CN1180990A - 用于大功率半导体模件的液体冷却装置 - Google Patents
用于大功率半导体模件的液体冷却装置 Download PDFInfo
- Publication number
- CN1180990A CN1180990A CN97121215A CN97121215A CN1180990A CN 1180990 A CN1180990 A CN 1180990A CN 97121215 A CN97121215 A CN 97121215A CN 97121215 A CN97121215 A CN 97121215A CN 1180990 A CN1180990 A CN 1180990A
- Authority
- CN
- China
- Prior art keywords
- cooling
- control device
- liquid
- liquid cooling
- cooling surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/022—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
一种大功率半导体模件(14)用的液体冷却装置(1),每个子模件(8a-h)包含至少一个功率半导体装置,该装置安装到电绝缘陶瓷基底上,并且熔焊到陶瓷基底的背面的冷却表面(3)上,液体冷却装置(1)的壳体(2)内具有液体腔(4),冷却表面(3)形成在液体腔的上侧,其中液体冷却装置(1)的壳体(2)由金属陶瓷合成材料铸造而成,其热膨胀系数与陶瓷基底或子模件(8a-h)的功率半导体装置的热膨胀系数相一致,以及一个辅助装置(11a-h;12)。
Description
本发明涉及功率电子学领域。具体地说,涉及一种用于大功率半导体模件的液体冷却装置,它包括多个在冷却表面上依次排列的发热的子模,每个子模包含至少一个安置在电绝缘陶瓷基底上的功率半导体装置,它被熔焊到所述陶瓷基底下侧的冷却面上,该液体冷却装置(1)带有一个内含液体腔(4)的壳体(2),冷却液从所述液体腔中流过,在其上侧形成冷却面(3)。
大功率半导体模件是功率电子学的组成部分。一个模件一般包括多个半导体装置,它们可以组合形成一个逻辑功能单元。这种模件(例如半导体开关元件,绝缘栅驱动双极性晶体管(IGBT或二级管模块)目前广泛应用在最高为2500伏和几百安培的功率范围内,主要用于工业驱动设备。这种模件的已有实例可参见EP-A1-0597144或IEEEIGBT推进驱动设备学术讨论会上的报告(1995年4月,伦敦),作者为T.StocKmeier等的题目为“用于牵引的可靠的1200安培2500伏IGBT模件”的文章。
至今,这些模件在牵引设备上的应用还仅限于很有限的程度。原因之一是要求这种模件具有长期的可靠性,而传统的模件尚达不到此要求。目前这种模件的主要故障是由于基底之间的接合层出现疲劳而引起的,基底上安装硅片,水或液态冷却剂连接到该模件。所述疲劳现象的出现,最终导至芯片的过热和电接触的分离。在一定的加载周期之后,可以看出这种疲劳效应,芯片工作期间发热,经过散失,达到最大允许工作温度,接着被冷却恢复到冷却水的温度。发生上述故障之前的最大加载周期数主要与冷却剂的温度,温度摆动幅度和温度变化的速率有关。总之,与牵引领域中允许可靠使用的要求相比,可实现的耐加载周期强度要小得多。
DE 4244721 A1中介绍了一种电机用的半导体阀,带有整体集成的液体冷却系统。尤其是通过在该半导体基底或其陶瓷绝缘支架的背面直接形成的冷却液管道的底板或顶盖获得有效的冷却。这种解决方案的缺点在于,所述绝缘支架或半导体基底必须具有电绝缘介质和热传导载体的双重作用。因此,对材料的选择相当严格,首要选择的是绝缘陶瓷,或综合考虑必须满足的热传导率。而且,所述的热散失完全在该绝缘支架上发生,于是绝缘支架应具有大的表面积或宽度,以增大热交换面积。另一方面,半导体元件具有小的表面积,它所产生的热量是很有限的,当其经过半导体基底和绝缘支架时侧向轻微地扩散,这一点通过实验可得到证实。因此,采用这种方式,很难获得足够的冷却性能。此外,由多种材料制成的冷却管道成本较高,而且不同材料的热膨胀系数有差别,特别是与绝缘支架的热膨胀系数不同,因此这种模件的冷却效率、热稳定性和使用寿命都是不能令人满意的。
由此,本发明的目的是提供一种用于大功率半导体模件的新式液体冷却装置,它能显著地增加模件的耐加载周期强度。该目的是在本文开头所述类型的装置上实现的,这种液体冷却装置包括一个壳体,它是由金属-陶瓷组合材料铸造的,至少形成在冷却面(3)上,其热膨胀系数与陶瓷基底或子模件(8a-h)的功率半导体装置的热膨胀系数相一致,以及一个辅助装置(11a-h;12),用于改善冷却面(3)和盛放在液体冷却装置(1)的液体腔(4)内的冷却液体之间的热传递性能。
根据本发明,基底用作冷却面,所述子模件熔接在(例如熔焊连接)该基底上,基底的热膨胀系数与子模件的热膨胀系数相符合,于是可减少热机械应力,从而防止或大大减少所述熔接点的疲劳效应。与之相反,传统的模件中的冷却装置一般由如铝或铜的普通合金材料制成,其热膨胀系数较高,可达15-23ppm/k,而硅片和陶瓷基底的热膨胀系数只有几个ppm/k,它们之间相差太大,难以协调。
在本发明的优选的第一个实施例中,壳体材料的热膨胀系数应小于10ppm/k,最好小于7ppm/k。这样选择是为了与熔接部分的热膨胀系数相一致,减小热机械应力到完全避免熔接部分产生疲劳的程度。尤其有利的是,可以进一步完善该实施例,即采用碳化硅复合材料作为壳体材料,最好是碳化铝硅(Alsic)或碳化铜硅(CuSic),它们的热膨胀系数为5-7ppm/k,壳体由上述材料铸型。如果铸模设计合理,则可以简单方式制造出优化的冷却结构,它的热机械性能与子模件的陶瓷基底和硅片达到最佳匹配。
从原理上可以设想该冷却装置的整个壳体采用具有相适配的热膨胀系数的材料制成,特别是上述合成材料。但是,如果该装置的冷却结构的设计使冷却器的背面不再起主要的冷却作用,则根据另一实施方案,冷却面可由不同的材料构成,最好是塑性材料。这样可显著减少该装置的成本。
根据本发明的又一优选实施例,包括一辅助装置,用于改善冷却面和盛放在该装置的液体腔内的冷却液体之间的热传递性能,这个辅助装置包括多个从冷却面突入液体腔内的杆,这些杆的用材与冷却面的材料相同,而且与冷却面整体形成。通过适当选择杆的直径,杆的高度和杆与杆之间的距离,对于确定的冷却液流而言,可以获得该冷却结构的最佳的耐热性能。应当指出,这些杆用于功率半导体的冷却装置的已有方案可以参阅DE-C2-4017749中的介绍。
根据这个实施例的进一步的完善,这些杆设计成圆柱形,围绕其圆心轴垂直于所述冷却面布置,并且按六角形对称布置。
一般来自模件的热不会均匀地散失到整个冷却面上,而是聚集在几处,经过子模件进入冷却器。经过研究表明,扩散到冷却器的热量较小,即来自子模件的热的横向分布少,这就是说子模件的区域被足够冷却。因此,根据又一实施例,这些杆组合成组,并且每个子模件对应一个杆组。使冷却局限到这样一个范围上,即在每个边界处略大于子模件(最好在4毫米左右)。另一方面,较大的表面积被冷却,冷却无需再加水,只需增加流过冷却器的冷却液流。
为此,附加一种导流装置是有益的,其作用是把液体腔中的冷却液的流动基本上限制在上述各杆组的范围内。如果冷却装置是由金属陶瓷合成材料铸造的,也可同样制成所述的冷却面,这样无需多少花费,因为其他所有非冷却表面是与冷却液流隔绝的,于是对于给定的外部液流而言,能够进一步提高冷却器的效率。
通过下面结合附图对本发明的详细说明,可以更完整和清楚地理解本发明的技术方案及其优点。附图为:
图1表示本发明的具有液体冷却装置的大功率半导体模件的基本实施例的主体图;
图2表示根据图1的截面II-II剖开的模件的剖视图;
图3表示沿图2的线III-III剖开的模件的剖视图。
现在参见附图,同样的标号在各图中代表相同的或相似的部件。在图1的本发明的实施例中,大功率半导体模件14具有液体冷却装置1,图1是一个主体示意图。这个大功率半导体模件14包括多个分立的子模件8a-8h,它们相互相邻地排列在一个冷却面3上,图中为简化起见,省略了电连接线和接线端子。模件14的子模件8a-8h一般被一模件壳体7从四周罩住,图1中用虚线表示该壳体。
各独立的子模件8a-8h由大功率硅片式半导体器件构成,这些芯片例如半导体开关元件芯片、二极管芯片、IGBT芯片或类似器件。这些芯片在一个绝缘陶瓷基底上由电连接线相互连接,并且连接点熔焊连接到所述冷却面3上。子模件8a-8h相互间隔开布置,其目的是绝缘和散热。
液体冷却装置1包括一个封闭的(例如图1中立方体的)壳体2,其内包含液体腔4(图2),冷却液流过所述液体腔,在液体腔的上侧形成冷却面3。冷却液-通常是水-沿箭头所示方向从入口5流入液体腔4内,被加热的液体又从出口6排出。除了图中所示的单个入口和出口的结构方案外,在装置1上还可以配置多个入口和出口。
在上述区域下面,在冷却面3上焊接有子模件8a-8h,成六角形对称布置的圆柱形杆12从冷却面3伸出,并插入液体腔4内。在这个实施例中,杆12相互组合成杆组11a-11h,每个子模件8a-8h各与一组杆组11a-11h相对应。在生产时,这些杆12是与冷却面3一体形成的,即铸造金属陶瓷合成材料的壳体2时整体形成的,所述合成材料最好是碳化硅铅(AlSic)或碳化硅铜(CuSic),这样能够明显提高在壳体2和冷却液之间的热传递性能,各独立的杆组11a-11h形成在冷却装置1的区域内,直接住于子模件之下,并且略大于子模件的边界,这样可显著降低热阻。以此方式,可以最佳的液体实现冷却,将冷却流导向子模件下要被冷却的中心部分,在那里发生最佳热传输效应。如果在子模件区域间的空间尽可能多地实现对冷却液体的阻隔的话,例如图2所示的在子模件行与行之间增加一隔壁10,则可进一步改进冷却效率。上述隔壁可在铸造壳体2时与杆12一起形成。
如本文开头部分所述,通过适当选择圆柱形杆的直径、杆之间的距离和杆的高度,可以获得优化了的热阻Rth。如果对杆的高度的边界条件予以考虑,冷却器的背面几乎不起冷却作用,图3中冷却器的背面用作壳体底面,它可由塑料制成,并且与壳体的其它部分粘合在一起。应当指出,在这种情况下,模件的功率损耗有所下降,圆柱形杆结构可定位在冷却器的塑性材料面上。于是冷却器的金属面(AlSic,CuSic)简化为一平板,其生产成本大大减少。还应指出,增加圆柱形杆改善热传递性能的结构不是必须的,还可采用任何所需的结构,只要能够足够地排除热量和可由AlSic(或CuSic)材料制造。尤其可以选择例如加长肋等简单的结构。
经过对本发明AlSic铸成的冷却装置(带有杆组)的实验,当液体流为41/m时,该样品的热阻大约为8k/kw。与传统的由铅制成的冷却器相比,类似性能提高了约13%。经过交替的温度试验证明,由于组合材料的冷却器的热膨胀减少,显著减少了焊接点疲劳的现象,并且改善了耐加载周期强度。
显然,基于上述教导可能获得本发明的各种改进和完善。因此,基于上述描述而实施本发明的可能的各种方案均在所附的权利要求所述的范围之内。
Claims (11)
1.一种用于大功率半导体模件(14)的液体冷却装置(1),包括多个依次配置在一冷却表面(3)上的发热的子模件(8a-h),每个子模件(8a-h)包含至少一个功率半导体装置,该装置安装到电绝缘陶瓷基底上,并且熔焊到陶瓷基底的底侧的冷却表面(3)上,所述液体冷却装置(1)的壳体(2)内具有液体腔(4),冷却液流过该液体腔,冷却表面(3)形成在液体腔的上侧,其特征在于,液体冷却装置(1)的壳体(2)由金属陶瓷合成材料铸造而成,它至少位于冷却表面(3)的区域内,其热膨胀系数与陶瓷基底或子模件(8a-h)的功率半导体装置的热膨胀系数相一致,以及一个辅助装置(11a-h;12),用于改善冷却面(3)和盛放在液体冷却装置(1)的液体腔(4)内的冷却液体之间的热传递性能。
2.如权利要求1所述的液体冷却装置,其特征在于,壳体材料的热膨胀系数小于10ppm/k,最好小于7ppm/k。
3.根据权利要求2所述的液体冷却装置,其特征在于,壳体材料采用碳化硅合成材料,最好是碳化铅硅(AlSic)或碳化铜硅(CuSic),并且壳体(2)是由这些材料铸造而成。
4.根据权利要求1-3之一的液体冷却装置,其特征在于,冷却装置(1)的整个壳体(2)的用料具有相互适配的热膨胀系数。
5.根据权利要求1-3之一的液体冷却装置,其特征在于,与冷却表面(3)相对设置的壳体底板(13)采用不同的材料制成,例如塑性材料。
6.根据权利要求1-5之一的液体冷却装置,其特征在于,辅助装置(11a-h;12)包括多个从冷却面(3)插入液体腔(4)的杆(12)。
7.如权利要求6所述的液体冷却装置,其特征在于,杆采用与冷却表面(3)相同的材料制成,而且这些杆是与冷却表面(3)一体形成的。
8.根据权利要求6和7之一的液体冷却装置,其特征在于,杆(12)是圆柱形的,其圆柱体轴芯垂直于冷却液面(3)布置。
9.根据权利要求6-8之一的液体冷却装置,其特征在于,所述杆(12)呈六角形对称布置。
10.根据权利要求6-9之一的液体冷却装置,其特征在于,杆(12)组合成杆组(11a-h),并且各个杆组(11a-h)与子模件(8a-h)相对应。
11.根据权利要求10的液体冷却装置,其特征在于,装置(10)用于限制液体腔(4)内的冷却液流基本上流向杆组(11a-h)所处的区域。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19643717A DE19643717A1 (de) | 1996-10-23 | 1996-10-23 | Flüssigkeits-Kühlvorrichtung für ein Hochleistungshalbleitermodul |
DE19643717.2 | 1996-10-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1180990A true CN1180990A (zh) | 1998-05-06 |
CN1114339C CN1114339C (zh) | 2003-07-09 |
Family
ID=7809544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN97121215A Expired - Fee Related CN1114339C (zh) | 1996-10-23 | 1997-10-23 | 用于大功率半导体模件的液体冷却装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US5978220A (zh) |
EP (1) | EP0838988A3 (zh) |
JP (1) | JPH10125838A (zh) |
CN (1) | CN1114339C (zh) |
DE (1) | DE19643717A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102655710A (zh) * | 2012-05-12 | 2012-09-05 | 浙江大学 | 带有散热结构的功率模块dbc板 |
CN102770006A (zh) * | 2011-05-05 | 2012-11-07 | 赛米控电子股份有限公司 | 液体冷却的功率半导体模块 |
CN101689537B (zh) * | 2007-04-26 | 2013-08-21 | 陶瓷技术有限责任公司 | 用于元件或电路的冷却盒 |
CN114207812A (zh) * | 2019-07-25 | 2022-03-18 | 日立能源瑞士股份公司 | 包括冷却器和用于功率半导体模块的基板的装置 |
Families Citing this family (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6259173B1 (en) * | 1998-06-23 | 2001-07-10 | General Electric Company | Modular protective relay with submodules |
DE19911205A1 (de) * | 1999-03-13 | 2000-09-14 | Behr Gmbh & Co | Kühlvorrichtung für elektronische Bauelemente |
US6729383B1 (en) * | 1999-12-16 | 2004-05-04 | The United States Of America As Represented By The Secretary Of The Navy | Fluid-cooled heat sink with turbulence-enhancing support pins |
DE10006215A1 (de) * | 2000-02-11 | 2001-08-16 | Abb Semiconductors Ag Baden | Kühlvorrichtung für ein Hochleistungs-Halbleitermodul |
GB0006337D0 (en) * | 2000-03-16 | 2000-05-03 | Hopkinsons Ltd | Fluid energy reduction valve |
DE10038178A1 (de) * | 2000-08-04 | 2002-02-21 | Eupec Gmbh & Co Kg | Kühlschiene für die direkte Fluidkühlung von Schaltungsmodulen, insbesondere Halbleitermodulen, Leistungshalbleitermodulen oder dergleichen |
US6578626B1 (en) * | 2000-11-21 | 2003-06-17 | Thermal Corp. | Liquid cooled heat exchanger with enhanced flow |
US6460598B1 (en) | 2000-11-27 | 2002-10-08 | Ceramic Process Systems Corporation | Heat exchanger cast in metal matrix composite and method of making the same |
US6801433B2 (en) | 2001-04-19 | 2004-10-05 | General Electric Company | Method and apparatus for cooling electrical fuses |
US6452798B1 (en) * | 2001-09-12 | 2002-09-17 | Harris Corporation | Electronic module including a cooling substrate having a fluid cooling circuit therein and related methods |
US6942018B2 (en) | 2001-09-28 | 2005-09-13 | The Board Of Trustees Of The Leland Stanford Junior University | Electroosmotic microchannel cooling system |
US6606251B1 (en) | 2002-02-07 | 2003-08-12 | Cooligy Inc. | Power conditioning module |
US6819561B2 (en) * | 2002-02-22 | 2004-11-16 | Satcon Technology Corporation | Finned-tube heat exchangers and cold plates, self-cooling electronic component systems using same, and methods for cooling electronic components using same |
US6898082B2 (en) * | 2002-05-10 | 2005-05-24 | Serguei V. Dessiatoun | Enhanced heat transfer structure with heat transfer members of variable density |
AU2003240418A1 (en) | 2002-05-22 | 2003-12-02 | Curamik Electronics Gmbh | Cooling devices for cooling electric components, module consisting of a cooling device and electric components and assembly comprising a cooling device or module and a support |
US6840308B2 (en) | 2002-05-31 | 2005-01-11 | General Electric Co. | Heat sink assembly |
DE10229712B4 (de) * | 2002-07-02 | 2009-06-25 | Jenoptik Laserdiode Gmbh | Halbleitermodul |
DE10229711B4 (de) * | 2002-07-02 | 2009-09-03 | Curamik Electronics Gmbh | Halbleitermodul mit Mikrokühler |
US6988534B2 (en) | 2002-11-01 | 2006-01-24 | Cooligy, Inc. | Method and apparatus for flexible fluid delivery for cooling desired hot spots in a heat producing device |
US6881039B2 (en) | 2002-09-23 | 2005-04-19 | Cooligy, Inc. | Micro-fabricated electrokinetic pump |
US20040060689A1 (en) * | 2002-09-27 | 2004-04-01 | Pfeifer David W. | Compact liquid cooled heat sink |
US7068507B2 (en) * | 2002-09-27 | 2006-06-27 | Rockwell Automation Technologies, Inc. | Compact liquid converter assembly |
US6822850B2 (en) | 2002-09-27 | 2004-11-23 | Rockwell Automation Technologies, Inc. | Laminated bus bar for use with a power conversion configuration |
US6885553B2 (en) * | 2002-09-27 | 2005-04-26 | Rockwell Automation Technologies, Inc. | Bus bar assembly for use with a compact power conversion assembly |
US6956742B2 (en) * | 2002-09-27 | 2005-10-18 | Rockwell Automation Technologies, Inc. | Compact liquid converter assembly |
US6994151B2 (en) | 2002-10-22 | 2006-02-07 | Cooligy, Inc. | Vapor escape microchannel heat exchanger |
US20040076408A1 (en) * | 2002-10-22 | 2004-04-22 | Cooligy Inc. | Method and apparatus for removeably coupling a heat rejection device with a heat producing device |
US7836597B2 (en) | 2002-11-01 | 2010-11-23 | Cooligy Inc. | Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system |
US6986382B2 (en) * | 2002-11-01 | 2006-01-17 | Cooligy Inc. | Interwoven manifolds for pressure drop reduction in microchannel heat exchangers |
US7000684B2 (en) * | 2002-11-01 | 2006-02-21 | Cooligy, Inc. | Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device |
DE10393588T5 (de) | 2002-11-01 | 2006-02-23 | Cooligy, Inc., Mountain View | Optimales Ausbreitungssystem, Vorrichtung und Verfahren für flüssigkeitsgekühlten, mikroskalierten Wärmetausch |
TWI295726B (en) * | 2002-11-01 | 2008-04-11 | Cooligy Inc | Method and apparatus for achieving temperature uniformity and hot spot cooling in a heat producing device |
US20040112571A1 (en) * | 2002-11-01 | 2004-06-17 | Cooligy, Inc. | Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device |
US7156159B2 (en) | 2003-03-17 | 2007-01-02 | Cooligy, Inc. | Multi-level microchannel heat exchangers |
US8464781B2 (en) | 2002-11-01 | 2013-06-18 | Cooligy Inc. | Cooling systems incorporating heat exchangers and thermoelectric layers |
US6655449B1 (en) * | 2002-11-08 | 2003-12-02 | Cho-Chang Hsien | Heat dissipation device by liquid cooling |
SG104348A1 (en) | 2002-11-21 | 2004-06-21 | Inst Of Microelectronics | Apparatus and method for fluid-based cooling of heat-generating devices |
US20040182544A1 (en) * | 2002-12-27 | 2004-09-23 | Lee Hsieh Kun | Cooling device utilizing liquid coolant |
TW577586U (en) * | 2003-01-22 | 2004-02-21 | Hon Hai Prec Ind Co Ltd | Liquid cooling device |
US7044196B2 (en) | 2003-01-31 | 2006-05-16 | Cooligy,Inc | Decoupled spring-loaded mounting apparatus and method of manufacturing thereof |
US7090001B2 (en) | 2003-01-31 | 2006-08-15 | Cooligy, Inc. | Optimized multiple heat pipe blocks for electronics cooling |
US20040190253A1 (en) * | 2003-03-31 | 2004-09-30 | Ravi Prasher | Channeled heat sink and chassis with integrated heat rejector for two-phase cooling |
US7021369B2 (en) * | 2003-07-23 | 2006-04-04 | Cooligy, Inc. | Hermetic closed loop fluid system |
US7591302B1 (en) | 2003-07-23 | 2009-09-22 | Cooligy Inc. | Pump and fan control concepts in a cooling system |
EP1515364B1 (en) | 2003-09-15 | 2016-04-13 | Nuvotronics, LLC | Device package and methods for the fabrication and testing thereof |
US6951243B2 (en) * | 2003-10-09 | 2005-10-04 | Sandia National Laboratories | Axially tapered and bilayer microchannels for evaporative coolling devices |
US20050128705A1 (en) * | 2003-12-16 | 2005-06-16 | International Business Machines Corporation | Composite cold plate assembly |
US7017655B2 (en) | 2003-12-18 | 2006-03-28 | Modine Manufacturing Co. | Forced fluid heat sink |
DE102004012026B3 (de) * | 2004-03-11 | 2005-11-17 | Hüttinger Elektronik GmbH & Co. KG | Anordnung zum Kühlen |
US6989991B2 (en) * | 2004-05-18 | 2006-01-24 | Raytheon Company | Thermal management system and method for electronic equipment mounted on coldplates |
DE102004026061B4 (de) * | 2004-05-25 | 2009-09-10 | Danfoss Silicon Power Gmbh | Leistungshalbleitermodul und Verfahren zum Kühlen eines Leistungshalbleitermoduls |
US20060137860A1 (en) * | 2004-12-29 | 2006-06-29 | Ravi Prasher | Heat flux based microchannel heat exchanger architecture for two phase and single phase flows |
JP4305406B2 (ja) * | 2005-03-18 | 2009-07-29 | 三菱電機株式会社 | 冷却構造体 |
DE102005025381A1 (de) * | 2005-05-31 | 2006-12-07 | Behr Industry Gmbh & Co. Kg | Vorrichtung zur Kühlung von elekronischen Bauelementen |
JP4480638B2 (ja) * | 2005-07-04 | 2010-06-16 | Necディスプレイソリューションズ株式会社 | 貫流型強制空冷ヒートシンクおよび投写型表示装置 |
JP2007123606A (ja) * | 2005-10-28 | 2007-05-17 | Toyota Motor Corp | 電気機器の冷却構造 |
DE102005058782A1 (de) * | 2005-12-09 | 2007-08-30 | Danfoss Silicon Power Gmbh | Kühleinrichtung für Halbleiterbauelemente |
US7628198B2 (en) * | 2005-12-21 | 2009-12-08 | Sun Microsystems, Inc. | Cooling technique using a heat sink containing swirling magneto-hydrodynamic fluid |
US7614445B2 (en) * | 2005-12-21 | 2009-11-10 | Sun Microsystems, Inc. | Enhanced heat pipe cooling with MHD fluid flow |
US7417858B2 (en) * | 2005-12-21 | 2008-08-26 | Sun Microsystems, Inc. | Cooling technique using multiple magnet array for magneto-hydrodynamic cooling of multiple integrated circuits |
JP4848187B2 (ja) * | 2006-01-17 | 2011-12-28 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
US7913719B2 (en) | 2006-01-30 | 2011-03-29 | Cooligy Inc. | Tape-wrapped multilayer tubing and methods for making the same |
TW200810676A (en) | 2006-03-30 | 2008-02-16 | Cooligy Inc | Multi device cooling |
JP2007294891A (ja) * | 2006-03-30 | 2007-11-08 | Dowa Metaltech Kk | 放熱器 |
US7715194B2 (en) | 2006-04-11 | 2010-05-11 | Cooligy Inc. | Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers |
US7905275B2 (en) * | 2006-04-20 | 2011-03-15 | The Boeing Company | Ceramic foam cold plate |
US8505616B2 (en) * | 2006-04-20 | 2013-08-13 | The Boeing Company | Hybrid ceramic core cold plate |
JP4675283B2 (ja) * | 2006-06-14 | 2011-04-20 | トヨタ自動車株式会社 | ヒートシンクおよび冷却器 |
JP2008027374A (ja) * | 2006-07-25 | 2008-02-07 | Fujitsu Ltd | 液冷ユニット用受熱器および液冷ユニット並びに電子機器 |
DE102006045564A1 (de) | 2006-09-25 | 2008-04-03 | Behr Gmbh & Co. Kg | Vorrichtung zur Kühlung elektrischer Elemente |
DE102007019576A1 (de) * | 2006-09-29 | 2008-04-03 | Osram Opto Semiconductors Gmbh | Modulträger für ein elektronisches Modul, elektronisches Modul mit einem derartigen Modulträger, Modulanordnung mit einer Mehrzahl von Modulen und Bausatz für eine Modulanordnung |
US7755185B2 (en) | 2006-09-29 | 2010-07-13 | Infineon Technologies Ag | Arrangement for cooling a power semiconductor module |
WO2008074164A1 (en) * | 2006-12-21 | 2008-06-26 | Abb Research Ltd | Semiconductor module |
US8030754B2 (en) * | 2007-01-31 | 2011-10-04 | Hewlett-Packard Development Company, L.P. | Chip cooling channels formed in wafer bonding gap |
TW200912621A (en) | 2007-08-07 | 2009-03-16 | Cooligy Inc | Method and apparatus for providing a supplemental cooling to server racks |
US7834448B2 (en) * | 2007-09-05 | 2010-11-16 | Delphi Technologies, Inc. | Fluid cooled semiconductor power module having double-sided cooling |
US8081462B2 (en) | 2007-09-13 | 2011-12-20 | Rockwell Automation Technologies, Inc. | Modular liquid cooling system |
TWI423403B (zh) * | 2007-09-17 | 2014-01-11 | Ibm | 積體電路疊層 |
US20090145581A1 (en) * | 2007-12-11 | 2009-06-11 | Paul Hoffman | Non-linear fin heat sink |
US9297571B1 (en) | 2008-03-10 | 2016-03-29 | Liebert Corporation | Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door |
US8250877B2 (en) | 2008-03-10 | 2012-08-28 | Cooligy Inc. | Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door |
CN102171897A (zh) | 2008-08-05 | 2011-08-31 | 固利吉股份有限公司 | 用于激光二极管冷却的微型换热器 |
US8120915B2 (en) * | 2008-08-18 | 2012-02-21 | General Electric Company | Integral heat sink with spiral manifolds |
US20100038774A1 (en) * | 2008-08-18 | 2010-02-18 | General Electric Company | Advanced and integrated cooling for press-packages |
US7817422B2 (en) * | 2008-08-18 | 2010-10-19 | General Electric Company | Heat sink and cooling and packaging stack for press-packages |
EP2161819A1 (en) * | 2008-09-08 | 2010-03-10 | Converteam Technology Ltd | Assemblies for electrical machines |
DK200801351A (da) * | 2008-09-29 | 2010-03-30 | Danamics Aps | Pumpehus til elektromagnetisk pumpe og fremgangsmåde til samling af et kølekredsløb omfattende pumpehuset |
EP2203039B1 (en) * | 2008-10-24 | 2011-10-26 | C.R.F. Società Consortile per Azioni | Automotive inverter assembly |
JP5412815B2 (ja) * | 2008-12-04 | 2014-02-12 | 富士通株式会社 | 冷却ジャケット、冷却ユニット、冷却システム及び電子機器 |
US8081478B1 (en) * | 2008-12-09 | 2011-12-20 | Lockheed Martin Corporation | Fluid cooled electronics module cover |
KR101031054B1 (ko) | 2009-07-30 | 2011-04-25 | 선문대학교 산학협력단 | 반도체 부품용 냉각장치 |
US8933557B2 (en) | 2009-08-10 | 2015-01-13 | Fuji Electric Co., Ltd. | Semiconductor module and cooling unit |
US8094454B2 (en) * | 2009-11-23 | 2012-01-10 | Delphi Technologies, Inc. | Immersion cooling apparatus for a power semiconductor device |
US8720828B2 (en) * | 2009-12-03 | 2014-05-13 | The Boeing Company | Extended plug cold plate |
JP4983959B2 (ja) * | 2010-04-27 | 2012-07-25 | 株式会社デンソー | スイッチング電源 |
US8218320B2 (en) | 2010-06-29 | 2012-07-10 | General Electric Company | Heat sinks with C-shaped manifolds and millichannel cooling |
JP5439309B2 (ja) * | 2010-07-28 | 2014-03-12 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
US9252069B2 (en) * | 2010-08-31 | 2016-02-02 | Teledyne Scientific & Imaging, Llc | High power module cooling system |
US8217557B2 (en) | 2010-08-31 | 2012-07-10 | Micron Technology, Inc. | Solid state lights with thermosiphon liquid cooling structures and methods |
US8659896B2 (en) * | 2010-09-13 | 2014-02-25 | Toyota Motor Engineering & Manufacturing North America, Inc. | Cooling apparatuses and power electronics modules |
US8405998B2 (en) | 2010-10-28 | 2013-03-26 | International Business Machines Corporation | Heat sink integrated power delivery and distribution for integrated circuits |
US8253234B2 (en) | 2010-10-28 | 2012-08-28 | International Business Machines Corporation | Optimized semiconductor packaging in a three-dimensional stack |
US8427833B2 (en) * | 2010-10-28 | 2013-04-23 | International Business Machines Corporation | Thermal power plane for integrated circuits |
WO2012070129A1 (ja) * | 2010-11-24 | 2012-05-31 | トヨタ自動車株式会社 | 積層型冷却器 |
CN103503131B (zh) * | 2011-04-26 | 2016-07-06 | 富士电机株式会社 | 半导体模块用冷却器以及半导体模块 |
US20130044431A1 (en) * | 2011-08-18 | 2013-02-21 | Harris Corporation | Liquid cooling of stacked die through substrate lamination |
EP2768017B1 (en) * | 2011-10-12 | 2019-10-23 | Fuji Electric Co., Ltd. | Cooler for semiconductor module, and semiconductor module |
AU2012232968B2 (en) | 2011-10-31 | 2014-11-13 | Abb Technology Ag | Thermosiphon cooler arrangement in modules with electric and/or electronic components |
AU2012232967B2 (en) * | 2011-10-31 | 2015-01-15 | Abb Technology Ag | Cabinet with modules having a thermosiphon cooler arrangement |
JP5953206B2 (ja) * | 2011-11-11 | 2016-07-20 | 昭和電工株式会社 | 液冷式冷却装置およびその製造方法 |
DE102011121064A1 (de) | 2011-12-14 | 2013-06-20 | Robert Bosch Gmbh | Kaskadierbares Kühlsystem |
JP5821702B2 (ja) * | 2012-03-01 | 2015-11-24 | 株式会社豊田自動織機 | 冷却器 |
KR20140142269A (ko) * | 2012-03-30 | 2014-12-11 | 쿄세라 코포레이션 | 유로 부재 및 이것을 사용한 열교환기와 반도체 장치 |
US20130306273A1 (en) * | 2012-05-18 | 2013-11-21 | International Business Machines Corporation | Apparatus for the compact cooling of an array of components |
WO2014018852A1 (en) * | 2012-07-27 | 2014-01-30 | Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University | Cold plate for electronics cooling |
US8643173B1 (en) | 2013-01-04 | 2014-02-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Cooling apparatuses and power electronics modules with single-phase and two-phase surface enhancement features |
JP6093186B2 (ja) * | 2013-01-11 | 2017-03-08 | 本田技研工業株式会社 | 半導体モジュール用冷却器 |
CN104167397B (zh) * | 2013-05-17 | 2017-12-05 | 国家电网公司 | 一种集成散热晶闸管 |
US9131631B2 (en) | 2013-08-08 | 2015-09-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Jet impingement cooling apparatuses having enhanced heat transfer assemblies |
CN105593988B (zh) * | 2013-10-02 | 2019-02-22 | 日产自动车株式会社 | 散热系统 |
JP2015090905A (ja) * | 2013-11-05 | 2015-05-11 | 株式会社豊田自動織機 | 放熱装置 |
US9357674B2 (en) * | 2013-12-18 | 2016-05-31 | International Business Machines Corporation | Liquid-cooling apparatus with integrated coolant filter |
DE102014214209B4 (de) * | 2014-07-22 | 2016-05-04 | Siemens Aktiengesellschaft | Kühlvorrichtung zur zielgerichteten Kühlung von elektronischen und/oder elektrischen Bauelementen, Umrichter mit einer derartigen Kühlvorrichtung sowie Elektro- oder Hybridfahrzeug mit einem derartigen Umrichter |
JP6394267B2 (ja) * | 2014-10-15 | 2018-09-26 | 富士通株式会社 | 冷却装置及び電子機器 |
DE102015106552B4 (de) * | 2015-04-28 | 2022-06-30 | Infineon Technologies Ag | Elektronisches Modul mit Fluid-Kühlkanal und Verfahren zum Herstellen desselben |
US20170363375A1 (en) * | 2015-06-30 | 2017-12-21 | Georgia Tech Research Corporation | Heat exchanger with variable density feature arrays |
EP3116292B1 (de) | 2015-07-06 | 2021-03-17 | EDAG Engineering AG | Elektronikmodul mit generativ erzeugtem kühlkörper |
CN205491581U (zh) * | 2015-11-30 | 2016-08-17 | 比亚迪股份有限公司 | Igbt散热模组以及具有其的igbt模组 |
JP6593219B2 (ja) * | 2016-02-19 | 2019-10-23 | 株式会社オートネットワーク技術研究所 | 導電部材 |
DE102016106180A1 (de) * | 2016-04-05 | 2017-10-05 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Kühlvorrichtung für die Kühlung wenigstens einer elektrischen Komponente eines Fahrzeugs |
US11022383B2 (en) | 2016-06-16 | 2021-06-01 | Teledyne Scientific & Imaging, Llc | Interface-free thermal management system for high power devices co-fabricated with electronic circuit |
US10462940B2 (en) * | 2016-07-08 | 2019-10-29 | CPS Technologies | Thermal management device for heat generating power electronics incorporating high thermal conductivity pyrolytic graphite and cooling tubes |
CN109691251A (zh) * | 2016-09-23 | 2019-04-26 | 住友精密工业株式会社 | 冷却装置 |
KR101950442B1 (ko) | 2017-04-28 | 2019-02-20 | 엘에스산전 주식회사 | 서브모듈 |
US10319654B1 (en) | 2017-12-01 | 2019-06-11 | Cubic Corporation | Integrated chip scale packages |
RU183433U1 (ru) * | 2018-05-29 | 2018-09-24 | Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" | Радиоэлектронный блок со встроенной системой распределения охлаждающей жидкости |
DE112019007407T5 (de) * | 2019-05-30 | 2022-02-17 | Mitsubishi Electric Corporation | Halbleitervorrichtung |
EP3745834A1 (en) * | 2019-05-31 | 2020-12-02 | ABB Schweiz AG | Apparatus for conducting heat |
US11134590B2 (en) * | 2020-01-13 | 2021-09-28 | Ford Global Technologies, Llc | Automotive power inverter with cooling channels and cooling pins |
CN113645799A (zh) * | 2020-04-27 | 2021-11-12 | 富泰华工业(深圳)有限公司 | 用于电子装置的散热结构及电子装置 |
US11175102B1 (en) * | 2021-04-15 | 2021-11-16 | Chilldyne, Inc. | Liquid-cooled cold plate |
US20230128951A1 (en) * | 2021-10-27 | 2023-04-27 | Carrier Corporation | Heat exchanger for power electronics |
EP4250350A1 (en) * | 2022-03-21 | 2023-09-27 | Hitachi Energy Switzerland AG | Power component, power submodule and power module |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5896757A (ja) * | 1981-12-04 | 1983-06-08 | Hitachi Ltd | 半導体装置 |
DE3329325A1 (de) * | 1982-09-03 | 1984-03-08 | Peter 2563 Ipsach Herren | Kuehlkoerper zur fluessigkeitskuehlung wenigstens eines elektrischen leistungselementes |
EP0120500B1 (en) * | 1983-03-29 | 1989-08-16 | Nec Corporation | High density lsi package for logic circuits |
US4724611A (en) * | 1985-08-23 | 1988-02-16 | Nec Corporation | Method for producing semiconductor module |
US4765400A (en) * | 1987-04-14 | 1988-08-23 | International Business Machines Corp. | Circuit module with pins conducting heat from floating plate contacting heat producing device |
DE4017749C2 (de) * | 1989-03-18 | 1993-12-16 | Abb Patent Gmbh | Verfahren zur Herstellung eines Flüssigkeitskühlkörpers aus elektrisch isolierendem Material |
DE4100145A1 (de) * | 1990-01-10 | 1991-07-11 | Murata Manufacturing Co | Substrat fuer die montage von integrierten schaltkreisen und es umfassendes elektronisches bauteil |
DE9201158U1 (de) * | 1992-01-31 | 1992-03-26 | ABB Patent GmbH, 6800 Mannheim | Flüssigkeitskühldose aus zwei Keramikdosenhälften |
DE4217289C2 (de) * | 1992-05-25 | 1996-08-29 | Mannesmann Ag | Fluidgekühlte Leistungstransistoranordnung |
US5316075A (en) * | 1992-12-22 | 1994-05-31 | Hughes Aircraft Company | Liquid jet cold plate for impingement cooling |
US5349498A (en) * | 1992-12-23 | 1994-09-20 | Hughes Aircraft Company | Integral extended surface cooling of power modules |
DE9320574U1 (de) * | 1993-12-22 | 1994-09-22 | Siemens Nixdorf Informationssysteme AG, 33106 Paderborn | Anordnung zum Verbessern des Wärmeüberganges zwischen einem elektrischen Bauelement und einer Wärmesenke |
JPH07211832A (ja) * | 1994-01-03 | 1995-08-11 | Motorola Inc | 電力放散装置とその製造方法 |
DE19506091B4 (de) * | 1995-02-22 | 2005-02-10 | Schulz-Harder, Jürgen, Dr.-Ing. | Kühlelement |
-
1996
- 1996-10-23 DE DE19643717A patent/DE19643717A1/de not_active Withdrawn
-
1997
- 1997-09-08 JP JP9241607A patent/JPH10125838A/ja active Pending
- 1997-09-30 EP EP97810717A patent/EP0838988A3/de not_active Withdrawn
- 1997-10-21 US US08/955,094 patent/US5978220A/en not_active Expired - Fee Related
- 1997-10-23 CN CN97121215A patent/CN1114339C/zh not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101689537B (zh) * | 2007-04-26 | 2013-08-21 | 陶瓷技术有限责任公司 | 用于元件或电路的冷却盒 |
CN102770006A (zh) * | 2011-05-05 | 2012-11-07 | 赛米控电子股份有限公司 | 液体冷却的功率半导体模块 |
CN102655710A (zh) * | 2012-05-12 | 2012-09-05 | 浙江大学 | 带有散热结构的功率模块dbc板 |
CN114207812A (zh) * | 2019-07-25 | 2022-03-18 | 日立能源瑞士股份公司 | 包括冷却器和用于功率半导体模块的基板的装置 |
Also Published As
Publication number | Publication date |
---|---|
EP0838988A2 (de) | 1998-04-29 |
CN1114339C (zh) | 2003-07-09 |
DE19643717A1 (de) | 1998-04-30 |
JPH10125838A (ja) | 1998-05-15 |
US5978220A (en) | 1999-11-02 |
EP0838988A3 (de) | 1999-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1114339C (zh) | 用于大功率半导体模件的液体冷却装置 | |
JP5381561B2 (ja) | 半導体冷却装置 | |
US10985089B2 (en) | Semiconductor cooling arrangement | |
US11276622B2 (en) | Inverter arrangement | |
US7030520B2 (en) | Drive device | |
US6016007A (en) | Power electronics cooling apparatus | |
JP2660879B2 (ja) | 半導体スイッチを有する電気機械 | |
EP2207201A2 (en) | Cooling unit and flow distributing element for use in such unit | |
WO2013054615A1 (ja) | 半導体モジュール用冷却器及び半導体モジュール | |
US20100038774A1 (en) | Advanced and integrated cooling for press-packages | |
CN1180856A (zh) | 用于将热量由ic传导至散热片的安装于pc板通孔上的导热基片 | |
TW201421622A (zh) | 熱交換器以及半導體模組 | |
CA2575817A1 (en) | Cooling structure of power conversion equipment | |
WO2006118031A1 (ja) | 絶縁回路基板及びパワーモジュール用基板 | |
CN109244824A (zh) | Ld模块冷却装置和激光装置 | |
CN104486901A (zh) | 散热绝缘衬板,包括该衬板的封装模块及其制作方法 | |
KR930015998A (ko) | 고전력 전자 소자에 의해 발생된 열의 소산성이 개선된 회로 팩 | |
AU2004216692A1 (en) | Electrical bus with associated porous metal heat sink and method of manufacturing same | |
US5003376A (en) | Cooling of large high power semi-conductors | |
CN101320715A (zh) | 半导体器件 | |
CN111584446A (zh) | 半导体模块、车辆及制造方法 | |
EP3758059A1 (en) | Power inverter device, arrangement and corresponding operating method | |
CN202585404U (zh) | Igbt模块 | |
CN110797318A (zh) | 一种双面热管冷却的igbt封装结构 | |
CN116544201A (zh) | 一种双面结构的igbt热控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |