CN1237220C - 横向可拉宽7倍或更高的高拉伸强度横向拉伸无纺布 - Google Patents

横向可拉宽7倍或更高的高拉伸强度横向拉伸无纺布 Download PDF

Info

Publication number
CN1237220C
CN1237220C CNB001238876A CN00123887A CN1237220C CN 1237220 C CN1237220 C CN 1237220C CN B001238876 A CNB001238876 A CN B001238876A CN 00123887 A CN00123887 A CN 00123887A CN 1237220 C CN1237220 C CN 1237220C
Authority
CN
China
Prior art keywords
fiber net
raw fiber
cross directional
directional stretch
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB001238876A
Other languages
English (en)
Other versions
CN1285425A (zh
Inventor
黑岩由喜
森野嘉朗
栗原和彦
村上修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymer Processing Research Institute Ltd
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Polymer Processing Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd, Polymer Processing Research Institute Ltd filed Critical Nippon Petrochemicals Co Ltd
Publication of CN1285425A publication Critical patent/CN1285425A/zh
Application granted granted Critical
Publication of CN1237220C publication Critical patent/CN1237220C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C3/00Stretching, tentering or spreading textile fabrics; Producing elasticity in textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/601Nonwoven fabric has an elastic quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

一种横向拉伸无纺布是通过横向拉伸无纺布生产的。首先,将原料纤维网加热到比适合拉伸温度高5摄氏度或更高的温度。接着,以1.2-3的拉伸率横向拉伸被加热的原料纤维网。然后将被横向拉伸1.2-3倍的原料纤维网加热到适合拉伸温度,进一步横向原料纤维网。通过这些步骤,生产在横向方向上具有132.5mN/tex(1.5g/d)的高拉伸强度的横向拉伸无纺布,其中原料纤维网与拉伸前相比总共被在横向方向上拉伸7倍宽或以上。

Description

横向可拉宽7倍或更高的高拉伸强度横向拉伸无纺布
本发明涉及一种宽幅横向拉伸无纺布,其通过作为所谓的无纺布后拉伸方法之一的在横向方向上拉伸纤维网的横向拉伸来制造,其中在生产无纺布时拉伸由初生丝(spun filaments)形成的纤维网。横向拉伸无纺布被用作有横向强度要求的无纺布和正交无纺布的原料纤维网,或者作为强度和尺寸稳定的无纺布。
生产无纺布的方法包括由熔融原料树脂丝直接形成无纺布的纺粘法方式、熔喷法方式、纺花边方式等等。考虑经济性和生产性,这些方式在无纺布生产方法中占主流地位。广义上,用这些方式生产的无纺布以下被称作纺粘无纺布。现有技术中的广义上所说的纺粘无纺布是任意的无纺布,具有强度较低的缺点,而且它们还常常无稳定的尺寸。
本申请人在日本专利公报No.36948/91、日本专利公报No.6126/95和日本专利公报No.2612203中揭示了生产克服前述缺点的无纺布的方法和装置。
作为一种生产无纺布的方法,日本专利公报No.36948/91揭示了一种拉伸长纤维无纺布的方法,该长纤维无纺布是这样形成的,即在适当的温度下纺一个方向上的不定向丝,使得多根丝在一个方向上排列。该公报描述了层压和粘合以这种方法拉伸的无纺布的方法,使得无纺布的各个拉伸方向彼此正交。
另外,作为一种喷纺成形法,前述的公报描述了一种生产长纤维无纺布的方法,该长纤维无纺布包括在一个方向上排列的不定向丝。在生产长纤维无纺布的方法中,首先,由成螺旋状旋转的热气将从管嘴中吐出的丝分散于在一个方向上运行的筛网上。除了旋转的热气外,喷出两股气流,使得这两股气流在管嘴下相互碰撞。通过两股气流碰撞分布的空气进一步分散旋转的初生丝。当两股喷出的气流相互碰撞,其方向平行于筛网的运行方向时,初生丝被分散在垂直于筛网运行方向的方向上。这使得分散的丝被累积在筛网上,其很多组分成横向排列,从而可生产主要为横向排列丝的无纺布。另一方面,当两股喷出的气流相互碰撞,其方向基本上垂直于筛网的运行方向时,初生丝被分散在平行于筛网运行方向的方向上。这使得分散的丝被累积在筛网上,其很多组分成纵向排列,从而可生产主要为纵向排列丝的无纺布。
作为一种喷纺成形法,日本专利公报No.6126/95描述了一种生产在一个方向上排列的无纺布的方法,其中多根丝被基本上排列在一个方向上。在该生产方法中,当通过从丝口排出聚合物原料丝时,首先在宽度方向上旋转或振动初生丝。当旋转或振动的丝具有两个或两个以上因子的牵伸性能时,从丝的侧面围绕一根旋转或振动的丝基本上对称地在丝上作用一对或一对以上的射流。“牵伸性能”是指丝被拉伸多大程度的性能。在丝上作用一对或一对以上的射流可使得丝在垂直于丝排出方向的方向上分散,同时在丝上施加牵伸。结果是,在分散方向上排列的丝被层压为层的形式,以生产包含层压丝的在一个方向上排列的无纺布。“在丝上施加牵伸”是指通过在丝上施加拉力而拉伸和细化丝。
作为一种生产无纺布的方法,日本专利公报No.2612203描述了生产由在一个方向上排列的纤维制成的纤维网的方法。在该生产方法中,从喷射器中将纤维和流体一起喷出到带式输送机上,使得纤维排列在一个方向上。在这种生产方法的一个实例中,至少输送带的一部分垂直于其运行方向向下弯曲,以便从喷射器向输送带的槽状弯曲部分喷出流体和纤维。喷出的流体分散在输送带中的槽的纵向方向上,从而将纤维排列在分散方向上。
在生产无纺布时,生产无纺布的高强度宽幅纤维网是一个很重要的因素,因为这不仅意味着提高生产效率和减少单位生产成本,而且还考虑到纤维网的应用,某些领域只能应用宽幅纤维网。
由于通过在横向方向上拉伸原料纤维网来生产横向拉伸纤维网,通常很容易获得宽幅纤维网。在前述的日本专利公报No.36948/91和日本专利公报No.6126/95中描述的喷纺成形法中,由于原料纤维网在被拉伸之前通常具有300-400mm的宽度,对于由聚丙烯(以下简称为“pp”)制成的纤维网来说,纤维网的横向拉伸率为5-6,或者对于由聚乙烯对苯二酸(以下简称为“PET”)制成的纤维网来说,纤维网的横向拉伸率为5-6。因此,就存在一个问题,即,很难实现将具有2400mm宽度或以上的横向拉伸无纺布作为一种产品。当用日本专利公报No.36948/91和日本专利公报No.6126/95中描述的喷纺成形法生产原料纤维网时,通过采用增加原料纤维网的丝的直径的纺丝条件,可生产具有更高拉伸率的宽幅纤维网,并且在这种情况下,可以更稳定地纺丝。
通常,用于横向拉伸两周边被夹持的纤维网的装置被用作在横向方向上拉伸纤维网的横向拉伸装置。另外,作为这样一种横向拉伸装置,可使用横向拉伸薄膜时使用的绷架。简单的横向拉伸装置是皮带轮型横向拉伸装置,对于薄膜来说,在GB专利说明书No.1213441中描述了一种实例。在本发明人的早期专利的日本专利公报No.3068/88和日本专利公报No.36948/91(US专利说明书No.4,992,124对应于该公报)中描述了应用于无纺布的装置。人们已经使用了具有将一对上下槽辊(groove roll)组合构成的装置的横向拉伸装置(日本专利公报No.32307/84,US专利说明书No.4,223,059)。
通常,通过增加横向拉伸率可由窄幅原料纤维网获得宽幅横向拉伸纤维网。但是,由于在拉伸时更高的拉伸率可导致丝的断裂,拉伸率不可避免地将受到限制。尽管可通过增加原料纤维网的温度或拉伸原料纤维网时的拉伸温度来仅获得拉伸率的增加。但通常在高温下拉伸不能保证最终生成的横向拉伸纤维网具有足够的强度。因此,如上所述的5-6量级的拉伸率可保证特定的强度,但在7或以上的拉伸率下。很难生产具有要求强度的的宽幅横向拉伸纤维网。
另一方面,作为在长度方向上或纵向方向上拉伸纤维网的方法,有一种邻近拉伸方法(proximity stretch method)。该邻近拉伸方法是使用轧辊来纵向拉伸纤维网的方法,比如,对纤维网进行拉伸距离大大减小的纵向拉伸。对横向拉伸来说,很难进行这种纵向拉伸所采用的邻近拉伸方法。通常,在横向拉伸中,将原料纤维网两周边夹持进行拉伸。因此,与纵向拉伸相比较,在横向拉伸中,要求不仅将构成纤维网的丝进行横向排列,而且要求在纤维网的宽度方向上从一个边缘向另一个边缘延伸每根丝。因此,在纵向拉伸中使用的邻近拉伸方法不能应用在横向拉伸上,在现有技术中的横向拉伸方法和横向拉伸装置存在这样的问题,即很难实现纤维网的高拉伸率的同时保持高强度。
在横向拉伸中,作为一种类似于纵向拉伸中使用轧辊的邻近拉伸的方法,比如,日本专利公报No.36948/91中描述了一种槽辊型的横向拉伸方法。槽辊型横向拉伸方法采用一对槽辊,其被布置成一个槽辊的波峰匹配另一槽辊的波谷。通过槽辊的波峰和波谷的凸出和凹进,在该对槽辊之间引入含有不定向丝的无纺布,以便横向拉伸无纺布。但是,槽辊型横向拉伸方法具有下述缺点:拉伸率低、拉伸均匀性差等等,该方法不适合作为获得高强度无纺布的拉伸方法。结果是,该方法可用于没有高强度要求的无纺布的拉伸,但不适合获得高拉伸率和高强度。
尤其是,PET丝的拉伸具有适合拉伸温度范围很窄的特性,在这样窄的温度范围内可获得高强度的无纺布,即在适合拉伸温度可获得高强度的无纺布,并且适合拉伸温度随着拉伸速度和拉伸率而显著的变化。这些特性使得很难拉伸含有PET丝的纤维网。具体地说,作为含有PET丝的纤维网,很难获得具有高强度和高拉伸率的宽幅横向拉伸纤维网。因此,为了生产含有PET丝的宽幅纤维网必须进行克服这些困难的拉伸。
在这种高拉伸率的横向拉伸中,不仅有必要获得很高的拉伸率,而且还需提供通过拉伸获得的横向拉伸纤维网的均匀拉伸部分,以及提供拉伸的纤维网的均匀强度分布和基重、丝拉伸断裂的频率降低等等。因此,在高拉伸率下横向拉伸纤维网的方法不能提供工业上可应用的拉伸装置,除非实现均匀的横向拉伸。
当用于前述目的的横向拉伸装置很昂贵或者占地面积很大时,作为具有成本低廉要求的无纺布生产装置,该横向拉伸装置没有实用性。另外,需要横向拉伸装置可自由改变拉伸率并且易于简单地处理诸如拉伸断裂之类的麻烦。此外,如上所述,这种简单和便宜的横向拉伸装置必须能很快地拉伸,并且可实现高速均匀拉伸。特别是在无纺布的拉伸中,不能达到诸如高拉伸率拉伸、高速拉伸和均匀拉伸的前述的目的,除非由收集的羊毛状丝形成原料,并且在拉伸中采用一种装置,该装置可完全用温度加热到拉伸温度的热介质代替包含在收集的羊毛状丝中的空气。
本发明的一个目的是提供一种横向拉伸无纺布,其中当横向拉伸原料纤维网以生产横向拉伸无纺布时,即使在7或更高的原料纤维网的拉伸率下,也可在最终的无纺布中在横向方向上获得很高的拉伸强度,具体地说,作为横向方向上的纤维网的拉伸强度,可达到至少为132.5mN/tex(1.5g/d),为158.9mN/tex(l.8g/d)或更高较好,为176.6mN/tex(2.0g/d)或更高更好,为220.8mN/tex(2.5g/d)或更高最好,并提供一种生产这种横向拉伸无纺布的方法以及能以这种拉伸率和强度生产横向拉伸无纺布的横向拉伸装置。
本发明的另一个目的是提供一种具有布料质地的横向拉伸无纺布,一种生产这种横向拉伸无纺布的方法以及可生产这种横向拉伸无纺布的横向拉伸装置。要求构成拉伸纤维网的使的直径至少为20微米(μm)或更小,为10微米较好,为5-8微米更好。
本发明的又一个目的是提供一种横向拉伸装置,当加热原料纤维网以便横向拉伸原料纤维网生产横向拉伸无纺布时,允许快速和均匀地加热原料纤维网以在高拉伸率下快速和均匀地拉伸原料纤维网,并提供一种在该横向拉伸装置中使用的加热装置。
为了达到前述的目的,根据本发明的横向拉伸无纺布包含多个具有20微米或更小的纤维直径的横向排列丝,并在横向方向上具有7或以上的拉伸率,以及在横向方向上具有132.5mN/tex(1.5g/d)或更高的拉伸强度。对于横向拉伸无纺布的拉伸强度,按照JIS(日本工业标准)L1906,采用由长纤维丝无纺布测试方法中的每5厘米的断裂负荷表示的断裂强度。但是,由于已经测试了各种基重的无纺布,本发明采用无纺布的重量对细度(tex)的比值的每tex的强度(mN/tex)表示的拉伸强度。作为参考,也在下面的描述中示出了每但尼尔(d)的强度。前述横向拉伸无纺布的实现可获得横向方向上拉伸率为7或以上的宽幅纤维网,同时保持132.5mN/tex(1.5g/d)或更高的高拉伸强度。这提高了横向拉伸无纺布的生产效率,并降低了作为宽幅纤维网的横向拉伸无纺布的单位生产成本。另外,考虑纤维网的应用,这样一种作为宽幅纤维网获得的具有高强度和高拉伸率的横向拉伸无纺布扩大了横向拉伸无纺布的应用性。而且,由于构成横向拉伸无纺布的丝的纤维直径为20微米或更小,该横向拉伸无纺布具有布料的质地。
在根据本发明的生产横向拉伸无纺布的方法中,首先,在比适合拉伸温度高5摄氏度或更高的温度下在横向方向上将包含不定向丝的原料纤维网拉伸1.2-3倍宽。该步骤使原料纤维网的丝被拉伸到几乎没有丝的分子定向。此时,原料纤维网的强度并不增加。如果在该步骤中横向方向上的拉伸率为1.2或更小,在下一个步骤中不能高速横向拉伸原料纤维网,并且,如果拉伸率为3或更高,原料纤维网的强度降低。接着,在适合拉伸温度下进一步横向拉伸已经在横向方向上拉伸1.2-3倍宽的原料纤维网,以便与拉伸前原料纤维网的状态相比总共将原料纤维网在横向方向上拉伸7倍宽或以上。以此方式,生产由总共在横向方向上拉伸7倍宽或以上的原料纤维网制成的横向拉伸无纺布。在该步骤中,在原料纤维网的适合拉伸温度下高速横向拉伸原料纤维网,可以在横向方向上达到横向拉伸无纺布的强度。该强度等于或高于在适合拉伸温度下正常拉伸的强度。包括两步骤拉伸的生产横向拉伸无纺布的方法可提供以7或更高的拉伸率拉伸的宽幅纤维网,同时在横向方向上保持132.5mN/tex(1.5g/d)或更高的高拉伸强度。因此,提高了横向拉伸无纺布的生产效率,降低了作为宽幅纤维网的横向拉伸无纺布的单位生产成本。还可以生产这种作为高强度和高横向拉伸率的宽幅纤维网的横向拉伸无纺布,并且考虑纤维网的应用性,使横向拉伸无纺布的应用范围更宽。
适合拉伸温度随着丝的聚合物的种类、聚合程度、纺丝温度、纺丝速度、冷却条件等的不同而不同。通常,在拉伸无纺布时拉伸后强度增加最大的拉伸温度被作为适合拉伸温度。在纺丝时被很好冷却的聚丙烯无纺布的适合拉伸温度的范围在热风拉伸时为100-130摄氏度,最好为105-120摄氏度。聚乙烯对苯二酸无纺布的适合拉伸温度主要随着拉伸速度而变,在低速下适合拉伸温度为80-95摄氏度,在高速下为95-105摄氏度。
“不定向丝”并不意味着分子定向的程度完全为零,在其适合拉伸温度下可将不定向丝拉伸3倍宽或以上。当用双折射等测量的分子定向的程度显示不定向丝时,定向最好的定向程度为100%,而“不定向丝”是指定向程度为10%或以下的丝。
根据生产本发明的横向拉伸无纺布的方法的一个方面,提供一种生产横向拉伸无纺布的方法,其特别适于包含主要由聚乙烯对苯二酸(PET)制成的不定向丝的纤维网,作为允许以高拉伸率横向拉伸纤维网的生产方法。在该生产方法中,由热空气将包含主要由聚乙烯对苯二酸制成的不定向丝的原料纤维网加热到100摄氏度的温度或更高,同时以20m/min(米/分)或更高的线速度移动原料纤维网,总共在横向方向上将原料纤维网拉伸7倍宽或以上,使得原料纤维网在横向方向上具有132.5mN/tex(1.5g/d)的拉伸强度。根据该生产方法,当生产主要由聚乙烯对苯二酸制成的横向拉伸无纺布时,可以生产在横向方向上具有132.5mN/tex(1.5g/d)的拉伸强度和7或以上的横向拉伸率的横向拉伸无纺布。在横向拉伸前,最好使用包含横向排列丝的原料纤维网作为原料纤维网。使用这种原料纤维网来生产横向拉伸无纺布可以在横向拉伸无纺布中实现高强度和高拉伸率。
本发明的横向拉伸装置使用上述的具有两步骤拉伸的生产横向拉伸无纺布的方法。在该横向拉伸装置中,首先,由第一加热机构将包含不定向丝的原料纤维网加热到比其适合拉伸温度高5摄氏度或更高的温度。通过第一拉伸装置在横向方向上将被加热的原料纤维网拉伸1.2-3倍宽。这使得原料纤维网被拉伸到几乎没有丝的分子定向。此时,原料纤维网的强度仍没有增加。接着,通过第二加热机构将在横向方向上拉伸1.2-3倍宽的原料纤维网加热到适合拉伸温度,并且在适合拉伸温度下进一步由第二拉伸装置横向拉伸。与由第一拉伸装置拉伸前的状态相比较,这使得由原料纤维网制成的横向拉伸无纺布的总共在横向方向上拉伸7倍宽或以上。这样一种横向拉伸装置可以用于在适合拉伸温度下高速横向拉伸原料纤维网,并且可以在横向方向上达到横向拉伸无纺布的强度,该强度等于或高于在适合拉伸温度下正常拉伸的强度。作为一种宽幅纤维网,进行两步骤拉伸的生产横向拉伸装置可提供以7或更高的拉伸率拉伸的横向拉伸无纺布,同时在横向方向上保持132.5mN/tex(1.5g/d)或更高的高拉伸强度。因此,提高了横向拉伸无纺布的生产效率,降低了作为宽幅纤维网的横向拉伸无纺布的单位生产成本。由于可以生产这种高强度和高横向拉伸率的横向拉伸无纺布作为宽幅纤维网,考虑纤维网的应用性,使横向拉伸无纺布的应用范围更宽。
另外,可以提供第一预热装置,用于在由第一加热机构加热原料纤维网之前,通过将热空气吹向原料纤维网,使得热空气流经原料纤维网,来预热原料纤维网。
还可以提供第二预热装置,用于在由第二加热机构将由第一拉伸装置横向拉伸的原料纤维网加热到其适合拉伸温度之前,通过将热空气吹向原料纤维网,使得热空气流经原料纤维网,来加热原料纤维网。
本发明的加热装置可在横向拉伸原料纤维网之前用热空气加热原料纤维网,并且具有一个网状部件,用于在由热空气加热时支撑原料纤维网。例如,对于通过横向拉伸原料纤维网生产横向拉伸无纺布的横向拉伸装置可提供加热装置。当用加热装置加热原料纤维网时,将热空气吹向原料纤维网,使得热空气流经原料纤维网。此时,通过所述的网状部件与原料纤维网的表面接触来将原料纤维网支撑在网状部件上,该原料纤维网的表面与在吹入热空气的部分中吹入热空气的一侧相对。流经原料纤维网的热空气的至少一部分进一步流经网状部件。因此,可以防止由于热空气导致的诸如膨胀之类的原料纤维网的变形。由于流经原料纤维网的热空气的至少一部分进一步流经网状部件,用加热原料纤维网的高温空气替换包含在原料纤维网中的空气或者形成原料纤维网的丝之间的间隙中存在的空气。因此,可快速和均匀地将原料纤维网加热到需要的拉伸温度以拉伸原料纤维网。作为网状部件,可以使用旋转支撑的中空圆柱形网眼辊,且其壁上具有多个通孔,也可使用在一个方向上移动支撑的网眼输送带。
下面通过结合说明本发明的实例的附图的描述,本发明的上述和其它目的、特征和优点将更加清楚。
图1是显示本发明的横向拉伸装置的第一实施例的两步骤横向拉伸装置的剖面图;
图2是用于形成原料纤维网的纺丝管嘴的平面图,在用图1所示的两步骤横向拉伸装置生产横向拉伸无纺布时使用该原料纤维网;
图3是使用图2所示的纺丝管嘴的生产装置的一部分的侧视图;
图4是使用图2所示的纺丝管嘴的生产装置的一部分的正视图;
图5是显示图1所示的第一横向拉伸单元的结构的透视图;
图6是显示图1所示的第二横向拉伸单元的结构的透视图;
图7A是显示本发明第二实施例的横向拉伸装置的内部的俯视图;
图7B是显示图7A所示的横向拉伸装置的内部的侧视图。
在本发明中,为描述无纺布中的丝的排列方向所使用的“纵向方向”、拉伸方向等等是指在生产无纺布时的无纺布的输送方向,而“横向方向”是指垂直于纵向方向的方向,即无纺布的宽度方向。对于无纺布的拉伸强度,JIS(日本工业标准)L1096采用每5厘米的断裂负荷表示的断裂强度。但是,由于已经测试了各种基重的无纺布,本发明采用无纺布的重量对细度(tex)的比值的每tex的强度(mN/tex)表示的拉伸强度。作为参考,也示出了每但尼尔(d)的强度。
第一实施例
参考图1,其示出了两步骤横向拉伸装置21,其为本发明第一实施例的横向拉伸装置,其包括预热单元22、第一横向拉伸单元23、预热单元24、及第二横向拉伸单元25。预热单元22设置在生产横向拉伸无纺布时所使用的原料纤维网1的移动方向的上游。预热单元22、第一横向拉伸单元23、预热单元24、及第二横向拉伸单元25依次沿原料纤维网的移动方向排列。通过两步骤横向拉伸装置21可在横向方向上总共将原料纤维网1拉伸7倍宽或以上。在用两步骤横向拉伸装置21拉伸前的原料纤维网1包含具有很多横向排列的组分的不定向丝。
第一横向拉伸单元23和第二横向拉伸单元25中的每一个都是皮带轮型横向拉伸单元,其为横向拉伸这种原料纤维网1的优选的横向拉伸装置的一个实例。第一横向拉伸单元23和第二横向拉伸单元25中的每一个上都设置有一对皮带轮和一对循环带,用于横向拉伸原料纤维网1。通过用空气分散从纺丝管嘴中排出的丝使得很多不定向丝横向排列可生产原料纤维网1。在第一横向拉伸单元23中,在比适合拉伸温度高5摄氏度或更高的温度下在横向方向上将原料纤维网1拉伸1.2-3倍宽。在第一横向拉伸单元23中的步骤被称为预拉伸。在第二横向拉伸单元25中,进一步横向拉伸已经在第一横向拉伸单元23中拉伸后的原料纤维网1,这样,与在第一横向拉伸单元23中拉伸前的状态相比总共将原料纤维网1在横向方向上拉伸7倍宽或以上。在第二横向拉伸单元25中的步骤被称为主拉伸。原料纤维网1的适合拉伸温度是指适合拉伸的温度,在该温度下,在横向拉伸原料纤维网1时可在横向方向上获得原料纤维网1的需要的强度。进行第二横向拉伸单元25中的主拉伸是为了在横向拉伸原料纤维网1时达到横向方向上的原料纤维网1的强度。
接着,参考图2-图4,描述生产在图1中所示的两步骤横向拉伸装置21中生产横向拉伸无纺布时所使用的原料纤维网1的步骤。图4显示了被横向分散的丝。
在生产原料纤维网1时,如图2-图4所示,将要被形成原料纤维网1的丝的熔融液体39从纺丝管嘴34的排出口38向下排出。6个略微倾斜开口的气孔30设置在排出口38的四周。通常,设置3-8个气孔30。在离开排出口38几到十和几厘米的范围内,从气孔30中喷出的气流与从排出口38中排出的熔融液体39相交。与从气孔30中的气流相交的熔融液体39在筛网32上成螺旋状旋转,筛网32为带状且在图3中的箭头A所示的一个方向上运行。
其它气孔31a、31b设置在排出口38和气孔30的下面。气孔31a、31b向垂直于筛网32运行方向的方向上喷出气流,使得从气孔31a、31b中喷出的气流在排出口38下面相交。从气孔31a、31b中喷出的气流在排出口38下面相互碰撞,并且碰撞的气流垂直于筛网32运行方向扩散。结果是,扩散气流的喷出使得螺旋状旋转的排出的丝垂直于筛网32的运行方向被喷溅。其后,喷溅的丝被收集于在它们下面运行的筛网32上,具有很多的横向排列的组分,从而形成作为无纺布的主要具有横向排列的丝的原料纤维网1。通常,单个纺丝管嘴34将熔融液体39喷溅为100-350毫米宽。
接着,描述构成图1所示的两步骤横向拉伸装置21的各个单元。
在作为预热原料纤维网1的加热单元的预热单元22中,在壳体13a中设置有网状部件的一对网眼辊4a、4b以及热空气吹口5a、5b。热空气吹口5a对应于网眼辊4a,而热空气吹口5b对应于网眼辊4b。预热单元22上设置有未示出的热空气产生单元,用于产生从热空气吹口5a、5b排出的热空气。热空气产生单元,热空气吹口5a、5b,网眼辊4a、4b等等构成预热单元22,作为第一预热装置。在原料纤维网1移动到第一横向拉伸单元23之前,预热单元22中的热空气预热原料纤维网1。
在预热单元22的壳体13a中形成引入口14,用于将原料纤维网1在与第一横向拉伸单元23相对的壁中引入壳体13a中。十字导向器2设置在壳体13a外部的引入口14附近。设置十字导向器2是为了输送原料纤维网1,使得原料纤维网1成直线地引入壳体13a中,而不是在其移动方向上弯曲地被引入壳体13a中。原料纤维网1通过十字导向器2和壳体13a中的回转辊3a移动到网眼辊4a、4b。
每个网眼辊4a、4b被可转动地支撑。当缠绕在网眼辊4a、4b上的原料纤维网1移动时,原料纤维网1的移动使得网眼辊4a、4b被转动。设置该对网眼辊4a、4b是为了在用热空气加热原料纤维网1时支撑原料纤维网1。当在网眼辊4a、4b上加热原料纤维网1时,热空气被吹在原料纤维网1上,使得热空气流经原料纤维网1。此时,网眼辊4a、4b支撑原料纤维网1,以便防止由于热空气导致的诸如膨胀之类的原料纤维网1的变形。例如,每个网眼辊4a、4b具有中空圆柱形状,并且通过在壁上设置多个通孔来形成网眼壁。引入壳体13a中的原料纤维网1在其缠绕在每个网眼辊4a、4b的一部分上之后移动到第一横向拉伸单元23。
当原料纤维网1的一部分缠绕在网眼辊4a上时,来自热空气吹口5a的热空气吹向与网眼辊4a接触的原料纤维网1的部分上。来自热空气吹口5a的热空气流经原料纤维网1并加热原料纤维网1。此时,可用来自热空气吹口5a的高温空气替换原料纤维网1中的空气,即构成原料纤维网1的丝之间的间隙中存在的空气。这能够快速和均匀地加热原料纤维网1。
网眼辊4a通过与原料纤维网1的表面接触来支撑原料纤维网1,该表面与在吹入热空气的部分中吹入来自热空气吹口5a的热空气的一侧相对。流经原料纤维网1的热空气流经网眼辊4a的壁中的通孔,并流进网眼辊4a中。这可防止由于热空气导致的原料纤维网1的变形或移动。排气箱10a设置在网眼辊4a中。来自热空气吹口5a的热空气、流经原料纤维网1和网眼辊4a的壁中的通孔并流入网眼辊4a中的热空气通过排气箱10a被吸入。
相类似,当原料纤维网1的一部分缠绕在网眼辊4b上时,来自热空气吹口5b的热空气吹向与网眼辊4b接触的原料纤维网1的部分上。以此方式,来自热空气吹口5b的热空气加热原料纤维网1。并且在这种情况下,网眼辊4b通过与原料纤维网1的表面接触来支撑原料纤维网1,该表面与在吹入热空气的部分中吹入来自热空气吹口5b的热空气的一侧相对。流经原料纤维网1的热空气流经网眼辊4b的壁中的通孔,并流进网眼辊4b中。这可防止由于热空气导致的原料纤维网1的变形或移动。
排气箱10b设置在网眼辊4b中。来自热空气吹口5b的热空气、流经原料纤维网1和网眼辊4b的壁中的通孔并流入网眼辊4b中的热空气通过排气箱10b被吸入。通过排气箱10a、10b吸入的热空气通过排气管排出到壳体13a的外部。
如上所述的用于使热空气流经原料纤维网1的预热单元22采用网眼辊4a、4b,即圆柱形的笼辊。另一方面,在预热单元22中,另一个有效的方法是,在一个平面内运行的输送机上输送和移动纤维网,使得热空气从输送机的上面流经纤维网来预热纤维网。
接着,参考图1和图5描述图1中所示的第一横向拉伸单元23的结构。
如图5中所示,作为第一拉伸装置的第一横向拉伸单元23包括壳体13b、一对由壳体13b包围的左右拉伸皮带轮6a、6b、循环带8a、8b等等。第一横向拉伸单元23上设置有一个用于旋转拉伸皮带轮6a、6b的驱动器。通过第一横向拉伸单元23在比适合拉伸温度高5摄氏度或更高的温度下在横向方向上将原料纤维网1拉伸1.2-3倍宽。该对左右拉伸皮带轮6a、6b具有同样的圆周速度并围绕中心线对称布置,使得该对左右拉伸皮带轮6a、6b的外周具有这样一个轨道,该轨道在原料纤维网1的移动方向上从上游到下游逐渐加宽,即具有一个逐渐加宽的轨道。
该对左右拉伸皮带轮6a、6b中的每一个中在其外周上形成有带槽。循环带8a的一部分安装在拉伸皮带轮6a的带槽中,而循环带8b的一部分安装在拉伸皮带轮6b的带槽中。循环带8a(或绳)由辊7a-7d拉伸,从而循环带8a的一部分在由该对拉伸皮带轮6a、6b形成的逐渐加宽的轨道中在拉伸皮带轮6a的圆周表面的轨道上循环。循环带8b(或绳)由辊7e-7h拉伸,从而循环带8b的一部分在逐渐加宽的轨道中在拉伸皮带轮6b的圆周表面的轨道上循环。
在这种第一横向拉伸单元23中,来自预热单元22的包含不定向丝的原料纤维网1经过壳体13b中的回转辊3b、3c,并被引入在该对左右拉伸皮带轮6a、6b中左右拉伸皮带轮6a、6b之间的间隔最窄的部分处。从预热单元22引入拉伸皮带轮6a、6b中的原料纤维网1被输送,其横向方向上的一个周边夹持在拉伸皮带轮6a的带槽和循环带8a之间,另一周边夹持在拉伸皮带轮6b的带槽和循环带8b之间。以此方式,原料纤维网1被移动,其宽度方向上的两个周边夹在拉伸皮带轮6a、6b和循环带8a、8b之间。此时,通过在由拉伸皮带轮6a、6b形成的逐渐加宽的轨道上拉原料纤维网1的两个周边,使得两个周边之间的距离增加,将原料纤维网1在横向方向上拉伸1.2-3倍宽。在拉伸皮带轮6a、6b的轨道最宽的部位处,被横向拉伸的原料纤维网1与拉伸皮带轮6a、6b脱离开。离开拉伸皮带轮6a、6b的原料纤维网1通过壳体13b中的回转辊3d被移动到壳体13b的外部。以此方式,将已经在第一横向拉伸单元23中于横向方向上拉伸1.2-3倍宽的原料纤维网1移动到预热单元24。
壳体13底部上设置有热空气吹口11。另外,在由拉伸皮带轮6a、6b和循环带8a、8b夹持两周边的原料纤维网1的部分中,在原料纤维网1的移动方向上的上游附近设置有热空气吹口5c。设置热空气吹口5c是为了将热空气吹在壳体13b内的移动方向上的原料纤维网1的上游部分处。这些热空气吹口11、5c、用于产生从热空气吹口11、5c排出的热空气的热空气产生单元等等构成加热单元,作为第一加热机构。该加热单元将壳体13中的原料纤维网1加热到比其适合拉伸温度高5摄氏度或更高的温度。
设置热空气吹口11是为了将热空气从壳体13b的外部通过壳体13b内的拉伸皮带轮6a、6b之间的间隔吹在原料纤维网1上。热空气吹口11将热空气排进壳体13b中,使得来自热空气吹口11的热空气流经原料纤维网1。以此方式,吹向原料纤维网1的热空气是使得来自热空气吹口11的热空气流经原料纤维网1,增加加热原料纤维网1的热效率。
热空气吹口5c还向原料纤维网1排出热空气,使得热空气流经原料纤维网1。来自热空气吹口11、5c的热空气将原料纤维网1加热到比其适合拉伸温度高5摄氏度或更高的温度。
排气箱10c、10d设置在原料纤维网1的一侧上,与从热空气吹口11吹入热空气的部分中的热空气吹口11相对。排气箱10c设置在原料纤维网1移动方向上的下游上的离开热空气吹口5c一定距离的位置处。排气箱10d设置在原料纤维网1移动方向上的下游上的离开排气箱10c一定距离的位置处。排气箱10c、10d吸入来自热空气吹口11的流经原料纤维网1的热空气。吸气箱10e还设置在回转辊3d的下面,并且吸入存在于壳体13b中的空气。特别是,吸气箱10e吸入从拉伸皮带轮6a和6b之间流经壳体13b中的下部的高温空气。
作为用于预热被第二横向拉伸单元25拉伸前的原料纤维网1的加热单元,在预热单元24中,网状部件的网眼输送带9被设置在壳体13c内。网眼输送带9由四个回转辊3e拉伸并支撑运行在一个方向上。设置网眼输送带9是为了在来自第一横向拉伸单元23的原料纤维网1被壳体13c中的热空气加热时来支撑原料纤维网1。热空气吹向原料纤维网1,使得热空气流经原料纤维网1,以加热网眼输送带9上的的原料纤维网1。此时,原料纤维网1由网眼输送带9支撑以防止原料纤维网1由于热空气导致的诸如膨胀之类的变形,并且原料纤维网1被输送到第二横向拉伸单元25。当热空气吹向网眼输送带9上的原料纤维网1时,流经原料纤维网1的热空气进一步流经网眼输送带9中的孔。
在网眼输送带9上的原料纤维网1的部分上面,在沿原料纤维网1的移动方向的直线上设置多个热空气吹口5d。用于产生从热空气吹口5d排出的热空气的热空气产生单元、多个热空气吹口5d、网眼输送带9等等构成预热单元24,作为第二预热装置。在网眼输送带9中对应于各个热空气吹口5d设置多个吸气箱10e。
每个热空气吹口5d中流出的热空气吹到网眼输送带9的原料纤维网1上,从而使热空气穿过原料纤维网1。这样,原料纤维网内的空气,即构成原料纤维网1的纤维间缝隙内的空气可被从热空气吹口5排出的高温空气取代。因此,原料纤维网1被迅速、均匀地加热。从热空气吹口5排出的热空气的一部分流过原料纤维网1和网眼输送带9的通孔并被吸气箱10e吸收。
通过接触原料纤维网1的与热空气吹口5排出的热空气吹向的一侧相对的表面,在热空气流动的部分内,网眼输送带9支撑原料纤维网1。这样可防止原料纤维网1会因热空气而变形、移动。经预热单元24加热的那部分原料纤维网1移动到第二横向拉伸单元25。
下面,结合图1、6描述第二横向拉伸单元25的构成。
如图6所示,作为第二拉伸装置的第二横向拉伸单元25的机制与第一横向拉伸单元23的类似而横向拉伸原料纤维网1。第二横向拉伸单元25包括一对用于横向拉伸原料纤维网1的左右拉伸皮带轮6c、6d和对应于各个拉伸皮带轮的循环带8c、8d。第二拉伸单元25与第一拉伸单元23的不同之处在于原料纤维网1横向拉伸度不同,且其内具有一用于加热原料纤维网1的加热单元。
在第二横向拉伸单元25内,一对左右拉伸皮带轮6c、6d,对应于皮带轮6c的循环带8c和对应于皮带轮6d的循环带8d被设置在壳体13d内。第二横向拉伸单元25还具有用于转动拉伸皮带轮6c、6d的驱动器。已经被第一横向拉伸单元23横向拉伸过的原料纤维网1在其适合拉伸温度下进一步由第二拉伸单元25横向拉伸。,第二拉伸单元25对原料纤维网1的拉伸使纤维网1与其被第一拉伸单元23横向拉伸前的状态相比在整体上被横向拉伸了7倍或更多。
左右皮带轮6c、6d具有相同的圆周速度并绕中心线对称设置,从而成对的皮带轮6c、6d的外圆周为一种渐宽的轨道,即在原料纤维网1的移动方向上从上游到下游逐渐增宽的轨道。
左右皮带轮6c、6d均具有在各自的圆周表面上形成的带槽。循环带8c的一部分与拉伸皮带轮6c的带槽配合,而循环带8d的一部分与拉伸皮带轮6d的带槽配合。循环带(或绳)8c由辊7i到7l拉伸而使循环带8c位于拉伸皮带轮6c、6d形成的渐宽轨道上的那一部分在拉伸皮带轮6c的外圆周轨道上循环。循环带(或绳)8d由辊7m到7p拉伸而使循环带8d位于拉伸皮带轮6c、6d形成的渐宽轨道上的那一部分在拉伸皮带轮6d的外圆周轨道上循环。循环带(或绳)8c由辊7i到7l拉伸而使循环带8c位于拉伸皮带轮6c、6d形成的渐宽轨道上的那一部分在拉伸皮带轮6c的外圆周轨道上循环。在第一横向拉伸单元23内拉伸皮带轮6c、6d形成的渐宽轨道初始宽度与其末端宽度相同。拉伸皮带轮6c、6d彼此相对设置成V形而使渐宽轨道的末端宽度大于其初始宽度。这样,拉伸皮带轮6c、6d即构成渐宽轨道以进一步横向拉伸从第一横向拉伸单元23传输来的原料纤维网1。
在第二横向拉伸单元25内,预热单元24输出的原料纤维网1经由壳体13d内的回转辊3f传入成对的拉伸皮带轮6c、6d中左右皮带轮6c、6d的间距最窄的部分。从预热单元24引入到拉伸皮带轮6c、6d之上的原料纤维网1通过其宽度方向上的两周边分别被夹持在皮带轮6c和循环带8c之间和皮带轮6d和循环带8d之间输送,且被横向拉伸并在拉伸皮带轮6c、6d之间形成轨道。如上所述,第二横向拉伸单元25横向拉伸原料纤维网1而使纤维网1与其被第一拉伸单元23横向拉伸前的状态相比在整体上被横向拉伸了7倍或更多。这样,即可生产出由在整体上被横向拉伸了7倍或更多的原料纤维网1形成的被横向拉伸的无纺布12。如此生产出来的无纺布12从拉伸皮带轮6c、6d和循环带8c、8d上拉伸皮带轮6c、6d的轨道宽度最大处输出,并经由壳体13d内的回转辊3g移至壳体13d的外侧。
如上所述,在完成初步拉伸的第一横向拉伸单元23内,从热空气吹口11中流出的热空气吹向原料纤维网1上,从而热空气穿过原料纤维网1而将之加热。另一方面,在完成主拉伸的第二横向拉伸单元25内,热空气在原料纤维网1上沿纤维网1的流动方向以加热纤维网1。在第二横向拉伸单元25的壳体13d内侧设置有三个热空气吹口5e到5g。这些热空气吹口5e到5g,用于产生从热空气吹口5e到5g排出的热空气的热空气生产单元及类似装置构成一加热单元成为第二加热机构。加热机构将壳体13d加热至其适合拉伸温度。
热空气吹口5e设置在靠近回转辊3f,面对拉伸皮带轮6c、6d的原料纤维网1的一侧。热空气从热空气吹口5e流向原料纤维网1,因此从热空气吹口5e排出的热空气从回转辊3f的靠近点,沿在拉伸皮带轮6c、6d的侧面上的原料纤维网1的表面朝纤维网1的移动方向流动。吸气箱10i设置在壳体13d内的下部。在从热空气吹口5e排出并沿在拉伸皮带轮6c、6d的侧面上的原料纤维网1的表面流动的热空气中,流入壳体13d内底部附近处的空气被吸气箱10i吸收。
热空气吹口5f被设置在原料纤维网1的两周边分别被夹持在皮带轮6c、6d和循环带8c、8d之间的部分的移动方向的上游附近,和面对循环带8c、8d的原料纤维网1的侧面上。热空气从热空气吹口5f斜向流向原料纤维网1的表面,从而从热空气吹口5f排出的热空气向原料纤维网1移动方向的上游流动。
热空气吹口5g被设置在面对循环带8c、8d的原料纤维网1的侧面上,靠近原料纤维网1上部的其两周边分别被夹持在皮带轮6c、6d和循环带8c、8d之间那一部分。热空气从热空气吹口5g排出,而使热空气吹口5g排出的热空气沿原料纤维网1的表面向纤维网1移动方向的下游流动。
吸气箱10f在壳体13d内面对循环带8c、8d的原料纤维网1的表面上方靠近热空气吹口5g设置。吸气箱10f吸收原料纤维网1的移动方向上的热空气吹口5g的上游空间内的空气。吸气箱10g、10h之间在壳体13d内面对循环带8c、8d的原料纤维网1的表面上方,热空气吹口5g的下游沿原料纤维网1的移动方向设置有一预定的间隔。吸气箱10g、10h吸收原料纤维网1的移动方向的热空气吹口5g的上游空间内的空气。
如上所述,在第一横向拉伸单元23中,热空气吹口11排出的热空气吹到原料纤维网1上并穿透纤维网将之加热;而在第二横向拉伸单元25中,热空气吹口11排出的热空气则沿原料纤维网1的移动方向吹到原料纤维网1上将之加热。但第一横向拉伸单元23和第二横向拉伸单元25内用于加热原料纤维网1的结构可进行变化。具体地说,在第一横向拉伸单元23中,可以利用热空气沿原料纤维网1的移动方向吹到原料纤维网1上而将之加热。在第二横向拉伸单元25中,则可使热空气从下方吹到原料纤维网1上从而穿透纤维网并在纤维网上方被吸收而将之加热。另外,也可同时利用第一横向拉伸单元23和第二横向拉伸单元25内的加热方法加热原料纤维网1,或在此两单元中,将热空气沿原料纤维网1的移动方向吹到纤维网上而将之加热。
另外,本实施例中,除了在第一横向拉伸单元23和第二横向拉伸单元25内用热空气加热原料纤维网1外,还可利用热水、红外辐射或类似方式取代热空气加热。
如上所述,在本实施例的两步骤横向拉伸单元21中,预热单元22和第一横向拉伸单元23内的加热单元将未定向丝制成的原料纤维网1加热至高于适合拉伸温度5℃或更多。而受热后的原料纤维网1在第一横向拉伸单元23内被横向拉宽1.2-3倍。在此预拉伸步骤中,制成原料纤维网1的丝在几乎没有进行分子定向的情况下被拉伸。然后,预热单元24和第二横向拉伸单元25内的加热单元将第一横向拉伸单元23内被横向拉宽1.2-3倍的原料纤维网1进一步加热至适合拉伸温度,而原料纤维网1于第二横向拉伸单元25内,在适合拉伸温度下被进一步横向拉伸。与在第一横向拉伸单元23内被拉伸前的状态相比,这一主拉伸步骤使原料纤维网1制成的无纺布12在整体上被横向拉宽了7倍或更多。这一主要拉伸步骤包括制成原料纤维网1的丝的分子定向。此步骤可使原料纤维网1制成的、被横向拉伸的无纺布12在横向上承受132.5mN/tex(1.5g/d)的拉伸强度。
制成被横向拉伸的无纺布12的丝纤维的直径为1μM或更大和20μM或更大以具有布料的质地。丝纤维的直径最好为3μM或更大和15μM或更大,且为5μM或更大和12μM或更大则更好。为实现此直径,需使制成原料纤维网1的丝纤维的直径等于或小于30μM,最好是等于或小于20μM。当制成被横向拉伸的无纺布12的丝纤维的直径,即在拉伸后的丝的直径等于或小于1μM时,很难获得被横向拉伸的无纺布12的强度。
在两步骤横向拉伸装置21中,纤维网的整体拉伸率为7倍或以上和20或以下,最好是8倍或以上和15或以下,更好是9倍或以上和12或以下。为了将原料纤维网1在横向上被整体拉宽20倍或更多,需增加第一横向拉伸单元23的拉伸率即初步拉伸的拉伸率。但试验结果表明,如初步拉伸的拉伸率太高,则主拉伸后原料纤维网1不能获得充足的强度。
使用此两步骤横向拉伸装置21制造被横向拉伸的无纺布12时,原料纤维网1在适合拉伸温度下以很大的比率被横向拉伸,则被横向拉伸的无纺布12获得的拉伸强度可能等于或大于在适合拉伸温度下进行正常拉伸时的强度。因此,进行两步骤拉伸的横向拉伸装置能够制造以等于或大于7的高拉伸率被横向拉伸的无纺布12作为宽幅纤维网,其横向上可确保一个高拉伸强度132.5mN/tex(1.5g/d)或更高。这样,可很大地提高被横向拉伸的无纺布12的生产率以减少作为宽幅纤维网的无纺布12的制造单元的成本。另外,因可将以横向高拉伸率被横向拉伸的无纺布12制成高强度的宽幅纤维网,就可实现无纺布12作为纤维网的广泛应用。
实施例2
本发明的第二实施例的横向拉伸装置中采用一个所谓的绷架,其中原料纤维网横向上的两周边被夹持在一个平面上以横向拉伸原料纤维网。
如图7A和7B所示,在本实施例的横向拉伸装置中,一对用于输送原料纤维网1的链子56a、56b被设置在壳体53内。壳体53内部分成两个腔室,即高温加热室58和低温加热室59,且内壁54垂直于水平方向延伸。高温加热室58对应于第一横向拉伸单元23的一个腔室进行初步拉伸,而低温加热室59对应第而横向拉伸单元25的一个腔室进行主拉伸。
在对着形成壳体53高温加热室58的侧壁的内部壁54的侧壁的中心处开有引入口55a以将原料纤维网1输入高温加热室58。内壁54上还开设有开口54a,以将高温加热室58内进行了初步拉伸的原料纤维网1输入低温加热室59。另外,对着形成壳体53内低温加热室59的侧壁的内壁54的侧壁上开有引入口55b。在低温加热室59内主拉伸原料纤维网1制成的横向拉伸纤维网12从低温加热室59内部通过引入口55b输送到室外。原料纤维网1只朝一个方向移动,这样,就顺序穿过高温加热室58和低温加热室59。原料纤维网1在高温加热室58和低温加热室59内在其宽度方向或横向上被拉伸。
本实施例的横向拉伸装置还包括作为第一加热机构的加热单元,用于在高温加热室58内将原料纤维网1加热至高于其适合拉伸温度5℃或更高;及作为第二加热机构的加热单元,用于在低温加热室59内将原料纤维网1加热至其适合拉伸温度。在此横向拉伸装置中,从引入口55a的侧面端部到内部壁54之间设置有第一拉伸单元43,用于实现对原料纤维网1在高于其适合拉伸温度下的初始加热。从内部壁54到引入口55b的侧面端部之间设置有第二拉伸单元45,用于实现对原料纤维网1在其适合拉伸温度下的主加热。
链子56a、56b垂直于原料纤维网1的移动方向并平行于原料纤维网1设置。链子56a由高温加热室58内的链轮57a和低温加热室59内的链轮57b到57d拉伸。链子56b由高温加热室58内的链轮57e和低温加热室59内的链轮57f到57e拉伸。
链子56a上的链轮57a和57b,链轮57a和57d,链子56b上的链轮57e和57f,链轮57e和57f之间的每一部分都朝原料纤维网1的移动方向倾斜。链子56a和56b的那些部分通过内部壁54上的开口54a设置在高温加热室58和低温加热室59内。链子56a上链轮57a和57b之间的部分和链子56b上链轮57e和57f之间的部分彼此相对,从而这些部分之间的空间沿原料纤维网1的移动方向逐渐增大。
另一方面,链子56a上链轮57d和57c之间的部分和链子56b上链轮57h和57g之间的部分沿与原料纤维网1的移动方向基本平行的方向行进而使这些部分彼此相对。因此,除了原料纤维网1移动方向下游的端部外,链子56a和链子56b上的部分相对于原料纤维网1的移动方向倾斜地行进,从而链子56a和链子56b之间的空间沿原料纤维网1移动方向的下游逐渐增大。
如图7B所示,在链子56a的整体纵向上设置有多个从链子56a的顶面向上延伸的针52。这些针52可刺入原料纤维网1的周边部分以夹持链子56a侧面上原料纤维网1的周边部分。类似的,在链子56b的整体纵向上设置有多个从链子56b的顶面向上延伸的针。这些针可刺入原料纤维网1的周边部分以夹持链子56b侧面上原料纤维网1的周边部分。
链子56a和链子56b上的针52均在宽度方向上夹持原料纤维网1的周边部分;同时,可引起原料纤维网1的移动。当原料纤维网1以这种方式通过链子56a和链子56b的行进而移动时,在第一横向加热单元43的高温加热室58内的链子56a和56b将原料纤维网1加热至高于其适合拉伸温度5℃或更高,并被横向拉宽1.2-3倍。在第二横向加热单元45的低温加热室59内,在其适合拉伸温度下,链子56a和链子56b的倾斜部分将原料纤维网1进一步横向拉伸。
所以,链子56a、56b和设在链子上用于夹持第一横向加热单元43内的原料纤维网1两周边部分的针构成可将原料纤维网1横向拉宽1.2-3倍的第一拉伸机构。链子56a、56b和设在链子上用于夹持第二横向加热单元45内的原料纤维网1两周边部分的针构成可将原料纤维网1进一步横向拉伸以进行主拉伸的第二拉伸机构。按这种方式,原料纤维网1经第一拉伸机构43和第二拉伸机构45拉伸后,与其被第一拉伸机构43拉伸前的状态相比,在横向上被整体拉宽了7倍或更高。经过这些处理,可由被横向拉伸的原料纤维网1制造出被横向拉伸的、横向拉伸强度为132.5mN(1.5g/d)或更高的无纺布12。
在本实施例中,链子56a上链轮57a和57b之间的部分和链子56b上链轮57e和57f之间的部分线性延伸。但,可在横向拉伸装置中增设一个链轮(非图7A和7B中所示的链轮)以实现将第二横向拉伸机构45对原料纤维网1的拉伸率与第一横向拉伸机构43对原料纤维网1的拉伸率之比设定在一个预定值。具体地说,在靠近链子56a的链轮57a和57d之间开口部分54a的一处增设一个接触链子56a内侧或外侧的链轮;在靠近链子56b的链轮57e和57h之间开口部分54a的一处增设一个接触链子56b内侧或外侧的链轮。这些增设的部件可实现将第二横向拉伸机构45内的拉伸率与第一横向拉伸机构43内的拉伸率之比设定在一个预定值。
因图7A和7B中未显示加热原料纤维网1的装置,原料纤维网1可由本实施例中类似于第一实施例的横向拉伸装置中的热空气加热。如第一实施例的第一横向拉伸机构23中所采用的加热方法所述,可将热空气吹到原料纤维网1上而使热空气穿透原料纤维网1并被之吸收。可替换的,如第一实施例的第二横向拉伸机构25中所采用的加热方法所述,可将热空气沿原料纤维网1的移动方向吹到原料纤维网1。第一横向拉伸机构43和第二横向拉伸机构45中的一个可采用热空气穿透原料纤维网1的方法,而另一个则可采用热空气沿原料纤维网1的移动方向吹向原料纤维网的方法。可替换的,可在第一横向拉伸机构32和第二横向拉伸机构45中同时采用热空气穿透原料纤维网1的方法和热空气沿原料纤维网1的移动方向吹向原料纤维网的方法。
另外,在本实施例的横向拉伸装置中,只有一对链子56a、56b形成实现初步拉伸的第一横向拉伸机构43和实现主拉伸的第二横向拉伸机构45。但也可用不同对的链子分别实现初步拉伸和主拉伸。具体地说,图7A中的链子56a、56b和支撑链子的链轮57a到57h可用于初步拉伸,另一对链子和另一套链轮可用于主拉伸。这样,可沿原料纤维网1的移动方向设置具有不同拉伸率的绷架的两个横向拉伸装置以提供实现两步骤拉伸的横向拉伸装置。在这种情况下,在绷架的两个横向拉伸装置中,原料纤维网1移动方向上游的拉伸装置用于进行初步拉伸,移动方向下游的拉伸装置用于进行主拉伸。
不同的无纺布可用作本发明中制造横向拉伸无纺布的原料纤维网1。因为原料纤维网1需保证由拉伸纤维网获得的横向拉伸无纺布12的高强度和原料纤维网1的高拉伸率,所以尤其需要符合下述条件的无纺布。
第一,需使制成原料纤维网1的丝的直径等于或小于30μM,最好是等于或小于20μM。本发明所述的横向拉伸无纺布12要在其强度和织构上符合织布的特性,则需由拉伸后其直径等于或小于20μM的丝制成。要实现此点,制成原料纤维网1的丝的直径必须等于或小于30μM制成原料纤维网1的丝的直径等于或小于30μM。
第二,原料纤维网1需由几乎没有分子定向的丝制成。这是因为有分子定向的丝很难被进一步拉伸。
第三,原料纤维网1需由在纺丝后迅速冷却后丝和具有尽可能接近非晶体结构的丝制成。这是因为,如果在纺丝或其后的步骤中进行丝的结晶,为了拉伸丝就需破坏晶体从而导致丝拉伸折断的敏感度。
第四,原料纤维网1需是一种由横向排列的丝和在原料纤维网1的宽度上从其一周边延伸至另一周边外的丝制成的无纺布。这是因为丝的横向排列有利于在常规使用的、夹持原料纤维网1宽度方向(横向)上两周边的横向拉伸装置中实现横向拉伸无纺布的高强度和高拉伸率。但如果丝没有在原料纤维网1的宽度上从其一周边延伸至另一周边外,则可采用后面所描述的局部粘合后的原料纤维网1的拉伸。
本发明旨在获得高拉伸率下的宽幅原料纤维网1。现有技术中很难在横向拉伸原料纤维网时增大拉伸率,即使能够增大,拉伸率最大也只有5到6。本发明中用于增大拉伸率的机构,首先,在高于适合拉伸温度5℃或更高(对于聚乙烯对苯二酸(PET)温度最好为10℃或更高)和20℃或更高(对于诸如聚丙烯(PP)等聚合物丝温度最好为40℃或更高)下,以大于或等于1.2和小于或等于3的拉伸率进行横向拉伸(初步拉伸)。然后,进行横向拉伸(主拉伸)以在无纺布的温度降至正常的适合拉伸温度后获得无纺布的强度。由初步拉伸和主拉伸构成的两步骤横向拉伸可实现整体拉伸率为7倍或以上,具体的是8至10倍的拉伸;并使横向拉伸原料纤维网在拉伸后获得比正常拉伸后相同或更高的强度。在这种高拉伸率下的初步拉伸是一种丝分子在无分子定向情况下流动的拉伸,即几乎没分子定向的流动拉伸。经此初步拉伸,原料纤维网的强度没增大。实验结果表明,初步拉伸的等于或小于1.2的拉伸率不能导致主拉伸的高拉伸率,而初步拉伸的等于或大于3的拉伸率导致原料纤维网的强度的降低。
其他实施例
除了由初步拉伸和主拉伸构成的两步骤横向拉伸方法,已实验成了一种高拉伸率的拉伸方法,即制造一种拉伸纤维网,特别是由丝(主要是PET)构成的未定向的原料纤维网的方法。在本方法中,当主要由PET制成的原料纤维网在100℃或更高,最好是105℃或更高的温度下,以20m/min或更高最好是30m/min的速度移动时,原料纤维网在横向上被整体拉宽7倍或以上。这样可在整体横向拉伸率为7或更大的情况下,制造出一种具有132.5mN/tex(1.5g/d)的横向拉伸强度的由PET制成的横向拉伸纤维网。在原料纤维网的温度为130℃或更高时,PET丝会熔化,纤维网的横向拉伸强度可达到132.5mN/tex(1.5g/d)。
当一种原料纤维网宽度很小时,多个小宽度原料纤维网平行设置,就可预先使两个相邻的纤维网的侧部彼此部分粘合。这样,多个原料纤维网粘合成一片而构成具有大宽度的原料纤维网(宽幅纤维网)。部分粘合的原料纤维网所构成的大宽度原料纤维网在一个方向上移动以进行横向拉伸。此方法可在横向拉伸前制成大宽度原料纤维网,且由部分粘合纤维网构成的大宽度原料纤维网具有较高强度。另外,还可将多个原料纤维网彼此叠压在一起,彼此叠压在一起的原料纤维网部分粘合,由此构成大重量的原料纤维网。
如果进行在一种工业速度下对原料纤维网的横向拉伸,并获得高拉伸率和高强度,则因原料纤维网内空气被滞后加热而不能使原料纤维网的温度升高,且不能实现对原料纤维网的统一加热。所以,在第一实施例的两步骤拉伸装置21中,在将原料纤维网1送入第一横向拉伸单元23或第二横向拉伸单元25前,必需将原料纤维网1统一加热到一个想达到的拉伸温度。经过此加热过程,在第一横向拉伸单元23或第二横向拉伸单元25内,可利用具有拉伸温度的热空气将原料纤维网内的空气替换为具有拉伸温度的空气。按这种方式加热原料纤维网的预加热单元可实现高拉伸率和高强度的拉伸。用于替换原料纤维网内空气的机构可使热空气在具有空气可渗透性的网眼纤维网运送机构运送纤维网时穿透纤维网。此替代机构可用具有拉伸温度的空气将原料纤维网内的空气替换。
前述的运送机构包括一根网眼辊,一条网眼传输带或类似部件。透过此运送机构和纤维网的热空气可以不是由设置在运送机构一侧的吸收机构吸收;或从运送机构一侧吹到纤维网上的热空气。而只有热空气穿透纤维网才是最基本的。
各种常规的纤维网横向拉伸装置可被采用作为能够实现本发明所述的横向拉伸。常规的纤维网横向拉伸装置包括用作膜的横向拉伸的绷架,和用于在两个组合槽辊间横向拉伸纤维网的机构(US-A-4,223,059)。另外,将本申请人的公开号为36948/91的日本专利中所描述的皮带轮式拉伸方法应用于第一实施例中也是有效的。
为实现本发明的高拉伸率,首先应在高温和低拉伸率下进行初步拉伸。因初步拉伸在低拉伸率下进行,如采用前述预热单元,则无须虑及向拉伸温度的温升,进行初步拉伸的横向拉伸单元可以与本发明中实现高拉伸率的机构一样简单。由此,一种槽辊式拉伸装置或一种皮带轮式拉伸装置即有效。
在初步拉伸后主拉伸中,作为具有良好操作性、简化的拉伸机构的皮带轮式拉伸装置也特别适宜于作横向拉伸装置。
绷架的拉伸装置具有造价高、占用空间大等缺点,但它有一个优点,即在单独的拉伸装置中可以自由变换拉伸温度。所以,绷架拉伸装置可用于实现本发明。此情况下,在拉伸装置内的开始阶段,原料纤维网在高温下被初步拉伸,然后,原料纤维网的温度被降至适合拉伸温度进行拉伸。
用于对拉伸后的原料纤维网进行热处理的热处理区能够有效地提高纤维网的稳定性。通常,提供一种有效的热处理区从而能够在完成横向拉伸后的、其两周边被夹持的原料纤维网上进行热处理。
如上所述,通常我们采用热空气在本发明的拉伸过程中进行加热。另外也可采用其他热媒介以防止氧化或类似现象。热水和热蒸汽因其具有快速热传导的性能也可有效地对原料纤维网进行加热。
在拉伸过程中,通过使热媒介持续穿透纤维网或沿纤维网流动,可保持纤维网的拉伸温度恒定。
因本发明提供了一种横向拉伸无纺布及其制造方法,纤维网的拉伸率取决构成纤维网的丝的聚合体的种类,纤维网的纺丝装置和排列装置。然而,无论采用何种种类或机构,在选定拉伸率时应保证纤维网的高强度和高定向率,这是本发明的目的所在。
拉伸前先在纤维网上沿拉伸方向作出有规律间距的标记,再利用下列公式即可推出拉伸率:
拉伸率=(拉伸后两标记间距)/(拉伸前两标记间距)
此拉伸率并不必然代表在长纤维丝纱的常规拉伸中每一根丝拉伸率。
作为决定构成本发明的横向拉伸无纺布的丝的强度的聚合体,可采用诸如聚乙烯,聚丙烯,热塑料,聚酰胺,聚氯乙烯,聚氨酯,碳氟树脂或任一种变性树脂等热塑树脂。另外,可采用适于干法或湿法纺丝装置的树脂,如聚乙烯脂,聚丙烯腈或类似物。
本发明还可应用于本申请人提出的PCT申请(国际公开号W096/17121)中所描述的混合纺丝和共轭纺丝等类似过程中。
(实例1)
在实例1和下面所描述的实例2和3中,根据针对JIS L1096中长纤维丝无纺布的测试方法,只显示横向拉伸方向的材料特性的测试结果。在JIS L1096中,断裂强度用每5厘米的断裂负荷表示。因为测试了不同基重的无纺布,下面用无纺布的重量与细度(tex)的比值表示每tex的强度(mN/tex)。另外,作为参考,还采用了每但尼尔(d)上的强度。
在实例1中,通过降解获得的聚丙烯随图2至4中的纺丝装置以500的熔流速度(MFR)作为流速纺丝,形成宽380mm的随后将被横向拉伸的原料纤维网。原料纤维网1被横向拉伸时,可采用第一实施例中的两步骤横向拉伸装置21或第二实施例中的绷架式横向拉伸装置。在横向拉伸原料纤维网时,原料纤维网左右边缘的夹持部分的每个部分的宽度设定为40mm。这样,宽度为380mm的原料纤维网在被横向拉伸前一瞬间的宽度是300mm。在原料纤维网两侧的两卡盘之间的夹持部分,即除了拉伸前原料纤维网的夹持部分外对应于300mm宽度区域的部分上进行横向拉伸。下述实例中原料纤维网左右边缘的夹持部分也设定为40mm。
首先,在制造装置中,在初步拉伸温度135℃下,以初步拉伸率2将对应于实宽380mm原料纤维网的除了夹持部分外的宽300mm区域的部分进行横向拉伸,从而产生整体宽680mm的原料纤维网。然后,在拉伸温度115℃下,以拉伸率5将整体宽680mm的原料纤维网进行主拉伸,从而产生整体宽2920mm的横向拉伸无纺布。在大约680mm宽度原料纤维网中,除了夹持部分外,对相应于600mm面积的部分以5的主拉伸率横向拉伸,最终的原料纤维网的宽度为2920mm,由于纤维网的拉伸部分的略微收缩,比3000mm窄。这些步骤可以在生产设备中以整体上为10的横向拉伸率生产带状的横向拉伸无纺布,其在横向方向上具有203.1mN/tex(2.3g/d)的拉伸强度、以及2920mm的宽度(由于略微的收缩)。
通常,用于通过快速冷却聚丙烯制成的无纺布的适合拉伸温度为90-100摄氏度,在所述温度范围内,聚丙烯无纺布的最大拉伸率的范围为5.5-6.0。
(实例2)
在实例2中,使用特性粘度为0.52的聚乙烯对苯二酸熔融树脂,通过基于图2至图4描述的纺丝装置可获得宽度为400mm的原料纤维网。首先,在105摄氏度的初步拉伸温度下以1.5的拉伸率在生产设备中对400mm的原料纤维网进行横向拉伸,此为初步拉伸。其后,在90摄氏度的初步拉伸温度下以6的拉伸率在生产设备中对原料纤维网进一步进行横向拉伸,此为主拉伸。
与实例1一样,由于该实例还采用了40mm用于原料纤维网左右两侧的夹持部分,拉伸前卡盘之间的距离为320mm,除了拉伸前原料纤维网的夹持部分外,对相应于320mm宽度的面积的部分进行横向拉伸。因此,在400mm宽度原料纤维网中,除了夹持部分外,当相应于320mm面积的部分被以1.5的初步拉伸率横向拉伸时,最终的原料纤维网的宽度总共大约为560mm。除了560mm宽度原料纤维网的夹持部分外,当相应于480mm面积的部分被以6的主拉伸率横向拉伸时,从而获得宽度大约为2740mm的横向拉伸无纺布。还是在这种情况下,横向拉伸无纺布的宽度大约为2740mm,由于纤维网的拉伸部分的收缩,比2880mm窄大约140mm。在生产设备中,前述的步骤形成的横向拉伸纤维网,作为横向拉伸无纺布,具有整体上为9的拉伸率、在横向方向上具有229.6mN/tex(2.6g/d)的拉伸强度、以及2740mm的宽度(由于略微的收缩)。
(实例3)
在实例3中,使用特性粘度为0.56的聚乙烯对苯二酸熔融树脂,通过基于图2至图4描述的纺丝装置可获得宽度为380mm的原料纤维网,对该原料纤维网进行横向拉伸。与实例1和2中的两步骤拉伸方法不同,该实例采用图1所示的预热单元22和第一横向拉伸单元23来横向拉伸宽度为380mm的前述原料纤维网,改变为9的拉伸率,拉伸温度为150摄氏度,线速度为45m/min。
在该实例中,由于原料纤维网左右两侧的夹持部分的各个宽度如与实例1中一样被设定在40mm,拉伸前卡盘之间的距离为300mm,除了拉伸前原料纤维网的夹持部分外,以改变为9的拉伸率对相应于300mm的面积的部分进行横向拉伸。以此方式,在380mm宽度原料纤维网中,除了夹持部分外,相应于300mm面积的部分被以9的拉伸率横向拉伸,从而可获得宽度大约为2560mm的横向拉伸无纺布。还是在这种情况下,横向拉伸无纺布的宽度大约为2560mm,由于纤维网的拉伸部分的收缩,比2700mm窄140mm。在生产设备中,这样的步骤形成的横向拉伸纤维网,作为横向拉伸无纺布,具有整体上为9的拉伸率、在横向方向上具有150.1mN/tex(1.7g/d)的拉伸强度、以及2560mm的宽度(由于略微的收缩)。
尽管使用具体的术语描述了本发明的优选实施例,但这些描述仅为了说明的目的,可以理解,所进行的变化和变形都不脱离随后的权利要求的宗旨和范围。

Claims (4)

1、一种生产横向拉伸无纺布的方法,其包括如下步骤:
在比适合拉伸温度高5摄氏度或更高的温度下在原料纤维网的横向方向上将包含不定向丝的所述原料纤维网拉伸1.2-3倍宽;以及
为了生产包含横向排列的丝的横向拉伸无纺布,在所述适合拉伸温度下进一步拉伸已经在所述横向方向上拉伸1.2-3倍宽的所述原料纤维网,使得被拉伸的纤维网在横向方向上具有132.5mN/tex或更高的拉伸强度,并且与拉伸前原料纤维网的状态相比总共将所述原料纤维网在横向方向上拉伸7倍宽或以上。
2、按照权利要求1所述的生产横向拉伸无纺布的方法,其特征在于,在将所述原料纤维网在所述横向方向上拉伸1.2-3倍宽的步骤之前还包括如下步骤:局部粘合形成所述原料纤维网的所述丝。
3、按照权利要求1所述的生产横向拉伸无纺布的方法,其特征在于,在所述横向方向上拉伸所述原料纤维网时还包括如下步骤:
设置一对相对于一中心线对称的具有同样的圆周速度的左右皮带轮,使得所述一对左右皮带轮的外周具有逐渐加宽的轨道;
在所述逐渐加宽的轨道上循环安装在所述一对左右皮带轮的外周表面上的带槽中的一对皮带;
在所述一对左右皮带轮之间的间隔最窄的部分处引入所述原料纤维网;
将横向方向上的所述原料纤维网的一个周边夹持在所述左右皮带轮中的一个的带槽和安装在所述带槽中的皮带之间,并且将横向方向上的所述原料纤维网的另一个周边夹持在另一个皮带轮的带槽和安装在所述带槽中的皮带之间;以及
在由所述一对左右皮带轮形成的所述逐渐加宽的轨道上横向拉伸所述原料纤维网。
4、按照权利要求1所述的生产横向拉伸无纺布的方法,其特征在于,在所述横向方向上拉伸所述原料纤维网时还包括如下步骤:
使用横向拉伸所述原料纤维网的绷架的横向拉伸装置,将横向方向上的所述原料纤维网的两周边夹持在一个平面内,并且拉所述两周边中的每一个使得所述两周边之间的距离增加。
CNB001238876A 1999-08-24 2000-08-24 横向可拉宽7倍或更高的高拉伸强度横向拉伸无纺布 Expired - Fee Related CN1237220C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP236930/1999 1999-08-24
JP23693099A JP4191855B2 (ja) 1999-08-24 1999-08-24 横延伸不織布の製造方法及び横延伸装置

Publications (2)

Publication Number Publication Date
CN1285425A CN1285425A (zh) 2001-02-28
CN1237220C true CN1237220C (zh) 2006-01-18

Family

ID=17007870

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001238876A Expired - Fee Related CN1237220C (zh) 1999-08-24 2000-08-24 横向可拉宽7倍或更高的高拉伸强度横向拉伸无纺布

Country Status (7)

Country Link
US (4) US6511625B1 (zh)
EP (1) EP1079013B1 (zh)
JP (1) JP4191855B2 (zh)
KR (1) KR100644354B1 (zh)
CN (1) CN1237220C (zh)
DE (1) DE60030815T2 (zh)
TW (1) TW507037B (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233181B2 (ja) * 1999-09-30 2009-03-04 新日本石油株式会社 横配列ウェブの製造方法および製造装置
KR100556503B1 (ko) * 2002-11-26 2006-03-03 엘지전자 주식회사 건조기의 건조 시간제어 방법
US7384586B2 (en) * 2004-03-23 2008-06-10 3M Innovative Properties Company Method for flexing a web
US20060063454A1 (en) * 2004-09-17 2006-03-23 Chung Tze W P Method of producing low cost elastic web
US20070026040A1 (en) * 2005-07-29 2007-02-01 Crawley Jerald M Composite self-cohered web materials
US8048503B2 (en) * 2005-07-29 2011-11-01 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US7850810B2 (en) * 2005-07-29 2010-12-14 Gore Enterprise Holdings, Inc. Method of making porous self-cohered web materials
CA2616886C (en) * 2005-07-29 2011-11-08 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials having haemostatic properties
US20070155010A1 (en) * 2005-07-29 2007-07-05 Farnsworth Ted R Highly porous self-cohered fibrous tissue engineering scaffold
US20070027551A1 (en) * 2005-07-29 2007-02-01 Farnsworth Ted R Composite self-cohered web materials
US7655584B2 (en) * 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US20070026039A1 (en) * 2005-07-29 2007-02-01 Drumheller Paul D Composite self-cohered web materials
US7604668B2 (en) * 2005-07-29 2009-10-20 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US7655288B2 (en) * 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US8871298B2 (en) * 2006-02-08 2014-10-28 3M Innovative Properties Company Method for manufacturing on a film substrate at a temperature above its glass transition
JP4901395B2 (ja) * 2006-09-26 2012-03-21 富士フイルム株式会社 塗布膜の乾燥方法
WO2008039822A1 (en) 2006-09-28 2008-04-03 3M Innovative Properties Company System and method for controlling curl in multi-layer webs
WO2008039820A2 (en) * 2006-09-28 2008-04-03 3M Innovative Properties Company System and method for controlling curl in multi-layer webs
EP2466004B1 (en) * 2007-02-19 2016-06-22 3M Innovative Properties Company Flexible fibrous material, pollution control device, and methods of making the same
US8061055B2 (en) * 2007-05-07 2011-11-22 Megtec Systems, Inc. Step air foil web stabilizer
WO2009010984A1 (en) * 2007-07-19 2009-01-22 Avgol Industries 1953 Ltd Non-woven material
JP4633834B2 (ja) * 2008-10-22 2011-02-16 トヨタ自動車株式会社 膜延伸装置
GB0907755D0 (en) * 2009-05-06 2009-06-24 Rasmussen O B Method for longitudinal stretching a film in solid state and apparatus to carry out the method
ES2698399T3 (es) 2009-10-09 2019-02-04 Starlinger & Co Gmbh Bolsas producidas a partir de material de malla abierta
WO2011133183A1 (en) * 2010-04-20 2011-10-27 University Of Utah Research Foundation Phase separation sprayed scaffold
US9138031B2 (en) * 2011-02-16 2015-09-22 3M Innovative Properties Company Method of making a mechanical fastening strip and reticulated mechanical fastening strip therefrom
CN102505399A (zh) * 2011-10-21 2012-06-20 成都彩虹环保科技有限公司 无纺布再处理方法及其设备
ES2648224T3 (es) 2012-05-16 2017-12-29 3M Innovative Properties Company Método de fabricación de un fijador mecánico utilizando una superficie convexa
WO2013172957A1 (en) 2012-05-16 2013-11-21 3M Innovative Properties Company Method of making a mechanical fastener using diverging disks
US9314962B2 (en) 2013-05-10 2016-04-19 3M Innovative Properties Company Method of separating strands on a stretching surface
US9649824B2 (en) 2013-05-23 2017-05-16 3M Innovative Properties Company Laminates including a reticulated thermoplastic film and method of making the same
CN103420200B (zh) * 2013-08-20 2016-04-27 泉州市汉威机械制造有限公司 一种弹性膜拉伸复合装置
FR3026112B1 (fr) * 2014-09-22 2017-06-23 Andritz Asselin Thibeau Installation de consolidation, notamment par aiguilletage, d'une nappe de fibres
WO2016172357A1 (en) * 2015-04-21 2016-10-27 First Quality Baby Products, Llc Manufacturing process for elastomeric laminate
EP4074874B1 (en) 2018-11-30 2024-01-03 The Procter & Gamble Company Methods for producing through-fluid bonded nonwoven webs
WO2020107422A1 (en) 2018-11-30 2020-06-04 The Procter & Gamble Company Methods of creating soft and lofty nonwoven webs
CN113166991A (zh) * 2018-11-30 2021-07-23 宝洁公司 用于热流粘结非织造纤维网的方法
CN110802833A (zh) * 2019-11-07 2020-02-18 湖南工业大学 一种薄膜双向拉伸装置
CN111216345A (zh) * 2019-11-07 2020-06-02 湖南工业大学 一种薄膜同步双向拉伸装置
CN112179106B (zh) * 2020-09-27 2022-04-22 海城市新明纺织有限公司 一种轻薄透气功能面料加工制备系统
CN114411339B (zh) * 2022-01-25 2023-04-14 苏州艾美医疗用品有限公司 具有单向弹性医用无纺布的生产工艺及医用无纺布
EP4303353A1 (en) * 2022-07-05 2024-01-10 Johns Manville Nonwoven material with improved md/cd ratio, method for its manufacture and its use

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE522077A (zh) * 1952-08-12
US3055048A (en) * 1959-11-12 1962-09-25 American Viscose Corp Simultaneous blaxial stretching of film with a tenter frame
DE1504502B2 (de) * 1962-03-17 1971-08-12 Lindauer Dormer GmbH, 8990 Lin dau Reckanlage zum biaxialen recken einer thermoplastischen kunststoffolienbahn
GB1213441A (en) * 1968-01-04 1970-11-25 Celanese Corp Improvements in fibrous products
US3765067A (en) * 1969-09-02 1973-10-16 Mobil Oil Corp Apparatus for biaxial orientation of thermoplastic film
ES391123A1 (es) * 1970-05-19 1974-05-01 Hoechst Ag Procedimiento y aparato para el estiramiento de laminas de material sintetico termoplastico.
BE795189A (fr) * 1972-02-10 1973-08-09 Vepa Ag Installation a tambours perfores suivie d'un dispositif tendeur
US3902230A (en) * 1972-06-16 1975-09-02 Kimberly Clark Co Simultaneous continuous biaxial web stretcher
US4223059A (en) 1975-03-31 1980-09-16 Biax Fiberfilm Corporation Process and product thereof for stretching a non-woven web of an orientable polymeric fiber
US4405297A (en) * 1980-05-05 1983-09-20 Kimberly-Clark Corporation Apparatus for forming nonwoven webs
JPS5932307A (ja) 1982-08-11 1984-02-21 Daihatsu Motor Co Ltd 電気自動車の電動機制御装置
DE3616955A1 (de) * 1986-05-20 1987-11-26 Dornier Gmbh Lindauer Folienreckmaschine mit mehreren aufeinanderfolgenden behandlungsfeldern
JPS633068A (ja) 1986-06-24 1988-01-08 Mitsubishi Motors Corp エツジ防錆用塗料
DE3621205A1 (de) * 1986-06-25 1988-01-07 Hoechst Ag Verfahren zum herstellen von biaxial gestreckten flachfolien und vorrichtung hierfuer
DE3717774A1 (de) * 1987-05-26 1988-12-08 Brueckner Trockentechnik Gmbh Spannmaschine zur waermebehandlung von breitgefuehrten warenbahnen
EP0379763B1 (en) * 1989-01-27 1994-12-21 Polymer Processing Research Institute Limited Cross-laminated stretched non-woven fabric and method of making the same
JP2612203B2 (ja) 1989-04-11 1997-05-21 株式会社 高分子加工研究所 繊維の配列したウェブの製法
JPH0336948A (ja) 1989-06-30 1991-02-18 Shibaura Eng Works Co Ltd アウターロータ型ブラシレスモータ
WO1991018790A1 (fr) * 1990-05-28 1991-12-12 Nippon Petrochemicals Co., Ltd. Dispositif et procede d'emballage a l'aide de materiau en forme de bande etire et enroule autour de marchandises
JPH076126A (ja) * 1992-02-26 1995-01-10 Nec Corp プロセッサ間バス伝送方式
WO1995032307A1 (en) 1994-05-20 1995-11-30 Tularik, Inc. Epstein-barr virus transcription factor binding assay
US5840633A (en) 1994-11-25 1998-11-24 Polymer Processing Research Inst., Ltd. Nonwoven fabric and method of making the same
DE19501123C2 (de) * 1995-01-17 1998-07-30 Reifenhaeuser Masch Verfahren zur Herstellung einer Vliesbahn aus thermoplastischen Polymerfilamenten
DE19527057C2 (de) * 1995-07-25 2002-06-27 Reifenhaeuser Masch Verfahren zur thermomechanischen Behandlung einer Vliesbahn aus thermoplastischem Kunststoff und Anlagen für die Durchführung des Verfahrens
EP0796940B1 (en) * 1995-10-06 2003-02-26 Nippon Petrochemicals Co., Ltd. Water jet intertwined nonwoven cloth and method of manufacturing the same
US5740633A (en) * 1995-11-13 1998-04-21 Champagne; Wendel James System for affixing a gutter system
US5810954A (en) * 1996-02-20 1998-09-22 Kimberly-Clark Worldwide, Inc. Method of forming a fine fiber barrier fabric with improved drape and strength of making same
SE517689C2 (sv) * 1999-11-26 2002-07-02 Metso Paper Karlstad Ab Förfarande och torkparti för att vid torkning styra åtminstone bredden hos en löpande, fuktig pappers- eller kartongbana, samt en produkt framställd av en sådan bana

Also Published As

Publication number Publication date
DE60030815D1 (de) 2006-11-02
KR20010067100A (ko) 2001-07-12
US6511625B1 (en) 2003-01-28
DE60030815T2 (de) 2007-01-11
JP2001064864A (ja) 2001-03-13
EP1079013B1 (en) 2006-09-20
US6637128B2 (en) 2003-10-28
JP4191855B2 (ja) 2008-12-03
EP1079013A2 (en) 2001-02-28
CN1285425A (zh) 2001-02-28
EP1079013A3 (en) 2003-01-15
US20030082977A1 (en) 2003-05-01
TW507037B (en) 2002-10-21
US20030082976A1 (en) 2003-05-01
US20030077968A1 (en) 2003-04-24
KR100644354B1 (ko) 2006-11-10

Similar Documents

Publication Publication Date Title
CN1237220C (zh) 横向可拉宽7倍或更高的高拉伸强度横向拉伸无纺布
CN1237219C (zh) 生产纵向排列无纺布的装置
KR100426546B1 (ko) 스펀-본디드웹의제조방법
CN1258020C (zh) 高速纺出的丝在横向方向上排列的横向排列纤维网
CN1066502C (zh) 复合长纤维非织造布及其制造方法
KR102510597B1 (ko) 멜트 블론 부직포, 그것을 사용한 적층체, 멜트 블론 부직포의 제조 방법 및 멜트 블로 장치
CN1105196C (zh) 由热塑聚合物生产高纤度均匀性的微长丝纱的装置和方法
CN1013967B (zh) 用于纺制连续聚合物长丝的工艺和装置
JP2007534854A (ja) 微細なスパンボンドフィラメントの製造方法
TW201542900A (zh) 極細纖維之製造方法
JP4113271B2 (ja) 縦延伸不織布の製法
KR102658323B1 (ko) 멜트블로운 섬유 및 나노 섬유가 랜덤하게 혼합된 단일층의 하이브리드 흡음패드를 포함하는 가청주파수 대역의 노이즈 저감용 흡음재 제조장치 및 이에 의해 제조된 흡음재
JP2001288667A (ja) 遠心紡糸フィラメントの螺旋状集積不織布およびその製法、緯並列フィラメント不織布およびその製法
CN1285010A (zh) 超吸湿纤维的非织造织物及其制造方法
JP2010285720A (ja) 不織布の製造方法および製造装置
KR100995296B1 (ko) 흡입 및 분사를 위한 다중 방사 노즐 장치 및 방법
JPS6235481B2 (zh)
CN1034354C (zh) 交叉层压拉伸无纺纤维制品及其制造方法
KR102658315B1 (ko) 멜트블로운 섬유 및 나노 섬유가 랜덤하게 혼합된 단일층의 하이브리드 흡음패드를 포함하는 가청주파수 대역의 노이즈 저감용 흡음재의 제조방법 및 이에 의해 제조된 흡음재
JP2001288664A (ja) 遠心紡糸されたヨコ延伸フィラメントウェブの製法
JPH09228137A (ja) 高繊度のハイマルチフィラメント糸製造装置
CN101001983A (zh) 用于倾斜导丝辊的可调节空气护罩
JPS60134020A (ja) ポリエステル繊維の製造方法
WO2009063477A1 (en) Continuous polymeric filaments having enhanced uniformity of denier and tenacity
KR20000002199A (ko) 흡습성 스펀본드 부직포의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060118

Termination date: 20150824

EXPY Termination of patent right or utility model