CN117936581A - 一种改进型沟槽型碳化硅mosfet器件及其制造方法 - Google Patents

一种改进型沟槽型碳化硅mosfet器件及其制造方法 Download PDF

Info

Publication number
CN117936581A
CN117936581A CN202311778092.1A CN202311778092A CN117936581A CN 117936581 A CN117936581 A CN 117936581A CN 202311778092 A CN202311778092 A CN 202311778092A CN 117936581 A CN117936581 A CN 117936581A
Authority
CN
China
Prior art keywords
type
silicon carbide
layer
type silicon
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311778092.1A
Other languages
English (en)
Inventor
温建功
曹琳
刘青
郑丽君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Longfei Electric Technology Co ltd
Original Assignee
Xi'an Longfei Electric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Longfei Electric Technology Co ltd filed Critical Xi'an Longfei Electric Technology Co ltd
Priority to CN202311778092.1A priority Critical patent/CN117936581A/zh
Publication of CN117936581A publication Critical patent/CN117936581A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于半导体技术领域,具体公开了一种改进型沟槽型碳化硅MOSFET器件及其制造方法,在纵向沟槽内部设有被IPO介质层隔离的上下分立多晶硅,其中N型上多晶硅的上表面被层间绝缘介质覆盖,侧面被沟道栅氧化层包裹,P型下多晶硅的左右表面被屏蔽栅氧化层包裹,下表面被P+型埋层包裹;每个纵向沟槽的底部均被P+型埋层包覆,其中P+型埋层通过下多晶硅连接到源极金属。本发明沟槽型碳化硅器件处于反向耐压状态时,沟槽栅极接零电位,此时P+型埋层区通过下多晶硅与源极连接能够保护沟道栅氧化层和屏蔽栅氧化层。本发明专利通过降低栅氧化层和屏蔽栅氧化层的电场强度,提高器件的可靠性。

Description

一种改进型沟槽型碳化硅MOSFET器件及其制造方法
技术领域
本发明属于半导体技术领域,具体涉及一种改进型沟槽型碳化硅MOSFET器件及其制造方法。
背景技术
碳化硅MOSFET器件包括平面型与沟槽型两种结构,平面型碳化硅碳化硅MOSFET器件由于结构的限制在应用中存在诸多局限性,沟槽MOSFET与平面VDMOS器件相比,导电沟道位于垂直方向,消除了平面VDMOS的寄生JFET电阻,减小了元胞尺寸,提高了元胞密度,从而使得电流密度显著提高,大幅度降低了器件的导通电阻。
鉴于沟槽型碳化硅MOSFET的优势,越来越多的研究机构对沟槽型碳化硅MOSFET提高了研发力度,然而现有技术的制备方案中制备出的沟槽型碳化硅MOSFET对栅氧化层的电场保护不够,特别是拐角处的栅氧化层容易被电场击穿。
发明内容
为了弥补上述现有技术的不足,本发明提出一种改进型沟槽型碳化硅MOSFET器件及其制造方法。
本发明的技术方案如下:
一种沟槽型碳化硅MOSFET器件,包括漏极金属及所述漏极金属上方的N+型碳化硅衬底,在所述N+型碳化硅衬底上方依次为N-型碳化硅外延层、P+型埋层、N型碳化硅外延层、P型体区、N+型源区、P+型源区以及层间绝缘介质层和源极金属,在所述N型碳化硅外延层远离所述N+型碳化硅衬底的一端设有纵向沟槽,纵向沟槽贯穿N型碳化硅外延层和P型体区,下端延伸至N-型碳化硅外延层;
所述纵向沟槽底部被P+型埋层包覆,纵向沟槽内部设有被IPO介质层隔离的上下分立多晶硅,N型上多晶硅的上表面被层间绝缘介质层覆盖,侧面被沟道栅氧化层包裹,P型下多晶硅的左右表面被屏蔽栅氧化层包裹,下表面被P+型埋层包裹;每个纵向沟槽的底部均被P+型埋层包覆,其中P+型埋层通过P型下多晶硅连接到源极金属。
进一步地,所述N型碳化硅外延层的掺杂浓度大于所述N-型碳化硅外延层的掺杂浓度。
进一步地,所述纵向沟槽的深度为2~10um。
进一步地,所述纵向沟槽的宽度为1~2um。
进一步地,所述屏蔽栅氧化层的厚度为0.3~0.8um。
进一步地,所述P型下多晶硅的宽度为0.4~1.4um。
进一步地,所述P+型埋层的宽度大于所述纵向沟槽的宽度,P+型埋层比沟纵向槽单边宽0.3~1um。
一种如上述沟槽型碳化硅MOSFET器件的制造方法,包括如下步骤:
步骤一:选取高浓度N+型碳化硅衬底作为漏极,并生长N-型碳化硅外延层;
步骤二:在所述N-型碳化硅外延层上,利用掩膜层选择性注入受主离子形成P+型埋层;
步骤三:在所述N-型碳化硅外延层顶部,生长N型碳化硅外延层;
步骤四:在所述N型碳化硅外延层顶部,利用掩膜层选择性注入受主离子形成P型体区;
步骤五:在所述N型碳化硅外延层顶部,利用掩膜层选择性注入施主和受主离子形成N+型源区和P+型源区;
步骤六:在所述N型外延层顶部,利用掩膜层选择性刻蚀出纵向沟槽,所述纵向沟槽穿过N型碳化硅外延层延伸至N-型碳化硅外延层中,并且纵向沟槽的底部被P+型埋层包覆;
步骤七:利用高温炉管热氧化和低压化学气相沉积的方式在沟槽侧壁生成屏蔽栅氧化层,利用等离子刻蚀的方式刻蚀掉槽底氧化层;
步骤八:沟槽内部填充P型掺杂的多晶硅,利用掩膜层选择性刻蚀掉沟槽上方的P型多晶硅和氧化层,形成沟槽上部空白区域;
步骤九:在P型下多晶硅上表面,利用高密度等离子体气相沉积技术形成IPO介质层;
步骤十:生长沟道栅氧化层;
步骤十一:淀积N型上多晶硅,利用化学机械研磨技术磨掉剩余的N型多晶硅;
步骤十二:在所述N型碳化硅外延层的上表面淀积层间绝缘介质层,利用掩膜层选择性刻蚀后淀积金属形成源极金属;在背面淀积金属形成漏极金属。
本发明的有益技术效果如下:
本发明结构在器件处于反向耐压状态时,栅极接零电位或者负电位,此时P+埋层区(P型屏蔽区)通过下多晶硅与源极连接能够保护沟道栅氧化层和屏蔽栅氧化层,提高器件的击穿电压。同时下多晶硅结构与P+埋层结构的引入能够增加器件的横向耗尽,可以使用掺杂量比较高的N型碳化硅外延,降低器件的导通电阻。
附图说明
图1为沟槽型碳化硅MOSFET器件不同位置的剖面结构示意图。
图2为未加保护结构的沟槽型碳化硅MOSFET器件的剖面结构示意图。
图3为传统沟槽碳化硅器件在反向1900V耐压时底部氧化层电场强度仿真图及对应示意图。
图4为本发明沟槽碳化硅器件在反向1900V耐压时底部氧化层电场强度仿真图及对应示意图。
图5为形成N-型碳化硅外延层后的剖面结构示意图。
图6为形成P+型埋层区后的剖面结构示意图。
图7为生长N型碳化硅外延层后的剖面结构示意图。
图8为形成P型体区后的剖面结构示意图。
图9为形成P+型源区和N+型源区后的剖面结构示意图。
图10为形成纵向沟槽后的剖面结构示意图。
图11为形成沟槽侧壁氧化层,刻蚀掉槽底氧化层后的剖面结构示意图。
图12为填充P型掺杂的多晶硅后,刻蚀掉沟槽上方的P型多晶硅和部分氧化层后的剖面结构示意图。
图13为形成IPO介质层后的剖面结构示意图。
图14为生长完栅氧化层后的剖面结构示意图。
图15为淀积N型多晶硅,研磨掉顶部剩余多晶硅后的剖面结构示意图。
图16为形成绝缘介质、源极和漏极金属后的剖面结构示意图。
附图标记:01-N+型碳化硅衬底;02-N-型碳化硅外延层;03-P+型埋层;04-N型碳化硅外延层;05-P型体区;06-N+型源区;07-P+型源区;08-纵向沟槽;09-屏蔽栅氧化层;10-P型下多晶硅;11-沟槽上部空白区域;12-IPO介质层;13-沟道栅氧化层;14-N型上多晶硅;15-绝缘介质层;16-源极金属;17-漏极金属。
具体实施方式
为了使本领域技术人员更好地理解本发明方案,下面将通过实施例与附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本实施例通过制备1-2um宽的碳化硅沟槽,在沟槽的侧壁制备沟道栅氧化层13和屏蔽栅氧化层09,通过干法等离子刻蚀工艺去除槽底的屏蔽栅氧化层,利用IPO介质层12将上下多晶硅隔离开,P+型埋层03通过P型下多晶硅10与源极金属16连接。具体结构参见图1所示。器件反向耐压时,P+型埋层03对沟道栅氧化层13和屏蔽栅氧化层09形成电场保护,防止拐角处栅氧化层被电场击穿。
上述沟槽型碳化硅MOSFET器件的制造方法,具体包括如下步骤:
步骤一:选取高浓度N+型衬底作为漏极,N+型衬底采用碳化硅,碳化硅衬底可以是4H-SiC、6H-SiC或3C-SiC等材料,一般使用最多的是4H-SiC材料,然后外延生长N-型碳化硅外延层02,接着清洗外延片,得到如图5所示的器件结构;
步骤二:在所述N-型碳化硅外延层02上淀积氧化层,通过光刻和刻蚀工艺刻蚀出离子注入窗口,选择性注入铝离子形成P+型埋层03,离子注入的能量在50-200KeV,去除掩膜层得到如图6所示的器件结构;
步骤三:在所述N-碳化硅外延层02上生长N型碳化硅外延层04,得到如图7所示的器件结构;
步骤四:在N型碳化硅外延层04的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出离子注入的窗口,选择性注入铝离子形成P型体区05,然后去除掩膜层,得到如图8所示的器件结构;
步骤五:在N型碳化硅外延层04的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出离子注入的窗口选择性注入氮离子形成N+型源区06,去除掩膜层后,重新在N型碳化硅外延层04的顶部淀积掩膜层,通过光刻工艺和刻蚀工艺刻蚀出离子注入的窗口选择性注入铝离子形成P+型源区07,去除掩膜版后得到如图9所示的器件结构;
步骤六:在N型碳化硅外延层04的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出沟槽刻蚀的窗口,利用等离子刻蚀选择性不同的特点向下刻蚀出纵向沟槽08,沟槽的底部被P+型埋层03包覆,得到如图10所示的器件结构;
步骤七:首先在纵向沟槽08内生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长和低压化学气相沉积的方式生长屏蔽栅氧化层09,通过干法刻蚀的方式去除槽底的氧化层,经过NRCA清洗后进行退火处理,最后去除掩膜层,得到如图11所示的器件结构;
步骤八:在纵向沟槽08内淀积P型下多晶硅10,通过化学机械研磨去除掉表面的多晶硅,之后通过干法和湿法刻蚀的方式分别去除部分多晶硅和氧化层,得到如图12所示的器件结构;
步骤九:在所述P型下多晶硅的上表面利用高密度等离子体气相沉积技术形成IPO介质层12,得到如图13所示的器件结构;
步骤十:生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长的方式生长沟道栅氧化层13并进行退火处理,得到如图14所示的器件结构;
步骤十一:在纵向沟槽08内淀积沟槽栅N型下多晶硅14,接着去除N型外延层04表面多余的二氧化硅和多晶硅,形成沟槽中的栅极结构,得到如图15所示的器件结构;
步骤十二:在N型外延层04表面淀积绝缘介质层15,并通过光刻工艺刻蚀出金属接触孔,淀积源极金属16,背面淀积金属形成漏极金属17,得到如图16所示的器件结构。
对比例
沟槽型碳化硅MOSFET器件最主要的问题是反向耐压状态下栅氧化层的电场强度过高,为了保持碳化硅MOSFET器件的长期可靠性,在器件反向耐压时栅氧化层的最高电场强度需要被限制在3MV/cm以下,未加保护结构的沟槽型碳化硅MOSFET反向耐压状态下栅氧化层场强常常达到8MV/cm以上,远远高于电场强度工作可靠性的要求。未加保护结构的沟槽型碳化硅MOSFET器件的剖面图如图2所示,该结构的碳化硅MOSFET在反向1900V耐压状态下的电场强度分布如图3所示,氧化层场强达到8MV/cm以上。本发明结构的沟槽型碳化硅MOSFET器件在反向1900V耐压状态下的电场强度分布如图4所示,氧化层场强降至1MV/cm以下。本发明结构的沟槽碳化硅MOSFET通过引入P+型埋层03,将沟槽氧化层的电场降低至1MV/cm以下,提高了器件的可靠性。

Claims (8)

1.一种沟槽型碳化硅MOSFET器件,其特征在于:包括漏极金属(17)及所述漏极金属(17)上方的N+型碳化硅衬底(01),在所述N+型碳化硅衬底(01)上方依次为N-型碳化硅外延层(02)、P+型埋层(03)、N型碳化硅外延层(04)、P型体区(05)、N+型源区(06)、P+型源区(07)以及层间绝缘介质层(15)和源极金属(16),在所述N型碳化硅外延层(04)远离所述N+型碳化硅衬底(01)的一端设有纵向沟槽(08),纵向沟槽(08)贯穿N型碳化硅外延层(04)和P型体区(05),下端延伸至N-型碳化硅外延层(02);
所述纵向沟槽(08)底部被P+型埋层(03)包覆,纵向沟槽(08)内部设有被IPO介质层(12)隔离的上下分立多晶硅,N型上多晶硅(14)的上表面被层间绝缘介质层(15)覆盖,侧面被沟道栅氧化层(13)包裹,P型下多晶硅(10)的左右表面被屏蔽栅氧化层(09)包裹,下表面被P+型埋层(03)包裹;每个纵向沟槽(08)的底部均被P+型埋层(03)包覆,其中P+型埋层(03)通过P型下多晶硅(10)连接到源极金属(16)。
2.根据权利要求1所述的沟槽型碳化硅MOSFET器件,其特征在于:所述N型碳化硅外延层(04)的掺杂浓度大于所述N-型碳化硅外延层(02)的掺杂浓度。
3.根据权利要求2所述的沟槽型碳化硅MOSFET器件,其特征在于:所述纵向沟槽(08)的深度为2~10um。
4.根据权利要求3所述的沟槽型碳化硅MOSFET器件,其特征在于:所述纵向沟槽(08)的宽度为1~2um。
5.根据权利要求4所述的沟槽型碳化硅MOSFET器件,其特征在于:所述屏蔽栅氧化层(09)的厚度为0.3~0.8um。
6.根据权利要求5所述的沟槽型碳化硅MOSFET器件,其特征在于:所述P型下多晶硅(10)的宽度为0.4~1.4um。
7.根据权利要求6所述的沟槽型碳化硅MOSFET器件,其特征在于:所述P+型埋层(03)的宽度大于所述纵向沟槽(08)的宽度,P+型埋层(03)比沟纵向槽(08)单边宽0.3~1um。
8.一种如权利要求1所述的沟槽型碳化硅MOSFET器件的制造方法,其特征在于,包括如下步骤:
步骤一:选取高浓度N+型碳化硅衬底(01)作为漏极,并生长N-型碳化硅外延层(02);
步骤二:在所述N-型碳化硅外延层(02)上,利用掩膜层选择性注入受主离子形成P+型埋层(03);
步骤三:在所述N-型碳化硅外延层(02)顶部,生长N型碳化硅外延层(04);
步骤四:在所述N型碳化硅外延层(04)顶部,利用掩膜层选择性注入受主离子形成P型体区(05);
步骤五:在所述N型碳化硅外延层(04)顶部,利用掩膜层选择性注入施主和受主离子形成N+型源区(06)和P+型源区(07);
步骤六:在所述N型外延层(04)顶部,利用掩膜层选择性刻蚀出纵向沟槽(08),所述纵向沟槽(08)穿过N型碳化硅外延层(04)延伸至N-型碳化硅外延层(02)中,并且纵向沟槽(08)的底部被P+型埋层(03)包覆;
步骤七:利用高温炉管热氧化和低压化学气相沉积的方式在沟槽侧壁生成屏蔽栅氧化层(09),利用等离子刻蚀的方式刻蚀掉槽底氧化层;
步骤八:沟槽内部填充P型掺杂的多晶硅,利用掩膜层选择性刻蚀掉沟槽上方的P型多晶硅和氧化层,形成沟槽上部空白区域(11);
步骤九:在P型下多晶硅(10)上表面,利用高密度等离子体气相沉积技术形成IPO介质层(12);
步骤十:生长沟道栅氧化层(13);
步骤十一:淀积N型上多晶硅(14),利用化学机械研磨技术磨掉剩余的N型多晶硅;
步骤十二:在所述N型碳化硅外延层(04)的上表面淀积层间绝缘介质层(15),利用掩膜层选择性刻蚀后淀积金属形成源极金属(16);在背面淀积金属形成漏极金属(17)。
CN202311778092.1A 2023-12-22 2023-12-22 一种改进型沟槽型碳化硅mosfet器件及其制造方法 Pending CN117936581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311778092.1A CN117936581A (zh) 2023-12-22 2023-12-22 一种改进型沟槽型碳化硅mosfet器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311778092.1A CN117936581A (zh) 2023-12-22 2023-12-22 一种改进型沟槽型碳化硅mosfet器件及其制造方法

Publications (1)

Publication Number Publication Date
CN117936581A true CN117936581A (zh) 2024-04-26

Family

ID=90758434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311778092.1A Pending CN117936581A (zh) 2023-12-22 2023-12-22 一种改进型沟槽型碳化硅mosfet器件及其制造方法

Country Status (1)

Country Link
CN (1) CN117936581A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118248737A (zh) * 2024-05-27 2024-06-25 无锡市查奥微电子科技有限公司 沟槽型碳化硅mosfet器件及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630758A (zh) * 2017-03-24 2018-10-09 英飞凌科技股份有限公司 碳化硅半导体器件和制造方法
CN109037071A (zh) * 2018-07-19 2018-12-18 厦门芯代集成电路有限公司 一种屏蔽栅功率器件的制备方法
CN112687745A (zh) * 2020-12-29 2021-04-20 电子科技大学 碳化硅沟槽mosfet器件及制备方法
CN113990935A (zh) * 2021-11-25 2022-01-28 芜湖启迪半导体有限公司 一种沟槽碳化硅mosfet器件及其制备方法
CN116110944A (zh) * 2023-04-12 2023-05-12 江苏应能微电子股份有限公司 一种基于Resurf效应的屏蔽栅沟槽型MOSFET器件及其制备方法
CN116314341A (zh) * 2023-05-25 2023-06-23 江苏应能微电子股份有限公司 内置esd保护二极管的sgt器件及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630758A (zh) * 2017-03-24 2018-10-09 英飞凌科技股份有限公司 碳化硅半导体器件和制造方法
CN109037071A (zh) * 2018-07-19 2018-12-18 厦门芯代集成电路有限公司 一种屏蔽栅功率器件的制备方法
CN112687745A (zh) * 2020-12-29 2021-04-20 电子科技大学 碳化硅沟槽mosfet器件及制备方法
CN113990935A (zh) * 2021-11-25 2022-01-28 芜湖启迪半导体有限公司 一种沟槽碳化硅mosfet器件及其制备方法
CN116110944A (zh) * 2023-04-12 2023-05-12 江苏应能微电子股份有限公司 一种基于Resurf效应的屏蔽栅沟槽型MOSFET器件及其制备方法
CN116314341A (zh) * 2023-05-25 2023-06-23 江苏应能微电子股份有限公司 内置esd保护二极管的sgt器件及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118248737A (zh) * 2024-05-27 2024-06-25 无锡市查奥微电子科技有限公司 沟槽型碳化硅mosfet器件及其制备方法
CN118248737B (zh) * 2024-05-27 2024-10-01 无锡市查奥微电子科技有限公司 沟槽型碳化硅mosfet器件及其制备方法

Similar Documents

Publication Publication Date Title
CN106876485B (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法
JP6528200B2 (ja) 半導体装置
WO2012127821A1 (ja) 半導体装置およびその製造方法
CN114420761B (zh) 一种耐高压碳化硅器件及其制备方法
CN116469923B (zh) 高可靠性沟槽型碳化硅mosfet器件及其制造方法
CN117936581A (zh) 一种改进型沟槽型碳化硅mosfet器件及其制造方法
US7192872B2 (en) Method of manufacturing semiconductor device having composite buffer layer
CN117577688A (zh) 一种沟槽型碳化硅mosfet器件及其制造方法
US9704957B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
CN114284358A (zh) 一种碳化硅功率器件及其制备方法
CN115148820A (zh) 一种SiC沟槽MOSFET器件及其制造方法
CN116759461A (zh) 一种高温稳定性的功率mosfet器件及其制备方法
CN117038455A (zh) Mosfet结构及工艺方法
CN116154000A (zh) 多级沟槽型SiC MOSFET器件及其制造方法
CN117727772A (zh) 一种碳化硅超结mosfet器件及其制备方法
CN115377200A (zh) 一种半导体器件及其制备方法
CN115714141A (zh) JFET注入型N沟道SiC MOSFET器件及其制备方法
WO2012105170A1 (ja) 半導体装置およびその製造方法
CN113488389B (zh) 一种沟槽栅双层超结vdmosfet半导体器件及其制备方法
CN116314340B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
CN117316992A (zh) 一种双栅结构的碳化硅mosfet器件及其制备方法
CN115799311B (zh) 高压碳化硅功率器件终端及其制造方法
CN108231560B (zh) 一种控制电极制备方法及mosfet功率器件
KR102365375B1 (ko) 둥근 트렌치 코너를 갖는 트렌치 게이트형 모스펫 제조방법
CN104900701A (zh) 带有双区浮动结的碳化硅umosfet器件及制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination