CN1264270C - 改善效率的多相开关电源及具有该电源的计算机系统 - Google Patents

改善效率的多相开关电源及具有该电源的计算机系统 Download PDF

Info

Publication number
CN1264270C
CN1264270C CNB008193118A CN00819311A CN1264270C CN 1264270 C CN1264270 C CN 1264270C CN B008193118 A CNB008193118 A CN B008193118A CN 00819311 A CN00819311 A CN 00819311A CN 1264270 C CN1264270 C CN 1264270C
Authority
CN
China
Prior art keywords
switching regulator
circuit
phase
power supply
regulator circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008193118A
Other languages
English (en)
Other versions
CN1451201A (zh
Inventor
C·特雷斯勒
C·埃尔南德斯
M·陈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN1451201A publication Critical patent/CN1451201A/zh
Application granted granted Critical
Publication of CN1264270C publication Critical patent/CN1264270C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种在低功率状态期间使损耗减至最小的多相电源。在一个特定实施例中,多相电源可包括多个彼此并联连接的开关稳定器。该多相电源更进一步包括耦合连接于各开关稳定器的相位控制电路。配置相位控制电路以产生多个控制信号,用以控制开关稳定器的切换,从而使其彼此有不同的相位。在微处理器的低功率运行状态期间,相位控制电路配置为通过取消或截止送开关稳定器的一个子集的多个控制信号的至少其中之一,而选择性地中止开关稳定器的一个子集的运行。

Description

改善效率的多相开关电源及具有该电源的计算机系统
技术领域
本发明涉及电源领域,尤其涉及多相开关电源(switching powersupply)。
背景技术
各种不同类型的装置都使用电源。有许多特定类型的电源电路,各具有不同的优点和缺点。计算机中的微处理器也许要求电源电路能大幅调节电流而保持高水平的效率。
一种该类型的特定电源电路为开关稳定器(switching regulator)。开关稳定器一般提供具有比未经调节的输入为低的电压输出,而同时提供具有比未经调节的电源所输入的电流为高的电流输出。这可通过无源晶体管不断地在饱和状态和非饱和状态之间切换而完成。因为无源晶体管在饱和或非导电情况,均有非常低的功率耗散。因此开关稳定器能够高效地大幅调节电流。
使用开关稳定器的一个公知缺点为“纹波效应(ripple effect)”。纹波效应指输出电压中周期性变化的纹波,该输出电压必须经滤波以便产生真正的直流(DC)电流。可通过并联连接多个开关稳定器且操作使其彼此处于不同相位,从而减少或消除纹波效应。这种配置称之为多相开关稳定器。多相开关稳定器一般以高效率产生高电流输出,而同时减少纹波。因此在需要有高水平的电流和效率时,普遍选择将多相开关稳定器用于电源电路。
许多微处理器配置为选择性地运行于低功率操作状态。在低功率状态期间,微处理器可配置为降低某些功能块(例如那些不活动的功能块)的功率和/或降低其内部时钟频率。降低微处理器某些部分的功率供应和/或降低时钟频率会有利于减少功率消耗。当微处理器回到正常运行状态时,该微处理器即使用相对高的电流。
然而遗憾的是,当微处理器运行于低功率状态时,对应所产生的总电流百分比,多相开关稳定器就变得效率较低。这是因为开关稳定器的晶体管继续以等同于正常状态运行期间的频率切换。因为晶体管在相同频率下切换,在低功率期间相关于切换的电容性损耗即与在正常运行状态的电容性损耗相同。然而,因为在低功率状态运行期间使用较少电流,对应所产生的总电流百分比,切换就变得效率较低。因此,需要有一种改良的多相电源(multiphase power supply)电路,其在低功率运行状态期间可降低与切换相关的功率损耗。
发明内容
通过一种在低功率运行状态期间降低功率损耗的电源,即可解决上述的大部分的问题。在一个实施例中,多相电源包括多个相互并联连接的开关稳定器。各开关稳定器可同时操作,且开关稳定器可受控而彼此有不同的相位。在特定的实施例中,各开关稳定器可以是同步开关稳定器。多相电源更进一步包括耦合到多个开关稳定器的相位控制电路。配置相位控制电路,以便在低功率运行状态期间选择性地中止至少其中一个开关稳定器的操作。可进一步配置相位控制电路,以便控制开关稳定器的切换,从而使其彼此具有不同相位。
换言之,本发明提供一种电源,包括:
第一开关稳定器电路;
第二开关稳定器电路;
第三开关稳定器电路;
第四开关稳定器电路;
相位控制电路,耦合连接于所述第一开关稳定器电路、所述第二开关稳定器电路、所述第三开关稳定器电路、和所述第四开关稳定器电路,其中所述相位控制电路配置为产生多个切换控制信号,用以控制所述第一、第二、第三和第四开关稳定器电路的切换;
其特征在于所述相位控制电路配置为对于接收到指示低功率状态运行的信号加以响应,选择性地中止所述第二、第三、和第四开关稳定器电路的操作,以及
其中每一所述第一、第二、第三和第四开关稳定器电路均包括耦合连接于第一晶体管和第二晶体管的电感器,其中耦合连接所述第一晶体管以在其导通时将电流从电源送至所述电感器,而其中耦合连接所述第二晶体管以在其导通时将电流从接地节点送至所述电感器,而且其中配置所述相位控制电路在不同相位运行期间触发所述第一和第二晶体管。
本发明还提供一种计算机系统,所述计算机系统包括微处理器以及所述电源。
附图说明
考虑以下较佳实施例的详细说明并配合下列附图,即可对本发明有较好了解,其中:
图1显示多相电源的特定实施例;
图2为时序图,显示图1中选择晶体管在正常状态运行期间的工作周期;
图3为时序图,显示图1中选择晶体管在正常状态运行期间减少的工作周期;
图4为时序图,显示图1中选择晶体管在低功率运行状态期间的工作周期;以及
图5显示多相电源的另一实施例。
附图中以示例方式显示了特定实施例,并在以下对其进行了详细说明——尽管易于对本发明作各种形式的修改和替代。应理解到,此处附图和详细说明并非意在将本发明限制为所述特定形式,而是相反,本发明将涵盖所有落于所附权利要求书所界定的本发明的精神和范围内的修改、等效和替换。
具体实施方式
图1显示多相电源100的特定实施例。多相电源100包括多个同步开关稳定器,其标为110A、110B、110C和110D。同步开关稳定器110A~D可分别地个别或整体地称之为开关稳定器110。耦合开关稳定器110以向位于节点170的微处理器160提供电源。多相电源100更进一步包括相位控制电路150,该相位控制电路耦合到各开关稳定器110。重要的是应注意到,不同的实施例可包括多于或少于4个开关稳定器。
在所述实施例中,各开关稳定器110包括一对耦合于电源端子Vcc和接地之间的晶体管(例如,晶体管101和102,晶体管111和112等)。各开关稳定器110更进一步包括二极管(例如二极管103、113等)、电感器(例如电感器104、114等)和电容器(例如电容器105、115等)。应注意,也可使用其它的特定电路配置以实现各开关稳定器110。
配置相位控制电路150以使其产生多个控制信号,用以控制开关稳定器110中的晶体管状态,从而使开关稳定器110彼此运行于不同相位。在特定实施例中,相位控制电路150可包括Semtech SC1144集成电路。下文中将更进一步详细说明,相位控制电路150还包括其它电路,以便在低功率运行状态期间选择性地中止开关稳定器110的一个子集的操作,从而使效率得以改善。
图2~4显示多相电源100的各种运行情况。图2和图3为时序图,显示在正常状态运行期间与晶体管101、111、121和131工作周期相关的示例。图4为时序图,显示在低功率运行状态期间与晶体管101、111、121和131工作周期相关的示例。
同时参照图1和图2,相位控制电路150在不同相位运行期间分别触发(即导通)晶体管101、111、121和131。在第一相位运行(“相位1”)期间,晶体管101导通而晶体管111、121和131截止。因为各开关稳定器110实施为同步调节器,当晶体管101导通时,晶体管102截止(响应于来自相位控制电路150的对应控制信号)。因此,在相位1期间,电流从Vcc流经晶体管101和电感器104而使电容器105充电。同样在相位1期间,晶体管111、121和131截止,而晶体管112、122、132导通。
在下一个相位运行期间(“相位2”),相位控制电路150使晶体管101截止并使晶体管102导通。当晶体管102导通和晶体管101截止时,因为流经电感器104的电流不能突变,电流可继续瞬时地流过电感器104,从而使电容器105充电。晶体管102提供该电流的回流路径。
同样在相位2期间,开关稳定器110B的晶体管111导通而晶体管112截止。结果与前面所讨论的相似,电流从Vcc流经晶体管111而使电容器115充电。在相位3和4期间,开关稳定器510C和510D的后续操作相似。
可进一步配置相位控制电路150,以便经由反馈控制信号来监视在节点170的输出电压Vout,并相应调整晶体管101、111、121和131的工作周期,从而保持恒定的电压电平。图3显示一种示例性情况,其中图1所示晶体管101、111、121和131的工作周期,例如因微处理器160所获取的电流减少,而随之减少。若在节点170有减少的输出电压,即微处理器160所获取的电流增加,则晶体管101、111、121和131的工作周期将相对于图2的示例而随之增加。
如上所述,微处理器160配置运行于低功率运行状态。在此运行状态期间,微处理器160需要较少电流。低功率运行状态例如可以由功率管理单元(图中未示)来控制,其在需要时检测特定系统的不活动性。相位控制电路150配置成基于确认低功率状态控制信号而选择性地中止开关稳定器110(例如开关稳定器110B、110C、和110D)的一个子集的运行,该低功率状态控制信号表示微处理器160目前运行于低功率状态。可由功率管理单元接收低功率状态控制信号。如图4所示,在此实施例中,相位控制电路150在低功率状态期间通过取消(或相反,驱动或截止)提供给相关的切换晶体管111、112、121、122、131、和132的控制信号,从而中止开关稳定器电路110B、110C、和110D的运行,从而使晶体管保持在截止状态。而在这一状态时,开关稳定器110A如前所述,以正常方式工作。
图5显示多相电源500的另一实施例。图5中多相电源500与图1中多相电源100的不同之处在于省略了晶体管102、112、122和132。因此,图5中的开关稳定器,例如510A、510B、510C、和510D,不是同步调节器。各开关稳定器510的对应二极管,即二极管503、513、523或533,提供了返回路径,以便当相关晶体管截止时让电流流过,该相关晶体管即晶体管501、511、521或531。
多相电源的各不同实施例有利于使得在正常状态运行期间有相对高的载流能力,而在低功率运行状态期间有最小损耗。通过在低功率运行状态期间中止开关稳定器子集的操作,可消除与中止相关的开关稳定器的晶体管电容性切换损耗。因此,可改善电源的整体效率。
值得注意的是,虽然在上述实施例中为每一电源中描绘出总共4个开关稳定器,但在其它实施例中可设置其它数目的开关稳定器。同样,虽然在上述实施例中,当低功率运行状态时除了其中一个开关稳定器以外,所有其它的开关稳定器均中止运行,但在其它实施例中,可使任何数目的开关稳定器中止。
本领域技术人员一旦充分理解上述说明,即会认识到可对本发明作许多变动和修改。所附权利要求书范围应解释为包含所有这类变动和修改。
工业应用
本发明可应用于电源方面。

Claims (6)

1.一种电源,包括:
第一开关稳定器电路(110A);
第二开关稳定器电路(110B);
第三开关稳定器电路(110C);
第四开关稳定器电路(110D);
相位控制电路(150),耦合连接于所述第一开关稳定器电路、所述第二开关稳定器电路、所述第三开关稳定器电路、和所述第四开关稳定器电路,其中所述相位控制电路配置为产生多个切换控制信号,用以控制所述第一、第二、第三和第四开关稳定器电路的切换;
其特征在于所述相位控制电路配置为对于接收到指示低功率状态运行的信号加以响应,选择性地中止所述第二、第三、和第四开关稳定器电路的操作,以及
其中每一所述第一、第二、第三和第四开关稳定器电路均包括耦合连接于第一晶体管(101、111、121、131)和第二晶体管(102、112、122、132)的电感器(104、114、124、134),其中耦合连接所述第一晶体管以在其导通时将电流从电源送至所述电感器,而其中耦合连接所述第二晶体管以在其导通时将电流从接地节点送至所述电感器,而且其中配置所述相位控制电路在不同相位运行期间触发所述第一和第二晶体管。
2.如权利要求1所述的电源,其中所述相位控制电路(150)在所述低功率状态运行期间,通过截止送至所述第二开关稳定器电路的所述多个切换控制信号中的至少其中之一,而选择性地中止所述第二开关稳定器电路(110B)的运行。
3.如权利要求1所述的电源,其中所述相位控制电路(150)选择性地导通和关断所述第一和第二开关稳定器电路,从而使得所述第一和第二开关稳定器电路彼此有不同的相位。
4.如权利要求2所述的电源,其中所述相位控制电路(150)选择性地导通和关断所述第一和第二开关稳定器电路,从而使得所述第一和第二开关稳定器电路彼此有不同的相位。
5.如权利要求1至4中任一所述的电源,其中每一所述第一和第二开关稳定器电路进一步包括:
电容器(105、115),耦合连接以接收流经所述电感器的电流。
6.一种计算机系统,包括:
微处理器;以及
如权利要求1至5中任一项所述的电源,耦合连接到所述微处理器。
CNB008193118A 2000-03-14 2000-11-21 改善效率的多相开关电源及具有该电源的计算机系统 Expired - Fee Related CN1264270C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/523,107 2000-03-14
US09/523,107 US6281666B1 (en) 2000-03-14 2000-03-14 Efficiency of a multiphase switching power supply during low power mode

Publications (2)

Publication Number Publication Date
CN1451201A CN1451201A (zh) 2003-10-22
CN1264270C true CN1264270C (zh) 2006-07-12

Family

ID=24083687

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008193118A Expired - Fee Related CN1264270C (zh) 2000-03-14 2000-11-21 改善效率的多相开关电源及具有该电源的计算机系统

Country Status (7)

Country Link
US (1) US6281666B1 (zh)
EP (1) EP1264391B1 (zh)
JP (1) JP2003527062A (zh)
KR (1) KR100698499B1 (zh)
CN (1) CN1264270C (zh)
DE (1) DE60044785D1 (zh)
WO (1) WO2001069768A1 (zh)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60030424D1 (de) * 1999-03-23 2006-10-12 Advanced Energy Ind Inc Gleichstromgespeistes rechnersystem mit einem hochfrequenzschaltnetzteil
US6694438B1 (en) 1999-07-02 2004-02-17 Advanced Energy Industries, Inc. System for controlling the delivery of power to DC computer components
US6545450B1 (en) * 1999-07-02 2003-04-08 Advanced Energy Industries, Inc. Multiple power converter system using combining transformers
US6278263B1 (en) * 1999-09-01 2001-08-21 Intersil Corporation Multi-phase converter with balanced currents
US6803752B1 (en) * 2000-02-14 2004-10-12 Linear Technology Corporation Polyphase PWM regulator with high efficiency at light loads
US6674274B2 (en) * 2001-02-08 2004-01-06 Linear Technology Corporation Multiple phase switching regulators with stage shedding
GB2407882B (en) * 2001-02-08 2005-11-02 Linear Techn Inc Multiple phase switching regulators with stage shedding
SE0102230L (sv) * 2001-06-25 2002-12-26 Ragnar Joensson Switchkrets med multipla steg
US20040233690A1 (en) * 2001-08-17 2004-11-25 Ledenev Anatoli V. Multiple power converter system using combining transformers
US6970364B2 (en) * 2002-03-08 2005-11-29 University Of Central Florida Low cost AC/DC converter with power factor correction
US7218085B2 (en) * 2002-05-24 2007-05-15 Arizona Board Of Regents Integrated ZVS synchronous buck DC-DC converter with adaptive control
AU2003243515A1 (en) * 2002-06-13 2003-12-31 Pei Electronics, Inc. Improved pulse forming converter
US7301408B2 (en) 2002-10-15 2007-11-27 Marvell World Trade Ltd. Integrated circuit with low dielectric loss packaging material
US8952776B2 (en) * 2002-12-13 2015-02-10 Volterra Semiconductor Corporation Powder core material coupled inductors and associated methods
US7109689B2 (en) * 2003-04-04 2006-09-19 Intersil Americas Inc. Transient-phase PWM power supply and method
US7298197B2 (en) * 2003-08-18 2007-11-20 Nxp B.V. Multi-phase DC-DC converter with shared control
US7265522B2 (en) * 2003-09-04 2007-09-04 Marvell World Trade Ltd. Dynamic multiphase operation
TW589791B (en) * 2003-09-04 2004-06-01 Micro Star Int Co Ltd Synchronous parallel voltage conversion device
JP3851303B2 (ja) * 2003-09-08 2006-11-29 ローム株式会社 多出力型電源装置及びこれを用いた携帯機器
JP4637855B2 (ja) * 2003-12-22 2011-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スイッチモード電源
DE112005000388T5 (de) * 2004-02-17 2007-02-08 Agere Systems, Inc. Vielseitiger und intelligenter Leistungssteller
US7190210B2 (en) * 2004-03-25 2007-03-13 Integral Wave Technologies, Inc. Switched-capacitor power supply system and method
US7239194B2 (en) * 2004-03-25 2007-07-03 Integral Wave Technologies, Inc. Trench capacitor power supply system and method
US8324872B2 (en) * 2004-03-26 2012-12-04 Marvell World Trade, Ltd. Voltage regulator with coupled inductors having high coefficient of coupling
US7234055B2 (en) * 2004-08-24 2007-06-19 Inventec Corporation Computer operating booting system making use of multi-buttons
US7315463B2 (en) * 2004-09-30 2008-01-01 Intel Corporation Apparatus and method for multi-phase transformers
US20080207237A1 (en) * 2005-04-14 2008-08-28 Koninklijke Philips Electronics N.V. Communication in Phase Shifted Driven Power Converters
US20060255777A1 (en) * 2005-05-10 2006-11-16 Koertzen Henry W Apparatus and method for improving voltage converter low load efficiency
US7504808B2 (en) 2005-06-30 2009-03-17 Intel Corporation Multiphase transformer for a multiphase DC-DC converter
US20070097571A1 (en) * 2005-07-07 2007-05-03 Intel Corporation Multiphase voltage regulation using paralleled inductive circuits having magnetically coupled inductors
US7602155B2 (en) * 2005-07-27 2009-10-13 Artesyn Technologies, Inc. Power supply providing ultrafast modulation of output voltage
US7294976B1 (en) 2005-09-23 2007-11-13 Advanced Micro Devices, Inc. Split power supply subsystem with isolated voltage supplies to satisfy a predetermined power limit
JP4459918B2 (ja) * 2006-03-16 2010-04-28 富士通テン株式会社 スイッチングレギュレータ
KR100849215B1 (ko) * 2007-01-17 2008-07-31 삼성전자주식회사 전원제어장치, 방법, 및 상기 전원제어장치를 구비하는시스템
US7859336B2 (en) * 2007-03-13 2010-12-28 Astec International Limited Power supply providing ultrafast modulation of output voltage
US8618788B2 (en) * 2007-03-30 2013-12-31 Malay Trivedi Dynamically adjusted multi-phase regulator
US7737669B2 (en) * 2007-03-30 2010-06-15 Intel Corporation Hierarchical control for an integrated voltage regulator
JP5049637B2 (ja) * 2007-04-12 2012-10-17 三菱電機株式会社 Dc/dc電力変換装置
US7812581B2 (en) * 2007-05-04 2010-10-12 Intersil Americas Inc. Pulse adding scheme for smooth phase dropping at light load conditions for multiphase voltage regulators
CN101350557B (zh) * 2007-07-18 2011-04-27 华为技术有限公司 一种电源调整装置
US7994761B2 (en) * 2007-10-08 2011-08-09 Astec International Limited Linear regulator with RF transistors and a bias adjustment circuit
US8183841B2 (en) * 2008-01-07 2012-05-22 Semiconductor Components Industries, Llc Multi-phase power supply controller and method therefor
US7999520B2 (en) * 2008-04-23 2011-08-16 Dell Products L.P. Static phase shedding for voltage regulators based upon circuit identifiers
JP5275688B2 (ja) * 2008-06-04 2013-08-28 住友重機械工業株式会社 コンバータ装置
US8228049B2 (en) * 2008-07-14 2012-07-24 Intersil Americas LLC Advanced phase number control for multiphase converters
US7948222B2 (en) 2009-02-05 2011-05-24 Advanced Micro Devices, Inc. Asymmetric topology to boost low load efficiency in multi-phase switch-mode power conversion
US8930723B2 (en) 2009-10-07 2015-01-06 Dell Products L.P. System and method for multi-phase voltage regulation
JP5519404B2 (ja) 2010-05-25 2014-06-11 国立大学法人豊橋技術科学大学 スイッチング回路及び包絡線信号増幅器
CN102457167B (zh) * 2010-10-19 2016-03-16 雅达电子国际有限公司 多电平并联功率变换器
WO2013024172A1 (fr) * 2011-08-17 2013-02-21 Belenos Clean Power Holding Ag Convertisseur dc/dc pour systeme hybride
JP5779043B2 (ja) * 2011-08-23 2015-09-16 株式会社東芝 Dc−dc変換器および情報処理装置
WO2013047543A1 (ja) * 2011-09-28 2013-04-04 三洋電機株式会社 電力制御装置
JP5741365B2 (ja) * 2011-10-14 2015-07-01 富士通株式会社 レギュレータ装置
KR101784885B1 (ko) * 2011-10-14 2017-10-13 삼성전자주식회사 전력증폭기에서 인터리빙 스위칭 장치 및 방법
TWI462430B (zh) * 2012-02-02 2014-11-21 Wistron Corp 電源管理系統
JP5998739B2 (ja) * 2012-08-20 2016-09-28 富士通株式会社 レギュレータ装置
US9287778B2 (en) 2012-10-08 2016-03-15 Nvidia Corporation Current parking response to transient load demands
US9178421B2 (en) 2012-10-30 2015-11-03 Nvidia Corporation Multi-stage power supply with fast transient response
US9000786B2 (en) 2013-02-15 2015-04-07 Dell Products Lp Methods and systems for defective phase identification and current sense calibration for multi-phase voltage regulator circuits
JP2015128340A (ja) * 2013-12-27 2015-07-09 株式会社オートネットワーク技術研究所 降圧装置及び昇圧装置
KR20160096477A (ko) * 2015-02-05 2016-08-16 주식회사 현대아이티 전자칠판의 다중 파워보드 에너지 절감 장치
US9899920B2 (en) * 2015-09-11 2018-02-20 Mediatek Inc. Voltage regulator and method for controlling output stages of voltage regulator
AT517686B1 (de) * 2015-10-01 2017-04-15 Avl List Gmbh Verfahren zum Ansteuern eines multiphasigen Synchronwandlers
US9658666B1 (en) * 2015-12-18 2017-05-23 Intel Corporation Dynamic capacitor modulated voltage regulator
JP6650506B2 (ja) 2016-02-24 2020-02-19 本田技研工業株式会社 電源装置、機器及び制御方法
JP6461838B2 (ja) 2016-02-24 2019-01-30 本田技研工業株式会社 電源装置、機器及び制御方法
WO2017145305A1 (ja) 2016-02-24 2017-08-31 本田技研工業株式会社 電源装置、機器及び制御方法
CN108333531B (zh) * 2018-01-26 2021-03-09 苏州浪潮智能科技有限公司 一种多相开关电源效率调试装置、方法及系统
CN109586556B (zh) * 2018-12-10 2020-02-07 郑州云海信息技术有限公司 一种多相脉宽降压调节电路及其调节方法
CN113157045B (zh) 2020-01-22 2023-10-24 台湾积体电路制造股份有限公司 电压调节器电路和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270165A (en) * 1979-04-24 1981-05-26 Qualidyne Systems, Inc. Controller for d.c. current supplied by a plurality of parallel power supplies
JPS63245254A (ja) * 1987-03-30 1988-10-12 Toshiba Corp スイツチングレギユレ−タ
JPH07264776A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 複数コンバータの並列接続制御装置
JPH10133754A (ja) * 1996-10-28 1998-05-22 Fujitsu Ltd レギュレータ回路及び半導体集積回路装置
JPH10304655A (ja) * 1997-04-21 1998-11-13 Sony Corp スイッチングレギュレータ
JPH1132477A (ja) * 1997-07-09 1999-02-02 New Japan Radio Co Ltd 同期整流型スイッチング電源装置及び同期整流型スイッチング電源装置用半導体集積回路
JPH11289755A (ja) * 1998-03-31 1999-10-19 Fuji Electric Co Ltd 多重チョッパ装置の保護回路
JP2000014129A (ja) * 1998-06-22 2000-01-14 Matsushita Electric Ind Co Ltd 電源装置
US6144194A (en) 1998-07-13 2000-11-07 Linear Technology Corp. Polyphase synchronous switching voltage regulators
US6055167A (en) * 1998-08-10 2000-04-25 Custom Power Systems, Inc. Pulse width modulated boost converter integrated with power factor correction circuit
JP2000075943A (ja) * 1998-08-26 2000-03-14 Hitachi Ltd 電源装置
US6031747A (en) 1999-08-02 2000-02-29 Lockheed Martin Missiles & Space Company Interleaved synchronous flyback converter with high efficiency over a wide operating load range
US6137274A (en) 2000-02-02 2000-10-24 National Semiconductor Corporation Switching DC-to-DC converter and conversion method with current sharing between paralleled channels

Also Published As

Publication number Publication date
KR100698499B1 (ko) 2007-03-22
KR20030069046A (ko) 2003-08-25
WO2001069768A1 (en) 2001-09-20
EP1264391B1 (en) 2010-08-04
US6281666B1 (en) 2001-08-28
DE60044785D1 (de) 2010-09-16
EP1264391A1 (en) 2002-12-11
JP2003527062A (ja) 2003-09-09
CN1451201A (zh) 2003-10-22

Similar Documents

Publication Publication Date Title
CN1264270C (zh) 改善效率的多相开关电源及具有该电源的计算机系统
CN1116733C (zh) 使开关稳压器的接通时间恒定的电路和方法
JP4025396B2 (ja) スイッチング電圧レギュレータ回路およびスイッチング電圧レギュレータを制御する方法
CN103248230B (zh) 开关稳压器
CN1135680C (zh) 开关稳压器
US5355077A (en) High efficiency regulator with shoot-through current limiting
JP2007504792A (ja) カスケードバック段を有する配電システム
CN101572479A (zh) 用于电源的电子部件和电源装置
ATE314750T1 (de) Dynamisch kontrollierter ladungspumpenstromwandler mit mehreren ausgängen
WO2003019761A1 (en) Method and circuit for reducing losses in dc-dc converters
WO2007007539A1 (ja) 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
JP2000166220A (ja) 電源回路それを用いた表示装置及び電子機器
CN1037307C (zh) 带备用设置的电源电路
CN106471691A (zh) 用于负载群集的动态电源轨控制
US20200343816A1 (en) Methods and apparatus for regulated hybrid converters
CN100338861C (zh) 半导体装置
CN102419613B (zh) 电压生成电路
CN100422897C (zh) 多相合成纹波稳压器的同步
US10742117B2 (en) Power supply system with non-linear capacitance charge-pump
CN107046367B (zh) 开关调节器
CN1118917C (zh) 随系统负载改变充电电流的控制装置及方法
JP3733122B2 (ja) 安定化電源回路
US9379626B2 (en) Power supply circuit for a PFC converter
KR200167255Y1 (ko) 초퍼방식의 전원공급장치
CN110649806A (zh) 一种dc-dc电路及其控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: GLOBALFOUNDRIES

Free format text: FORMER OWNER: ADVANCED MICRO DEVICES INC.

Effective date: 20100702

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: CALIFORNIA, THE UNITED STATES TO: CAYMAN ISLANDS, BRITISH

TR01 Transfer of patent right

Effective date of registration: 20100702

Address after: Grand Cayman, Cayman Islands

Patentee after: Globalfoundries Semiconductor Inc.

Address before: American California

Patentee before: Advanced Micro Devices Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060712

Termination date: 20191121