10具有由强磁性材料所形成的上侧部分(磁性体部分)10a与由非磁性材料所形成的下侧部分(非磁性体部分)10b层压的结构。该圆筒形空间的上侧由上冲头16堵塞,下侧由下冲头14堵塞。这样,通过磁芯12的外周面、冲模10的内壁面以及下冲头的上端面形成填充粉末的“模腔”。在模腔内所填充的磁性粉末24由上冲头16与下冲14挟着并压缩成形。模腔由下冲头14的上端面、磁芯12的外周面以及冲模10的磁性体部分10a的内壁面所决定。但是,在冲模10的贯穿孔道的内侧面设置有由非磁性材料所形成的圆筒形套筒11,在使用中,在非磁性体部分与强磁性体部分之间产生断层差,取出下型体时,就不会伤压型体,在该种情况下,模腔由下冲头14的上端面、磁芯12的外周面以及套筒11的内壁面所决定。
为了在上述模腔内形成径向磁场,具有上线圈20与下线圈22。由上线圈20所形成的磁场与由下线圈22所形成的磁场在磁性体磁芯12的中央部分附近发生相斥,形成由磁芯12的中心部分向冲模10以放射形扩展的径向磁场。图1中的箭头模拟地示出磁性体内的磁通。
为了提高制作的压型体的取向度,需要在模腔内形成强的径向磁场。为了提高径向磁场的强度,除增加向线圈20及22供给电力之外,最好是使磁芯12的尺寸和材料最佳化。然而,增加对线圈供电会使制造成本上升,还会引发发热的问题。此外,磁芯尺寸(磁芯的粗度)由应该制作的压型体内径所限定,而且磁芯材料的改进也有界限。
为此,在制造沿轴向向长拉伸的圆筒形磁铁时,为了外加充分强度的取向磁场,实施了多次反复粉末填充工序与加压工序的多级成形工序。若使用多级成形法,即使在制作长圆筒形压型体时,由于沿轴向分割,反复进行粉末填充/取向压缩循环,所以可缩短每1个周期的模腔的长度,因此,可提高在模腔内所形成的径向磁场的强度。
以下参照图1、图2A及图2B,说明多级填充法的已有例。
首先,如图1所示,将模腔中所填充的磁性粉末24在取向磁场中加压,制作第1级的压型体26(第1级的取向压缩工序)。此后,如图2A所示,向第1级压型体26的上方所形成的模腔内填充第2次的磁性粉末24,并在取向磁场内对磁性粉末24加压(第2级的取向压缩工序)。此外,在第2级的取向压缩工序中,模腔由上一次形成的第1级的压型体26的上面、磁芯12的外周面以及冲模10的磁性体部分10a的内壁面规定。如图2B所示,通过第2级的取向压缩工序,在第1级压型体26上形成第2级压型体28,两个压型体整体化而形成了一个压型体30。
这样,若多次反复进行粉末填充工序和取向压缩工序,则冲模10的磁性体部分10a的轴向尺寸L(参照图1)不受限制,可制造出具有所希望的轴向长度的各向异性的环形磁铁。进行这种多级填充和成形的各向异性环形磁铁的制造方法,例如在特开平9-233776号公报中已公开。
然而,利用上述已有技术所制造的各向异性磁铁,在其第1级压型体26与第二级压型体28的界面层部分发生取向无序,因此在界面层部分发生磁化程度不良的问题。
图3示出由已有多级成形方法所制造的环形磁铁(圆筒形磁铁)外周面一侧的表面磁通密度(Bg)曲线图。这里是制作了表面加工后的尺寸为外径16.4mm、内径10.5mm,轴向长度20mm的环形磁铁并进行了评价。图中用实线表示外周侧面的表面磁通密度(Bg)。用高斯计进行了测定,用测定探测器扫描了磁铁表面。在图3的曲线图中,区域B相当于第2级压型体28的测定值,区域C相当于第1级压型体26的测定值。
图4是成为测定对象的圆筒形磁铁32的透视图。图4上所示的磁铁32(与压型体30相对应)的图中左侧与成形装置的上侧(加压方向上侧)相对应。
由图3的曲线可看出,在第1级压型体26与第2级压型体28的界面层部分观察到表面磁通密度(Bg)大幅度下滑凹陷。在界面层部分的表面磁通密度(Bg)下降到其他部分的表面磁通密度(Bg)的最大值约60%。
本发明人认为:此种磁通密度(Bg)的局部下降是由于下列原因所产生的。即是说,如图2A及图2B所示,在将第1级的压型体26设置在下冲头14的上面的状态下进行第2级取向压缩工序时,作为磁性体的第1级压型体26中磁通漏出,发生了径向磁场的分布不均匀。这是因为:由下磁芯12b供给的磁通与第2次填充的稀土合金粉末24相比较,在比较容易磁通的第1级压型体26的上端面附近集中所致。这样,磁通与透磁率高的第1级压型体26的上部接近,由磁芯12b向磁性体部分10a延伸,其结果,在第1级压型体26与第2级压型体28的表面层以及其附近部分,径向磁场的分布发生显著的不均匀。这意味着:取向磁场的半径方向成分少,轴向成分增加。若取向磁场的轴向成分增加,则磁性粉末24的取向无序,取向度下降。
即使在第1级取向压缩工序中所形成的径向磁场分布中无序少,若在第2级取向压缩工序中的形成的径向磁场分布发生无序,则不仅第2级压型体28,就连第1级压型体26也发生取向无序。这是因为,即使磁性粉末24一旦处于取向被压缩的状态,例如在0.4MA/m以上的强磁场中会发生粒子的再取向所致。若在磁性粉末24中添加润滑剂,则粉末粒子的转动变得更加容易,因此,第1级压型体26中的取向无序变得更强。此外,在第2级的取向压缩工序中,外加取向磁场愈是强力的,则第1级压型体26的取向度愈变得不良。
此外,可以认为与制造粘接磁铁时相比较,制造烧结磁铁时容易产生取向度下降。这是因为,形成烧结用磁铁粉末时,要使粉末的压缩密度变得比较小,因此第1级成形体26很容易受到无序磁场的影响。
还有,在烧结由过去的多级成形法所制作的压型体时,还存在着所得到的烧结体尺寸精度不良的问题。其原因是,稀土烧结磁铁合金粉末在未进行造粒(粉末形状的加工)时,流动性极其缺乏,很难以均匀的密度将其填充到模腔之内。还有,对于圆筒形模腔难于填充预计量的粉末。这是因为,使装有远远超过本来应该填充量的粉末的供料箱向模腔移动,粉末自由地落下之后,供料箱的底部边缘使填充到模腔内的粉末受损,在这种情况下,每次给料由于填充密度发生变更,而使粉末的填充量发生变化。
在已有的加压动作方面,冲模及冲头的动作控制,假定模腔中的粉末填充密度是均匀地进行的,压缩时的冲模及冲头的位置每次都与预先设定的位置相符合。因此,在粉末填充密度发生偏差时,成形密度也发生偏差,其结果,烧结时的收缩率也发生差异,因此便产生了烧结体的尺寸在成形方向(高度方向)及厚度方向上发生偏差的问题。
本发明是鉴于上述各种问题而提出的,其主要目的在于,提供一种即使在进行多级填充及成形时,也能够制作出控制了取向度局部下降的高质量成形体的稀土合金粉末的成形方法。
本发明的另一目的在于,提供一种使用由上述成形方法所制造的径向取向压型体的、磁特性优良的永久磁铁。
本发明的稀土合金粉末的成形体制造方法,采用具有层压非磁性体部分与磁性体部分并有贯穿孔道的冲模、和具有与所述冲模具贯穿孔道的内壁面相对向的外周面的磁性体磁芯、和从下方向所述冲模贯穿孔道的内周面与所述磁性体磁芯的外周面之间所形成的空间插入的下冲头、和从上方向所述冲模贯穿孔道的内周面与所述磁性体磁芯的外周面之间所形成的空间插入的上冲头的成形装置;多次反复地进行将稀土合金粉末填充到通过将所述下冲头插入所述冲模贯穿孔道所形成的模腔内的粉末填充工序,以及边外加取向磁场边对所述稀土合金粉末加压的压缩工序;在进行第n+1级(n是1以上的任一整数)的取向压缩工序时,将第n级取向压缩工序中所形成的压型体的上端面设置在所述冲模磁性体部分下端面的上侧。
本发明的稀土合金粉末的压型体制造方法,多次反复地进行将稀土合金粉末填充到第1磁性体部件与第2磁性体部件之间的取向空间所形成的模腔内的粉末填充工序,以及边外加取向磁场边对所述稀土合金粉末的取向压缩工序;在进行第n+1级(n是1以上的任一整数)的取向压缩工序时,将在第n级取向压缩工序中所形成的压型体至少一部分设置在所述第1磁性体部件与第2磁性体部件之间的取向空间内。
将所述模腔内的所述取向磁场强度为0.4MA/m以上,是理想的。
也可以在所述稀土合金粉末中添加润滑剂。
第n级粉末填充工序中向所述模腔内所填充的稀土合金粉末量多于第n+1级(n是1以上的任一整数)粉末填充工序中向所述模腔内所填充的稀土合金粉末量,是理想的。
在所述第n+1级的取向压缩工序中,所述第n级的取向压缩工序中所形成的压型体上端面与所述冲模磁性体部分的下端面之间的高度差定为3mm以上。
在第n+1级的取向压缩工序中,将所述第n级的取向压缩工序中所形成的压型体在所述取向空间内的部分的高度定为3mm以上,是理想的。
在理想的实施例中,所述稀土合金粉末是由R-T-(M)-B系合金形成的,式中的R是表示含有Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu中至少一种元素的稀土元素,T是表示铁或铁与钴的混合物,M是表示添加元素,B是表示硼。
在理想的实施例中,所述压型体具有圆筒形状,所述取向磁场是径向磁场。
所述第n级的取向压缩工序中所形成的压型体的密度为3.5g/cm3以上,是理想的。
在理想的实施例中,边外加所述取向磁场边对稀土合金粉末加压的取向压缩工序包括对所述模腔内填充的稀土合金粉末所加压力进行测定的工序。
在理想的实施例中,通过对所述稀土合金粉末所加压力的控制,来调节在所述取向压缩工序中所形成的压型体的密度。
本发明的稀土磁铁的制造方法,将由上述任一所述的稀土合金粉末的压型体制造方法所制造的压型体进行烧结,通过该烧结得到永久磁铁。
本发明的稀土磁铁,是通过多次反复进行将稀土合金粉末填充到模腔的粉末填充工序,以及边外加取向磁场边对所述稀土合金粉末加压的取向压缩工序制造的;在由第n+1级(n是1以上的任一整数)的取向压缩工序所形成的上侧压型体与由第n级的取向压缩工序所形成的下侧压型体的界面层部分的表面磁通密度,为另一部分表面磁通密度的最高值的65%以上。
本发明的粉末成形装置,包括:使非磁性体部分与磁性体部分层压状态存在并具有贯穿所述非磁体部分及磁性体部分的贯穿孔道的冲模;具有与所述冲模的贯通孔道内壁面相对向的外周面的磁性体磁芯;从下方向所述冲模的贯通孔道的内周面与所述磁性体磁芯的外周面之间所形成的空间插入的下冲头;从上方向所述冲模的贯通孔道的内周面与所述磁性体磁芯的外周面之间所形成的空间插入的上冲头;将磁性粉末填充到通过将所述下冲头插入所述冲模所形成的模腔的粉末供给装置;对所述模腔内所填充的磁性粉末外加取向磁场的磁场发生器;控制所述冲模与所述下冲头的相对位置的第1控制器;控制所述上冲头与所述下冲头的相对位置的第2控制器;并且是使向所述模腔内填充磁性粉末的粉末填充工序以及边外加所述取向磁场边对所述磁性粉末加压的取向压缩工序多次反复地工作的粉末成形装置;所述第1控制器在进行第n+1级(n是1以上的任一整数)的取向压缩工序时,控制所述冲模与所述下冲头的相对位置,使第n级的取向压缩工序中所形成的压型体的上端面设置在所述冲模磁性体部分下端面的上侧。
在理想的实施例中,还包括测定施加给所述磁性粉末压力的压力传感器。
在理想的实施例中,所述压力传感器包括检测所述上冲头或所述下冲头应变的应变片。
在理想的实施例中,所述第2控制器根据由所述压力传感器所测定的压力来控制所述上冲头与所述下冲头的相对位置。
本发明的稀土合金粉末的压型体制造方法,包括:由冲模及下冲头形成第1模腔的第1模腔形成工序;向所述第1模腔填充稀土合金粉末的第1粉末填充工序;在给所述第1模腔内的粉末施加的压力达到第1给定值时,对所述第1模腔内所填充的粉末进行压缩的第1压缩工序;在所述第1压缩工序之后,使冲模及下冲头相对移动,在所述被压缩的粉末上方,形成第2模腔的第2模腔形成工序;向所述第2模腔内填充粉末的第2粉末填充工序;在给所述第2模腔内填充的粉末施加的压力达到第2给定值时,对所述第2模腔内所填充的粉末进行压缩的第2压缩工序。
在理想的实施例中,包括:存储由所述第1压缩工序所形成的压型体上端位置的存储工序;根据所述上端位置,使冲模及下冲头相对移动并形成所述第2模腔的第2模腔形成工序。
在理想的实施例中,所述第1模腔及第2模腔均为圆筒形状。
以下对附图及其标号作简单的说明。
图1为表示使磁性粉末沿径向方向取向时所使用的具有代表性的粉体成形(加压)装置的剖视图。
图2A为模拟地示出通过多级填充使磁性粉末沿径向方向取向时第2级取向压缩工序中取向磁场的样子的剖视图。
图2B为模拟地示出通过多级填充使磁性粉末沿径向方向取向时第2级取向压缩工序中取向磁场样子的剖视图。
图3为表示用已有的多级成形方法所制造的圆筒形磁铁的外周表面磁通密度(Bg)曲线图。
图4为作为图3曲线图的测定对象的圆筒形磁铁的透视图。
图5为示出本实施例的粉体成形装置整体构成的侧视图。
图6(a)至(f)为表示本实施例稀土合金粉末成形方法的剖视图。
图7为模拟表示图6(e)所示工序中取向磁场样子的剖视图。
图8为表示对压型体所施加的压力(压型体压力)p变化的曲线图。
图9为表示图5所示出的粉体成形装置上控制机构的框图。
图10为利用图9所示的控制机构制作压型体时的流程图。
图11为表示本发明实施例的磁铁外周表面磁通密度(Bg)的曲线图。
在上述附图中,10-冲模、10a-冲模的磁性体分部、10b-冲模的非磁性体部分、12-磁性体磁芯、12a-上磁芯、12b-下磁芯、14-下冲头、16-上冲头、20-上线圈、22-下线圈、24-磁性粉末、26-第1级压型体、28-第2级压型体、30-压型体、32-环形磁铁。
实施例
以下参照附图,说明本发明的实施例
首先参照附图5说明粉体成形装置的整体构成。粉体成形装置5包括具有贯穿孔道的冲模10、与冲模10的贯穿孔道相对由下侧插入的圆筒形下冲头14、与冲模10的贯穿孔相对由上侧插入的圆筒形上冲头16。在各冲头14及16上所设置的磁芯孔插入形成径向磁场用的磁性体磁芯12a及12b。此外,冲模10还具有由强磁性材料形成的上侧部分(磁性体部分)与由非磁性材料形成的下侧部分(非磁性体部分)层压的结构。这里在本说明书中所称的“非磁性体部分”系指饱和磁化0.6T以下的材料。上述形成压力部的构成是与图1上所述的装置构成相同,故与图1上相同的部件加同一参考标号。
冲模10与成套冲模50相对而被固定,该成套冲模50通过贯穿底板52的导杆54下部板56连接。下部板56通过活塞杆58a与下部油压缸58b连接。通过该结构,利用下部油压缸58b可使冲模10沿上下方向移动。冲模10的位置通过使用线性标度等构成的最佳位置传感器59测定。若根据该测定值来控制下部油压缸58b的动作,则可将冲模10设置在所希望的任意的位置上。
下冲头14在与冲模10的贯穿孔道相对由下侧插入的位置,被固定在底板52上。在粉体成形装置5中,如上所述,由于可使设有贯穿孔道的冲模10沿上下方移动(浮动压模方式),所以就不需要下冲头14沿上下方向移动。
上冲头16的上端安装在上部板60上。上部板60通过活塞杆62a与上部油压缸62b连接。另外,在上部板60的两端附近,在成套冲模50上所固定的导杆64贯通。上部板60及上冲模16由导杆64导向,通过上部油压缸62b可沿上下方向移动。上冲头16的位置由使用线性标度等构成的最佳位置传感器66测定。根据该测定值控制上部油压缸62b动作,则可将上冲头16设定在所希望的任意位置上。
此外,为了对模腔内填充的粉末外加取向磁场,在模腔的上侧与下侧分别设置线圈20及22。例如,上线圈20设置在上部板60的下面,而下线圈22设置在成套冲模50的下面。由于上线圈20及下线圈22所形成的相斥磁场的作用,对模腔内的粉末可外加磁场,该磁场是由磁芯12的中心部向冲模10以放射形扩展而形成的径向磁场。
本实施例中,在上部油压缸62b上可安装测定油压力大小用的压力传感器A。使用该压力传感器A,可计测对模腔填充的磁粉末所施加的压力。该法在例如特开平10-152702号公报中已有报导。
与只使用计测上冲头16上下方向位置的位置传感器66时相比较,若使用上述压力传感器A,可使压型体的成形密度更为恒定地进行压制工序。尤其,如本实施例所示,在制作环形磁铁时,由于模腔具有难于使粉末均匀地填充其内部的形状,所以在每子填充工序向模腔内供给的粉末量容易发生偏差。此外,在本实施例中最适于使用的R-T-B(R为表示含Y的稀土元素,T为Fe或Fe与Co的混合物,B为硼)合金粉末,有不少是菱角形的,很难均匀地填充。尤其,采用带状铸造法(例如美国专利5,383,987号所述)等的急冷法(冷却速度102-104℃/sec)所制作的合金粉末,由于粒度分布范围窄,流动性更低,所以难以均匀填充。
这样,在膜腔内所填充的粉末量发生偏差的情况下,粉末压制时的上冲头16的位置(与下冲头14相对的位置)只能设定在给定位置,因而每个所制作的压型体发生密度偏差。然而,如本实施例所示,在使用压力传感器A时,对膜腔内的粉末(或压型体)所施加压力进行测定,根据该压力,可变更与下冲头相对的上冲头的位置,因此,往往可对压型体施加给定压力,因而可大致恒定地控制压型体的密度。
还有,如本实施例那样,通过多级成形法制作压型体时,通过使用压力传感器A,为了取得压型体而多次进行取向压缩工序,可得到所希望的精度良好的压型密度。
例如,在最初的取向压缩工序中,是在密度较低的状态下(柔软)制作压型体,而在最后的取向压缩的工序中,若加入较高压力并经压固,则可制作整体密度均匀的压型体。这样所制作的压型体不会发生在烧结工序中因局部不同的收缩率而收缩。这样,就可得到具有所希望的形状及磁特性的烧结磁铁。
还有,通过使用压力传感器A,在各取向压缩工序中就可以控制压力动作,对模腔内的粉末施加给定水平以上的充分压力。这样,在各取向压缩工序中,可以制作具有给定水平以上密度的压型体,通过下一级的取向压缩工序时所形成的取向磁场的作用,可防止前一级所制作的压型体再取向。
此外,如后所述,在上冲头16上固定应变片(未图示),利用该应变片也可测定施加给模腔内的磁性粉末(或压型体)的压力。与测定上部油压缸62b的油压大小的情况相比较,若使用应变片,可更加准确地测定对磁性粉末的外加压力,因而能可靠地制作大致具有均匀密度的环形压型体。
在成套压模50上设置供料箱40。在该供料箱40内装有稀土合金粉末24。供料箱40通过活塞杆与油压缸42连接,并且对于在冲模上所形成的贯穿孔道可进可退。
此外,圆筒形的上冲头16及下冲头14,例如以硬度HRA(洛氏硬度)为70以上93以下,由组成Mo:1.6wt%、Ni:20wt%,其余为WC的WC-Ni系超硬合金等所形成。这里,在超硬合金中包括这样一些合金,即利用Fe、Co、Ni、Mo、Sn等铁系金属或其合金将属于周期表中第Ⅳa族、Ⅴa族或Ⅵa族的9种元素中至少含有一种元素的碳化物粉末进行烧结和结合而形成的合金。作为超硬合金,也可以使用WC-TaC-Co系、WC-TiC-Co系或WC-TiC-TiC-Co系合金。
还有,上冲头16或下冲头14也可以由合金钢形成。这里,合金钢中包括以Fe-C为主体的高速钢、高锰钢和工具钢等。作为上冲头16及下冲头14可使用具有给定硬度的合金钢。
这样,若由具有以HRA为70以上93以下的硬度的超硬度合金或合金钢等形成上冲头16或下冲头14,则可给予上冲头16及下冲头14所希望的韧性及弹性。这样,即使将上冲头16及下冲头14加工成锐利的形状时,也可难于使其破损。
以下参照图6(a)至(f),说明本实施例的稀土合金粉末的成形方法(压型体的制造方法)。本发明也可适用于进行3级以上的粉末填充/取向压缩循环的情况,但是在本实施例中,为方便起见,说明进行2级粉末填充/取向压缩循环的情况。
首先,参照图6(a)。该图示出将由前面的取向压缩工序中所制作的压型体从成形装置取出后的状态。这里,下冲头14的上端面与冲模10的上端面直接成为一面状态,使上磁芯12a及上冲头16上升,由冲模10区分开。
此后,如图6(b)所示,通过使冲模10及下磁芯12b上升,与冲模10及下磁芯12b相对的下冲头的相对位置下降,在冲模10的贯穿孔道内形成圆筒形的空间(模腔)。该空间的下方由下冲头14的上端面区分,但是,上方敞开,形成应该填充稀土合金磁性粉末的环形凹部。其次,使供给稀土合金粉末的供料箱(供给粉末的箱)40滑动到模腔的位置,并向模腔填充供给箱40内部所收入的粉末24(第1级粉末填充工序)。在第1级粉末填充工序中,模腔的下面装置,即下冲头14的上端面的位置与冲模10的磁性体部10a的下端面的位置相等,或者设定在稍高的位置上。为了便于说明,在考虑3级以上的粉末填充时,有时有第n级(n是1以上的任一整数)粉末填充工序中,将填充的空间称为“第n级的模腔”。
其次,如图6(c)所示,将供料箱40由模腔退出之后,使上磁芯12a及上冲头16一起下降,使上磁芯12a的下端面与下磁芯12b的上端面相接触。接着,将上冲头16的下端部插入冲模10的贯穿孔道内并使其更进一步下降。此时,在上冲头16的下端面封闭模腔的阶段,在磁芯12内形成相斥磁场,在模腔内形成径向磁场。在本实施例中,为了得到充分的磁特性,将模腔内的取向磁场的强度定为0.4MA/m以上。模腔内所填充的粉末处于冲头16与下冲头14之间并在径向磁场之下进行压缩成形(第1级取向压缩工序)。这样就形成径向取向的第1级的压型体26。尤其,图6(c)的工序中的磁场的样子与图1所示的磁场样子相同。在第1级取向压缩工序结束之后,用线圈20及线圈22,外加与其前所外加的取向磁场方向相反的逆向磁场,进行第1级压型体26的消磁。
此外,使第1级压型体的密度设定为3.5g/cm3以上,是理想的,设定为3.9g/cm3-4.5g/cm3,更为理想。其理由是,由于压缩强度不充分,若使压型体密度低于上述水平,则恐怕会产生第1级压型体的再取向。
在上述第1级取向工序中,检测外加给填充粉末的压力,在其压力达到给定值之后,终止压缩动作,可采用向下一工序过渡的控制方法。这里压力检测可采用图5所示的压力传感器A进行。采用这样的控制方法时,即使填充在模腔的粉末量有偏差,通常也可制作具有3.5g/cm3以上成形密度的压型体。因此,可防止已经成形的第1级压型体由于第2级压型体制作时向取磁场的作用而发生的再取向。
这种压力检测,也可以用设置在上冲头上的应变片(应变检测器)进行。作为应变片例如可使用东京测器研究所社制的应变片(FCA-3-11-1L)。应变片的数愈多,愈能有效地求出准确的压力。在本实施例中,采用4应变片法,将4个应变片粘贴在冲模的侧面上。尤其,也可以将应变片设置在上冲头16和/或下冲头14的侧面上。
若使用这样的应变片,则可测定压制时上冲头前端的应变程度。由于使用该应变片,可实时而且高精度地检测施加给压型体上的压力。
以下说明利用这样应变片的压型体制作方法的一具体例子。首先,在模腔内填充粉末的状态下,将上冲头16相对于下冲头14而下降,通过这样,增加对粉末的外加压力。此时,施加给粉末的压力,通过被固定在上冲头16的侧面上的应变片即可实时而准确地观察到。还有,在这种加压过程中,也可以较缓慢的速度使冲模10同上冲头16一起下降。通过这样作,可起到与下列情况具有相同的效果,即对模腔内的粉末来说,使上冲头16下降的同时,使下冲头14上升,这对减少压型体中的密度偏差是有效的。
其次,利用应变片检测对粉末(或压型体)施加的压力达到给定水平时,停止上冲头16的下降而形成压型体。这样,若用应变片测定压力制作压型体,则可将压型体的成形密度设定在给定水平(例如3.5g/cm3)以上。
再次,参照图6(c)及(d)。从图6(c)所示状态来看,在给定压力下直接由上冲头16与下冲头14挤压压型体的状态下,使冲模10上升,进而在下磁芯12b与上磁芯12a相接状态下使这些磁芯12a及12b上升。若是这样作,则可防止由于冲模10和磁芯12a及12b上升时所发生的摩擦而使压型体破损。此后,通过使上冲头16上升,就可以在压型体上面的上方再次形成模腔(“第二模腔”)。第2模腔的下方,不是下冲头14而是由第1级压型体26的上端面区分。
在使用已有的多级成形方法时,第1级压型体26的上端面与冲模10的磁性体部分10a的下端面以相同水平设置,但是,在本发明中,第1级压型体26的上端面位于冲模10的磁性体部位10a的下端面的上侧,这就是上冲头14与冲模10的相对位置的控制关系。此后,使供料箱40向模腔上移动,向第2模腔填充稀土合金粉末(第2级粉末填充工序)。
其次,如图6(e)所述,使供料箱40从模腔退出后,使磁芯12a及上冲头16下降,并使上磁芯12a的下端面与下磁芯12b的上端面相接触。接着,将上冲头16的下端面插入冲模10的贯穿通道,进而使其下降。此时,在上冲头16的下端面封闭模腔的阶段,在磁芯12内形成相斥磁场,在第2模腔内形成径向磁场。在第2模腔内所填充的粉末在径向磁场中压缩(第2级取向压缩工序)。这样,在第1级压型体26上形成第2级压型体28,同时两者成为整体而形成了一个压型体30。在本实施例中,例如将第1级压型体26的轴向长度作成约13.5mm,而将第2级压型体28的轴向长度作成约10.5mm。
图7为表示图6(e)示出的工序中取向磁场的样子的剖视图。在第2级取向压缩工序中形成填充粉末时,第2模腔的位置在冲模10贯穿通道内要比冲模10的磁性体部分10a的下端面的位置高,换言之,与磁性体部分10相对的第1级压型体26的相对位置,与已有例相比,向上方移动。为此,下磁芯12b内形成的磁通朝向冲模10的磁性体部分10a,在向半径方向扩展的区域,磁场(或磁通)的轴向成分减少并可形成接近于图1所示径向磁场状态的磁场。
在本实施例中,第1级压型体26的上端面与冲模10的磁性体部分10a的下端面相比,高3mm以上。该3mm的值对本实施例所使用的冲模10的磁性体部分10a的轴向长度(L=约24mm)来说,是超过10%的大小值。还有,如前所述,本实施例中所制成的第1级压型体26的轴向长度约为13.5mm,因此,所谓3mm的值为超过第1级压型体26的轴向长度20%的大小值。
在第2级取向压缩工序结束之后,使用线圈20及22,外加与其以前外加磁场方向逆向的磁场,进行压型体30的消磁。此后,如图6(f)所示,通过使上模腔16及上磁芯12a上升,同时冲模10的位置下降,取出压型体30。
将这样所制作压型体30烧结之后,进行表面处理并将其磁化,可制造径向取向的各向异性的环形磁铁。
此外,在取出压型体30的工序中,根据使用上述应变片所测定压型体压力,也可以控制上冲头16及冲模10的动作。以下,参照图8说明取出压型体工序的一例。
图8为表示压型体压力P变化的曲线图。如图所示,在压缩取向工序S1,以给定的压型体压力P1制作压型体30之后,以缓慢的速度使上冲头16上升(或使外加压力下降),这样即可使压型体压力P缓缓下降。此外,所制作的压型体通过所谓回弹现象,向与挤压方向相反的方向延伸,因此,在上冲头16与压型体直接接触的状态下,压型体压力P缓缓下降。此时的压型体压力变化可通过应变片检测。
在这种情况中,压型体压力P降低到给定值P2时,冲模10开始下降。通过这样作,压型体30开始露出在模腔之外。上冲头16依然以缓慢的速度上升,压型体压力进一下降。
此后,冲模10下降,在压型体从模腔完全取出之前的时刻,终止上冲头上升,以保持压力P3维持压型体压力。若使用应变片,则可将该保持压力P3设定为比较小的值。在施加有保持压力P3的状态下,可完全由模腔取出该压型体。此后,在冲模10上使压型体露出的状态下,再次使上冲头16上升,结束了压型体的取出工序。
这样,根据利用应变片所测定的压型体的压力来控制上冲头16及冲模10的动作的理由,是由于为减少从模腔取出工序中的压型体龟裂和压坏所致。
在由模腔取出压型体30时,由于冲模10与压型体30之间的摩擦而对压型体30施加应力,因此恐怕会在压型体30上产生龟裂。此时若通过上冲头16对压型体施加给定的压型体压力,则可防止龟裂的发生。为此,要在取出压型体结束之前,对压型体施加压力。
但是,若对压型体施加的力过大,则由模腔取出的压型体就被压坏了。尤其是,在压型体30由模腔完全取出之前的状态下,非常容易压坏。为此,若将保持压力P3设定为小值,以防止压坏。
如上所述,若用应变片可实时而准确地检测出压型体压力,因此控制上冲头16及冲模10的动作,以防止压型体的龟裂及压坏,可进行适宜的取出工序。
还有,在使用上述应变片的状态下,也可进行调节压型体密度的同时,调节压型体的尺寸。以下参照图5、图9及图10,说明本实施例。
图9为表示图5上所示的粉末成形装置有关的控制机构框图。为控制粉体成形装置5的动作所设置的中央控制电路90包括:进行运算用的CPU;收集来自应变片和位置传感器等信息的RAM;收集控制程序的ROM。此外,与中央控制电路90连接有操作盘,操作人员可根据需要任意地输入控制信息。
应变式驱动电路,对添加在上冲头等上面的应变片外加给定电压,根据来自此时的应变片的输出来检测应变的大小(即对施加给粉末的压力大小)进行检测。应变的大小用应变片的电阻变化来表示。这样,应变片驱动电路就可将施加在粉末上的压力有关的信息用A/D转换器(未图示)变成数字信号,传送给中央控制电路90。
油压缸驱动电路是根据来自中央控制电路90的指令来驱动上部油压缸62b以及下部油压缸58b。利用油压缸驱动电路,可以使上冲头16及冲模10移动到给定位置。
在上冲头16及冲模10上所设置的位置传感器66、59检测上冲头16及冲模10的位置,并将其位置信息传送到中央控制电路90。
供料箱驱动电路,对供料箱40向模腔移动和退出进行控制。此外,在供料箱40上设置摇动装置(或搅拌器)时,还对这些装置的动作进行控制。还有,线圈驱动电路驱动为向模腔内的粉末外加取向磁场用的和磁场发生用的线圈20、22。中央控制电路90控制这些驱动电路。
以下参照附图10,说明使用上述控制机构的压型体的制作工序。
按下操作盘上的开始按钮时,中央控制电路90给各驱动电路指示最初设定动作,由全部驱动电路返回READY的信号,则开始压制动作(S1及S2)。首先,通过驱动下部油压缸,使冲模上升,形成第1模腔(S3)。中央控制电路90对供料箱驱动电路给予指示,向第1模腔内填充粉末(S4)。在通知供料箱驱动电路已结束粉末填充时,中央控制电路90驱动上部油压缸使上冲头下降(S5)。然后,由上冲头盖住模腔的状态下,驱动磁场发生用线圈,使模腔内粉末取向(S6)。
在这种取向压缩工序中,上冲头从压缩粉末开始时刻监视应变片驱动电路的输出,计测对模腔内的粉末施加的压力。伴随着上冲头的下降对粉末施加的压力增大,在此过程中检测对粉末所施加的给定压力(S7)时,停止上冲头的下降,与此同时还停止外加取向磁场(S8)。
此时,压缩状态下的上冲头的位置由位置传感器检测。来自位置检测器的位置信息存储(收入)在中央控制电路90内的RAM(S9)。
如上所述,在根据对粉体所施加的压力进行压缩工序时,若向模腔内所填充的粉末量不同,则在压缩时上冲头的位置也不同,第1级取向压缩工序中所制作的压型体的尺寸(高度)发生偏差。然而,在本实施例中,根据上述上冲头的位置,计算第二次取向压缩工序中应形成的模腔(第2模腔)的深度(S10)。具体地说,以下一级(第2次)取向压缩工序之后应形成压型体的整体高度,通过减法计算由上冲头的位置所求出的第1次压型体(第1级压型体)的高度,决定在下一级形成的模腔的深度。若这样做,即使粉末填充量有偏差,也可制作尺寸精度高的压型体。还有,在第1级压型体的高度或过高或过低并在给定范围之外的情况下,在进行第2次取向压缩工序之前由模腔取出第1级压型体,也可以制作新的第1级压型体。
这样,若决定下一级的模腔深度,则在由上冲头与下冲头挟住压型体的状态下根据上述计算出模腔深度,使冲模与磁芯上升到给定位置,然后通过使上冲头上升,形成第2模腔(S11及S12)。
此后,与第1取向压缩工序相同,进行粉末填充工序(S13)、取向压缩工序(S14-S16),制成压型体。即使在这种第二次压制动作时,也可以用应变片对粉末施加给定的压力。通过这种操作,可制作密度均匀而且尺寸精度高的压型体。
这样,使多级成形法制作的压型体,例如通过用图8说明的方法,可防止其破损并从模腔中取出(S17),这样就结束了压型体制作工序(S18)。
图11为表示本实施例磁铁表面磁通密度(Bg)的曲线,与图3曲线相对应的曲线图。这里在烧结后对其表面加工而制作了外径16.4mm、内径10.5mm、轴向长度20mm的环形磁铁,并进行了评价。由于评价容易,所以采用与轴向相垂直的磁场进行了磁化。
由图11的曲线可看出,第1级压型体26与第2级压型体28的界面层部分的表面磁通密度(Bg)的落下凹陷(图3)比已有例的落下凹陷显著地低。在图11的例中,界面层部分的表面磁通密度(Bg)为其他部分的表面磁通密度最大值的70%以上。根据本发明,即使在低的情况下,也可将其界面层部分的表面磁通密度(Bg)设定为其他部分的界面的磁通密度(Bg)的最大值的65%以上,还可将其设定为75%或80%以上。
这样,将作为整体具有很高磁特性的磁铁用于电动机,则能提高能量效率。由本实施例所制作的磁铁,特别适用于为实现工厂自动化所用的机械人用电动机。
根据本实施例,这样可控制多级成形界面层部分的表面磁通密度(Bg)的下降。其理由是,在实施第2取向压缩工序时,与已有例相比,使第1级压型体26的相对位置上升,在取向空间内至少设置第1级压型体26的一部分,因此,起因于第1级压型体26的存在的取向磁场的轴向成分减少,取向度大幅度改善所致。这样,若将已被取向处理的压型体的一部分处于取向空间内,则在下一级应形成的压型体尺寸被缩短。因此,若根据以往的见解,例如,若将已取向处理的压型体,即这里第1级压型体26设置在冲模10的磁性体部10a与磁芯10之间的空间(取向空间),是非常有效的。然而,在本发明中,敢于进行这样的工序,因此显著地控制伴随多级成形而发生的取向度降低,获得成功。
作为磁性粉末,使用带形铸造法制造的粉末,是理想的。利用这种方法制造磁性粉末的顺序如下。
首先,用高频熔解法在氩气氛中熔融美国专利第5,383,978号说明书中所公开的31Nd-IB-68Fe%(质量)所组成的合金,得到合金熔液。在上述合金中,也可以使用具有由Co取代一部Fe的组分的合金。此外,也可以使用美国专利第4,770,723号说明书中所公开组分的合金。
将合金熔液温度保持在1350℃,同时使转动的单辊表面与合金熔液接触,由此将合金熔液急冷,得到具有所希望组成的急冷凝固的合金。这时的冷却条件定为:例如辊的线速度约为1m/秒、冷却速度500℃/秒、过冷度200℃,得到平均厚度0.3mm的合金板。
将这样所得到的合金经吸收氢脆化之后,利用费瑟粉粹机粉粹至平均粒径5μm。此后,将粗粉碎的合金用喷射磨进行微粉碎,使其平均颗径达到3.5μm。然后,将由石油系溶剂稀释的脂肪酸酯作为润滑剂添加并混合。润滑剂的添加量对合金粉末来说,例如可为0.3%(质量)。此外,作为润滑剂也可以使用硬脂酸锌等的固体润滑剂。
这样,由带状铸造法所制造的稀土合金粉末,与用其他法(锭法)所制造的粉末相比较,粒度分布尖锐。因此,用这种稀土合金制作压型体并将其烧结时,可制作粒径一致的烧结体并得到优良的磁特性。另一方面,由于粒度分布尖锐,所以存在着粉末流动性差,填充容易不均匀的问题。对此,如上所述,利用压力传感器,控制对压型体施加的压力,则可使成形密度均匀,同时可制作具有给定水平以上的密度的高取向度的压型体。
最适于本发明粉末成形法的稀土合金,一般为具有R-T-(M)-B系合金粉末所表示的合金,上述式中的R为包括Y的稀土元素,T为Fe与Co的混合物,M为添加元素,B为硼。作为稀土元素的R可适用包括Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu中至少一种元素的原料。但是,为了得到充分的磁化,使用稀土元素R中的50at%以上为Pr或Nd的任一种或两者所占有的材料,是理想的。
稀土元素R为10at%以下,由于析出α-Fe相,保磁力下降。此外,若稀土元素R超过20at%,则除成为目的的正方晶Nd2Fe14B型化合物之外,大量析出R含量多的第2相,降低了磁化。为此,全部稀土元素R为10-20at%,是理想的。
T为铁族元素,含有Fe及Co。在T含不足67at%时,由于析出保磁力及磁化均低的第2相,所以磁特性不良。若T超过85at%,则由于析出α-Fe相而保磁力下降,减磁性曲线的矩形性也降低。为此,T的含量为67-85at%,是理想的。
此外,T也可以只由Fe构成,但是,通过添加Co,居里温度上升,提高了耐热性。T的50at%以上由Fe占有,是理想的。若Fe的比例下降到50at%以下,则Nd2Fe14B型化合物的饱和磁化减少。
B是稳定地析出正方晶体Nd2Fe14B型晶体结构所必须元素。B的添加量在不足4at%时,由于析出R2T17相,保磁力下降,减磁曲线的矩形明显受损。此外,若B的添加量超过10at%,则析出磁化小的第2相。因此,B的含量为4-10at%,是理想的。此外,B的一部分或其全部均可由C取代。
以改善粉末的磁性质或耐腐蚀为目的,也可以加添加元素。作为添加元素M,最好使用从Al、Ti、Cu、V、Cr、Ni、Ga、Zr、Nb、Mo、In、Sn、Hf、Ta、W所组成的一组中选择至少一种元素。这种添加元素M,也可以完全不添加。但是,在添加时,将添加量定为10at%以下,是理想的。添加量若超过10at%则将析出不是强磁性的第2相,致使磁化降低。
此外,作为冲模的磁性体部分及磁芯材料,最好选用透磁率及饱和磁通密度高而且耐磨性优良的材料,作为这样的材料,例如可举出碳工具钢(SK)、合金工具钢(SKS、SKD)、高速工具钢(SKH)和坡明杜尔铁钴系高导磁率合金(简称钴铁合金)。在重视耐磨耗性时,也可在具有高透磁率及高饱和磁通密度的基材,例如钴铁合金、强磁性镍合金和铁硅铝磁性合金等上面设置超硬合金覆盖层。
本发明的用途不只限于制造烧结磁铁,也可以扩大包括制造粘接磁铁。在将本发明适用于制造粘接磁铁时,要把加有粘合剂的磁性粉末填充到成形装置的模腔内。作为粘合剂,可使用环氧树脂如酚醛树脂等热固性树脂。此外,为了完成粘接磁铁,要在成形后进行120℃左右的固化处理。
还有,本发明也适用于制造圆筒形磁铁以外的磁铁。例如,也可适用于利用多级填充法制造特开平4-352402号公报所公开的圆弧形磁铁。
本发明中所使用的装置也不只限于上述实施例所说明的装置,而上下冲头的冲模的上升和下降动作也只不过是相对的,可作各种变更,这是不言而喻的。
尤其,在由3级以上压型体制造一个磁铁时,在第2级以后的取向压缩工序中,常常不需要将在前段配取压缩工序中所制作的压型体的上端面设置在冲模的磁性体部分的下端面的位置之上。在由多级制造长的圆筒磁铁时,根据用途也可以满足只提高所需部分的取向度。在应该提高取向度的部分包括有成形界面层部分时,也可适用本发明至少提高该界面部分的取向度。
此外,在上述实施例中,是举以粉体状态将稀土合金粉末进行压缩成形的干式成形法(干式压制)为例进行说明的,但是,本发明也可以适用于通过将稀土合金粉末在矿物油等中混合而得到的浆料在模腔内进行压缩的湿式成形法。
根据本发明,利用多级填充与多级成形实施径向取向时,由于可实现高取向度,所以可提供高性能的径向取向各向异性磁铁。尤其是,在使用磁特性优良的稀土合金粉末时,由于往往低度地抑制成形密度并外加强取向磁场,所以具有取向度容易降低的倾向,但是,根据本发明,由于在此种情况下能够控制伴随多级填充的取向度的局部下降,所以能够发挥显著的效果。

Claims (21)

1.一种稀土合金粉末的压型体制造方法,采用具有层压非磁性体部分与磁性体部分并且有贯穿孔道的冲模、和具有与所述冲模具贯穿孔道的内壁面相对向的外周面的磁性体磁芯、和从下方向所述冲模贯穿孔道的内周面与所述磁性体磁芯的外周面之间所形成的空间插入的下冲头、和从上方向所述冲模贯穿孔道的内周面与所述磁性体磁芯的外周面之间所形成的空间插入的上冲头的成形装置,
多次反复地进行将稀土合金粉末填充到通过将所述下冲头插入所述冲模贯穿孔道所形成的模腔内的粉末填充工序,以及边外加取向磁场边对所述稀土合金粉末加压的压缩工序,
在进行第n+1级(n是1以上的任一整数)的取向压缩工序时,将第n级取向压缩工序中所形成的压型体的上端面设置在所述冲模磁性体部分下端的上侧。
2.一种稀土合金粉末的压型体制造方法,多次反复地进行将稀土合金粉末填充到第1磁性体部件与第2磁性体部件之间的取向空间所形成的模腔内的粉末填充工序,以及边外加取向磁场边对所述稀土合金粉末加压的取向压缩工序,
在进行第n+1级(n是1以上的任一整数)的取向压缩工序时,将在第n级取向压缩工序中所形成的压型体至少一部分设置在所述第1磁性体部件与第2磁性体部件之间的取向空间内。
3.根据权利要求1或2所述的稀土合金粉末的压型体制造方法,将所述模腔内的所述取向磁场强定度为0.4MA/m以上。
4.根据权利要求1-3任一项所述的稀土合金粉末的压型体制造方法,在所述稀土合金粉末中添加润滑剂。
5.根据权利要求1-4任一项所述的稀土合金粉末的压型体制造方法,第n级粉末填充工序中向所述模腔内所填充的稀土合金粉末量多于第n+1级(n是1以上的任一整数)粉末填充工序中向所述模腔内所填充的稀土合金粉末量。
6.根据权利要求1所述的稀土合金粉末的压型体制造方法,在所述第n+1级的取向压缩工序中,所述第n级的取向压缩工序中所形成的压型体上端面与所述冲模磁性体部分的下端面之间的高度差定为3mm以上。
7.根据权利要求2-5任一项所述的稀土合金粉末的压型体制造方法,在第n+1级的取向压缩工序中,将所述第n级的取向压缩工序中所形成的压型体在所述取向空间内的部分的高度定为3mm以上。
8.根据权利要求1-7任一项所述的稀土合金粉末的压型体制造方法,所述稀土合金粉末是由R-T-(M)-B系合金形成的,式中的R是表示含有Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu中至少一种元素的稀土元素,T是表示铁或铁与钴的混合物,M是表示添加元素,B是表示硼。
9.根据权利要求1-8任一项所述的稀土合金粉末的压型体制造方法,所述压型体具有圆筒形状,所述取向磁场是径向磁场。
10.根据权利要求1-9任一项所述的稀土合金粉末的压型体制造方法,所述第n级的取向压缩工序中所形成的压型体的密度为3.5g/cm3以上。
11.根据权利要求1-10任一项所述的稀土合金粉末的压型体制造方法,边外加所述取向磁场边对稀土合金粉末加压的取向压缩工序包括对所述模腔内填充的稀土合金粉末所加压力进行测定的工序。
12.根据权利要求11所述的稀土合金粉末的压型体制造方法,通过对所述稀土合金粉末所加压力的控制,来调节在所述取向压缩工序中所形成的压型体的密度。
13.一种稀土磁铁的制造方法,将由权利要求1-12任一项所述的稀土合金粉末的压型体制造方法所制造的压型体进行烧结,通过该烧结得到永久磁铁。
14.一种稀土磁铁,是通过多次反复进行将稀土合金粉末填充到模腔的粉末填充工序,以及边外加取向磁场边对所述稀土合金粉末加压的取向压缩工序制造的,
在由第n+1级(n是1以上的任一整数)的取向压缩工序所形成的上侧压型体与由第n级的取向压缩工序所形成的下侧压型体的界面层部分的表面磁通密度,为另一部分表面磁通密度的最高值的65%以上。
15.一种粉体成形装置,包括:使非磁性体部分与磁性体部分层压状态存在并具有贯穿所述非磁体部分及磁性体部分的贯穿孔道的冲模;
具有与所述冲模的贯通孔道内壁面相对向的外周面的磁性体磁芯;
从下方向所述冲模的贯通孔道的内周面与所述磁性体磁芯的外周面之间所形成的空间插入的下冲头;
从上方向所述冲模的贯通孔道的内周面与所述磁性体磁芯的外周面之间所形成的空间插入的上冲头;
将磁性粉末填充到通过将所述下冲头插入所述冲模的贯通孔道所形成的模腔内的粉末供给装置;
对所述模腔内所填充的磁性粉末外加取向磁场的磁场发生器;
控制所述冲模与所述下冲头的相对位置的第1控制器;
控制所述上冲头与所述下冲头的相对位置的第2控制器;
使向所述模腔内填充磁性粉末的粉末填充工序,以及边外加所述取向磁场边对所述磁性粉末加压的取向压缩工序多次反复地工作;
所述第1控制器在进行第n+1级(n是1以上的任一整数)的取向压缩工序时,控制所述冲模与所述下冲头的相对位置,使第n级的取向压缩工序中所形成的压型体的上端面设置在所述冲模磁性体部分下端面的上侧。
16.根据权利要求15所述的粉体成形装置,还包括测定施加给所述磁性粉末压力的压力传感器。
17.根据权利要求16所述的粉体成形装置,所述压力传感器包括检测所述上冲头或所述下冲头应变的应变片。
18.根据权利要求16或17所述的粉体成形装置,所述第2控制器根据由所述压力传感器所测定的压力来控制所述上冲头与所述下冲头的相对位置。
19.一种稀土合金粉末的压型体制造方法,包括:
由冲模及下冲头形成第1模腔的第1模腔形成工序;
向所述第1模腔填充稀土合金粉末的第1粉末填充工序;
在给所述第1模腔内的粉末施加的压力达到第1给定值时,对所述第1模腔内所填充的粉末进行压缩的第1压缩工序;
在所述第1压缩工序之后,使冲模及下冲头相对移动,在所述被压缩的粉末上方,形成第2模腔的第2模腔形成工序;
向所述第2模腔内填充粉末的第2粉末填充工序;
在给所述第2模腔内填充的粉末施加的压力达到第2给定值时,对所述第2模腔内所填充的粉末进行压缩的第2压缩工序。
20.根据权利要求19所述的稀土合金粉末的压型体制造方法,包括:
存储由所述第1压缩工序所形成的压型体上端位置的存储工序;
根据所述上端位置,使冲模及下冲头相对移动并形成所述第2模腔的第2模腔形成工序。
21.根据权利要求19或20所述的稀土合金粉末的压型体制造方法,所述第1模腔及第2模腔均为圆筒形状。
CNB001298844A 1999-10-25 2000-10-24 稀土合金粉末的压型体制造方法、成形装置及稀土磁铁 Expired - Lifetime CN1171249C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP302679/1999 1999-10-25
JP30267999 1999-10-25

Publications (2)

Publication Number Publication Date
CN1303110A true CN1303110A (zh) 2001-07-11
CN1171249C CN1171249C (zh) 2004-10-13

Family

ID=17911890

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001298844A Expired - Lifetime CN1171249C (zh) 1999-10-25 2000-10-24 稀土合金粉末的压型体制造方法、成形装置及稀土磁铁

Country Status (3)

Country Link
US (3) US6432158B1 (zh)
CN (1) CN1171249C (zh)
DE (1) DE10052682A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567439A (zh) * 2013-08-09 2014-02-12 浙江东阳东磁有限公司 大高径比辐射环的取向压制装置及压制方法
CN105845422A (zh) * 2015-02-03 2016-08-10 胜美达集团株式会社 一种磁性元件的制造方法
CN110364348A (zh) * 2018-04-09 2019-10-22 丰田自动车株式会社 稀土磁体的制造方法和用于其的制造装置
CN110662617A (zh) * 2017-05-30 2020-01-07 国立研究开发法人产业技术综合研究所 钐-铁-氮磁铁粉末及其制造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003184B1 (en) * 1998-11-17 2009-09-16 Hitachi Metals, Ltd. Process for making and handling magnetic powder green compacts
JP3172521B1 (ja) * 2000-06-29 2001-06-04 住友特殊金属株式会社 希土類磁石の製造方法および粉体プレス装置
US6605162B2 (en) * 2000-08-11 2003-08-12 Nissan Motor Co., Ltd. Anisotropic magnet and process of producing the same
US6856231B2 (en) * 2000-09-08 2005-02-15 Nec Tokin Corporaton Magnetically biasing bond magnet for improving DC superposition characteristics of magnetic coil
EP1209703B1 (en) * 2000-11-28 2009-08-19 NEC TOKIN Corporation Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal
DE60101951T2 (de) * 2000-11-29 2004-12-23 Nec Tokin Corp., Sendai Magnetkern mit einem vormagnetisierenden Verbindungsmagneten und Induktorteil, das diesen verwendet
US6753751B2 (en) * 2000-11-30 2004-06-22 Nec Tokin Corporation Magnetic core including magnet for magnetic bias and inductor component using the same
US7007111B2 (en) * 2001-06-11 2006-02-28 Lsi Logic Corporation DMA port sharing bandwidth balancing logic
WO2003012806A1 (en) * 2001-07-30 2003-02-13 Sumitomo Special Metals Co., Ltd. Method of magnetizing rare-earth magnet and rare-earth magnet
JP4250878B2 (ja) * 2001-08-08 2009-04-08 パナソニック株式会社 バーニヤ型ブラシレスモータ
DE10142773C1 (de) * 2001-08-31 2003-03-06 Fette Wilhelm Gmbh Hydraulische Presse zum Pressen von Metallpulver
DE10142623C2 (de) * 2001-08-31 2003-11-06 Fette Wilhelm Gmbh Verfahren und Vorrichtung zur Minimierung der Streuung der maximalen Presskräfte in einer Pulverpresse
JP4134616B2 (ja) * 2001-10-02 2008-08-20 日立金属株式会社 プレス装置および磁石の製造方法
US7018487B2 (en) * 2001-11-22 2006-03-28 Nissan Motor Co., Ltd. Magnet containing low rare earth element and method for manufacturing the same
US7371290B2 (en) 2001-12-26 2008-05-13 Neomax Co., Ltd. Production method for permanent magnet and press device
SE0202010D0 (sv) * 2002-06-26 2002-06-26 Hoeganaes Ab Compaction method for high density powder metal products
DE10246719A1 (de) * 2002-10-07 2004-04-15 Vacuumschmelze Gmbh & Co. Kg Verfahren und Vorrichtung zum Herstellen eines mehrpolig orientierten gesinterten Seltenerd-Ringmagnets
EP1734637A4 (en) * 2004-04-06 2010-11-03 Hitachi Metals Ltd ROTOR AND PROCESS FOR ITS MANUFACTURE
IL166530A (en) * 2005-01-27 2009-06-15 Iscar Ltd Method for manufacturing cutting dies
US7931856B2 (en) * 2007-09-04 2011-04-26 Burgess-Norton Mfg. Co., Inc. Method of manufacturing crankshaft bushing
US8572830B2 (en) * 2011-03-14 2013-11-05 Apple Inc. Method and apparatus for producing magnetic attachment system
CN103042211B (zh) * 2012-07-27 2015-02-11 王秋安 一种辐射取向烧结钕铁硼磁环的模具及其制作工艺
KR101552018B1 (ko) * 2012-11-07 2015-09-09 오씨아이 주식회사 진공단열재 심재의 성형 장치 및 이를 통해 제조된 진공단열재
US9312057B2 (en) * 2013-01-30 2016-04-12 Arnold Magnetic Technologies Ag Contoured-field magnets
DE102013205101A1 (de) * 2013-03-22 2014-09-25 Siemens Aktiengesellschaft Presswerkzeug zum Herstellen eines Magneten, insbesondere eines Permanentmagneten
EP3790029A1 (en) 2013-06-17 2021-03-10 Urban Mining Technology Company, LLC Magnet recycling to create nd-fe-b magnets with improved or restored magnetic performance
JP6330438B2 (ja) 2014-04-09 2018-05-30 信越化学工業株式会社 希土類焼結磁石の製造方法
US9336932B1 (en) 2014-08-15 2016-05-10 Urban Mining Company Grain boundary engineering
DE102014112377A1 (de) * 2014-08-28 2016-03-03 Robert Bosch Automotive Steering Gmbh Herstellverfahren für komponenten eines schwenkmotors für ein lenksystem
CN106575569A (zh) * 2014-09-03 2017-04-19 日立金属株式会社 径向各向异性烧结环形磁铁及其制造方法
JP6689571B2 (ja) * 2015-03-05 2020-04-28 信越化学工業株式会社 希土類焼結磁石の製造方法
CN111916282A (zh) * 2019-05-10 2020-11-10 西门子歌美飒可再生能源公司 使用变化的磁化强度制造磁通聚焦磁体
RU194063U1 (ru) * 2019-10-07 2019-11-26 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Устройство для прессования кольцевых четырехполюсных постоянных магнитов
WO2021226293A2 (en) 2020-05-05 2021-11-11 Advanced Magnet Lab, Inc. Method for continuous manufacturing of permanent magnets
CN115255362B (zh) * 2022-07-22 2024-02-27 武汉理工大学 一种粉末电磁轴向压制装置及压制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690805A (en) * 1970-11-16 1972-09-12 Baldwin Hamilton Co Multiple fill compacting press
CA1316375C (en) 1982-08-21 1993-04-20 Masato Sagawa Magnetic materials and permanent magnets
JPS59216453A (ja) * 1983-05-20 1984-12-06 Hitachi Metals Ltd 円筒状永久磁石の製造方法
JPH0628215B2 (ja) 1989-04-24 1994-04-13 富士電気化学株式会社 ラジアル配向磁石の製造方法
JPH04352042A (ja) 1991-05-29 1992-12-07 Nec Corp メモリダンプ収集方式
JPH04352402A (ja) 1991-05-30 1992-12-07 Hitachi Metals Ltd 円弧形状磁石およびその製造方法
JP2662913B2 (ja) 1991-09-17 1997-10-15 ファナック株式会社 圧縮成形機と圧縮成形方法
EP0556751B1 (en) 1992-02-15 1998-06-10 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
SE504067C2 (sv) * 1992-04-30 1996-10-28 Sandvik Ab Metod att tillverka en sintrad kropp
US6007757A (en) * 1996-01-22 1999-12-28 Aichi Steel Works, Ltd. Method of producing an anisotropic bonded magnet
JP3651098B2 (ja) 1996-02-20 2005-05-25 大同特殊鋼株式会社 長尺ラジアル異方性リング磁石の製造方法
JP2816668B2 (ja) * 1996-07-04 1998-10-27 愛知製鋼株式会社 磁気異方性樹脂結合型磁石の製造方法
JP3132393B2 (ja) * 1996-08-09 2001-02-05 日立金属株式会社 R−Fe−B系ラジアル異方性焼結リング磁石の製造方法
JPH10152702A (ja) 1996-11-21 1998-06-09 Sumitomo Metal Ind Ltd 磁石合金粉末のプレス成形方法と成形装置
JPH1154352A (ja) 1997-07-30 1999-02-26 Sumitomo Metal Ind Ltd R−t−b系ラジアル異方性リング状焼結磁石の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567439A (zh) * 2013-08-09 2014-02-12 浙江东阳东磁有限公司 大高径比辐射环的取向压制装置及压制方法
CN105845422A (zh) * 2015-02-03 2016-08-10 胜美达集团株式会社 一种磁性元件的制造方法
CN105845422B (zh) * 2015-02-03 2019-07-09 胜美达集团株式会社 一种磁性元件的制造方法
CN110662617A (zh) * 2017-05-30 2020-01-07 国立研究开发法人产业技术综合研究所 钐-铁-氮磁铁粉末及其制造方法
CN110662617B (zh) * 2017-05-30 2021-10-26 国立研究开发法人产业技术综合研究所 钐-铁-氮磁铁粉末及其制造方法
CN110364348A (zh) * 2018-04-09 2019-10-22 丰田自动车株式会社 稀土磁体的制造方法和用于其的制造装置
CN110364348B (zh) * 2018-04-09 2021-07-16 丰田自动车株式会社 稀土磁体的制造方法和用于其的制造装置

Also Published As

Publication number Publication date
CN1171249C (zh) 2004-10-13
US20040206423A1 (en) 2004-10-21
US6756010B2 (en) 2004-06-29
US20020153061A1 (en) 2002-10-24
DE10052682A1 (de) 2001-06-21
US6432158B1 (en) 2002-08-13

Similar Documents

Publication Publication Date Title
CN1171249C (zh) 稀土合金粉末的压型体制造方法、成形装置及稀土磁铁
CN104641434B (zh) 永久磁铁的制造方法、永久磁铁的制造装置、永久磁铁以及旋转电机
CN1191902C (zh) 粉末压制装置及粉末压制方法
US8128757B2 (en) Method of manufacturing oriented body, molded body and sintered body as well as method of manufacturing permanent magnet
CN1139083C (zh) 径向各向异性R-Fe-B基烧结磁体及其制造方法
CN1533313A (zh) 稀土类合金粉末的压制成型方法以及稀土类合金烧结体的制造方法
US11881351B2 (en) Preparation method of ring-shaped sintered Nd—Fe—B magnet and its moulding die
JP2006228937A (ja) 希土類焼結磁石の製造方法、磁場中成形装置
EP2889095B1 (en) Method and apparatus for preparing rare earth sintered magnet
CN1193850C (zh) 粉末成形体的制造方法及磁铁的制造方法
US10176921B2 (en) Method for producing rare-earth sintered magnet, and molding machine therefor
JP2007270235A (ja) 磁場中成形装置、金型、希土類焼結磁石の製造方法
KR100622854B1 (ko) 고리형 자석의 제조 장치
JP2001192705A (ja) 希土類合金粉末の成形体製造方法、成形装置および希土類磁石
JP4513968B2 (ja) 希土類焼結磁石の製造方法、磁場中成形装置
JP2006156425A (ja) 希土類焼結磁石の製造方法、磁場中成形装置、金型
CN1271650C (zh) 永磁体的制造方法及压制装置
JP6477143B2 (ja) プレス装置および磁石の製造方法
JP2003347143A (ja) 希土類磁石
EP2889096B1 (en) Method for preparing rare earth sintered magnet
WO2021193115A1 (ja) 希土類系焼結磁石の製造方法および湿式成形装置
JP3417633B2 (ja) 磁場中押出成形方法とその成形機
JP4392605B2 (ja) 成形装置及び成形方法
JP2007208105A (ja) 希土類ボンド磁石の製造方法
JP5043307B2 (ja) 焼結磁石の製造方法及び磁場中成形装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: HITACHI METALS, LTD.

Free format text: FORMER OWNER: SUMITOMO SPEC METALS

Effective date: 20130514

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130514

Address after: Tokyo, Japan

Patentee after: Hitachi Metals Co., Ltd.

Address before: Japan Osaka

Patentee before: Neomax Co., Ltd.

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20010711

Assignee: Antai Science and Technology Co., Ltd.

Assignor: Hitachi Metals Co., Ltd.

Contract record no.: 2013990000365

Denomination of invention: Manufacturing method of pressed body of rare earth alloy powder, shaping apparatus and rare earth magnet

Granted publication date: 20041013

License type: Common License

Record date: 20130701

Application publication date: 20010711

Assignee: Beijing Zhongke Sanhuan High-Tech Co., Ltd.

Assignor: Hitachi Metals Co., Ltd.

Contract record no.: 2013990000364

Denomination of invention: Manufacturing method of pressed body of rare earth alloy powder, shaping apparatus and rare earth magnet

Granted publication date: 20041013

License type: Common License

Record date: 20130701

Application publication date: 20010711

Assignee: Beijing Jingci Magnet Co., Ltd.

Assignor: Hitachi Metals Co., Ltd.

Contract record no.: 2013990000374

Denomination of invention: Manufacturing method of pressed body of rare earth alloy powder, shaping apparatus and rare earth magnet

Granted publication date: 20041013

License type: Common License

Record date: 20130703

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20010711

Assignee: Ningbo Yunsheng Co., Ltd.

Assignor: Hitachi Metals Co., Ltd.

Contract record no.: 2014990000031

Denomination of invention: Manufacturing method of pressed body of rare earth alloy powder, shaping apparatus and rare earth magnet

Granted publication date: 20041013

License type: Common License

Record date: 20140114

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: Japan Tokyo port harbor 2 chome No. 70

Patentee after: Hitachi Metals Co., Ltd.

Address before: Tokyo, Japan

Patentee before: Hitachi Metals Co., Ltd.

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20010711

Assignee: Hitachi metal ring Ci material (Nantong) Co. Ltd.

Assignor: Hitachi Metals

Contract record no.: 2017990000034

Denomination of invention: Manufacturing method of pressed body of rare earth alloy powder, shaping apparatus and rare earth magnet

Granted publication date: 20041013

License type: Common License

Record date: 20170209

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
CI03 Correction of invention patent
CI03 Correction of invention patent

Correction item: A transferee of the entry into force of the contract

Correct: Hitachi metal ring magnets (Nantong) Co. Ltd.

False: Hitachi metal ring Ci material (Nantong) Co. Ltd.

Number: 11

Volume: 33

CX01 Expiry of patent term

Granted publication date: 20041013

CX01 Expiry of patent term