CN115377200A - 一种半导体器件及其制备方法 - Google Patents

一种半导体器件及其制备方法 Download PDF

Info

Publication number
CN115377200A
CN115377200A CN202211081902.3A CN202211081902A CN115377200A CN 115377200 A CN115377200 A CN 115377200A CN 202211081902 A CN202211081902 A CN 202211081902A CN 115377200 A CN115377200 A CN 115377200A
Authority
CN
China
Prior art keywords
doping
epitaxial layer
doped
gate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211081902.3A
Other languages
English (en)
Inventor
查祎英
仇坤
徐傲雪
史志扬
骆健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanruilianyan Semiconductor Co ltd
Original Assignee
Nanruilianyan Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanruilianyan Semiconductor Co ltd filed Critical Nanruilianyan Semiconductor Co ltd
Priority to CN202211081902.3A priority Critical patent/CN115377200A/zh
Publication of CN115377200A publication Critical patent/CN115377200A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors

Abstract

本发明公开了一种半导体器件及其制备方法,本发明刻蚀的沟槽结构使得导电沟道位于沟槽的侧壁之上,元胞尺寸取决于SiC刻蚀精细程度,不受沟道长度、栅‑源隔离和JFET区宽度的限制,可实现元胞尺寸减小、沟道密度提高、导通电阻下降的有益效果,并且本发明的基区位于沟槽之下,具有屏蔽强电场,保护栅氧介质的有益效果,且不增加源区到漏区的导通电阻。

Description

一种半导体器件及其制备方法
技术领域
本发明涉及一种半导体器件及其制备方法,具体涉及一种SiC MOSFET器件及其制备方法,属于半导体功率器件制备技术领域。
背景技术
SiC MOSFET作为一种重要的开关型功率器件,兼备了硅MOSFET的高频开关特性及硅IGBT的高电压阻断和低导通损耗能力,且易于驱动控制,是SiC功率器件领域内研究的重点。
SiC MOSFET器件技术不断推陈出新,据报导目前阻断电压超过10kV,单芯片通流能力超过200A。在器件结构上已经发展出了平面栅、沟槽栅等传统硅功率器件的关键技术;其中,平面栅技术的大部分结构都处于同一平面上,元胞尺寸受限,且导电沟道处于表面,沟道迁移率受限于现有工艺,沟道电阻降低的幅度有限;沟槽栅技术则需要单独对沟槽栅底部进行合适的电场屏蔽,以确保栅氧不会暴露在过强的电场下,难以兼顾强场屏蔽和低阻电流通路。
发明内容
本发明提供了一种半导体器件及其制备方法,解决了背景技术中披露的问题。
为了解决上述技术问题,本发明所采用的技术方案是:
一种半导体器件,包括SiC单晶衬底,SiC单晶衬底的背面设置有漏极金属电极,SiC单晶衬底正面外延有第一掺杂外延层,第一掺杂外延层的顶面外延有第二掺杂外延层,第二掺杂外延层的顶面两侧均注入有第二掺杂类型杂质,形成第二重掺杂基区,第二重掺杂基区延伸至第一掺杂外延层内,第二重掺杂基区的顶面和第二掺杂外延层的顶面构成注入面,注入面的部分区域注入有第一掺杂类型杂质,形成第一重掺杂源区,第一重掺杂源区的顶面和第二重掺杂基区的顶面构成刻蚀面,刻蚀面上刻蚀有沟槽,沟槽的两侧延伸至第二重掺杂基区内,沟槽的中部延伸至第一掺杂外延层内,沟槽的内壁上氧化有栅氧介质,沟槽内从上往下依次设置有栅极金属电极、栅-源隔离介质和多晶硅栅,刻蚀面上设置有源极金属电极。
SiC单晶衬底正面和第一掺杂外延层之间设置有第一掺杂缓冲层。
第一掺杂为N掺杂,第二掺杂为P掺杂。
第一掺杂为P掺杂,第二掺杂为N掺杂。
所有沟槽相互平行,沟槽横穿刻蚀面,沟槽与所述半导体器件的纵向线垂直或有一定夹角。
多晶硅栅覆盖整个沟槽槽底和槽壁、或者部分覆盖沟槽槽底和槽壁。
一种半导体器件的制备方法,包括:
准备SiC单晶衬底,在SiC单晶衬底正面外延形成第一掺杂外延层;
在第一掺杂外延层上,外延形成第二掺杂外延层;
在第二掺杂外延层上形成掩蔽层,图形化去除掩蔽层两侧部分,离子注入第二掺杂类型杂质,形成第二重掺杂基区,去除剩余掩蔽层;
在第二重掺杂基区的顶面和第二掺杂外延层的顶面形成掩蔽层,图形化去除部分区域的掩蔽层,离子注入第一掺杂类型杂质,形成第一重掺杂源区,去除剩余掩蔽层;
退火,以激活注入的掺杂杂质;
在第一重掺杂源区的顶面和第二重掺杂基区的顶面形成掩蔽层,并刻蚀形成沟槽;
牺牲氧化,在沟槽的内壁形成栅氧介质;
淀积掺杂多晶硅填充沟槽,图形化形成多晶硅栅;
淀积栅-源隔离介质,并图形化形成接触孔;
淀积金属,退火形成源极接触,图形化形成栅极金属电极和源极金属电极;
制作SiC单晶衬底背面漏电极,并退火形成漏极金属电极;
制作正面钝化保护介质,并图形化形成栅极金属电极和源极金属电极接触窗口。
本发明所达到的有益效果:1、本发明刻蚀的沟槽结构使得导电沟道位于沟槽的侧壁之上,元胞尺寸取决于SiC刻蚀精细程度,不受沟道长度、栅-源隔离和JFET区宽度的限制,可实现元胞尺寸减小、沟道密度提高、导通电阻下降的有益效果,并且本发明的基区位于沟槽之下,具有屏蔽强电场,保护栅氧介质的有益效果,且不增加源区到漏区的导通电阻;2、本发明的沟槽方向可以与基区成一定的偏角,使得位于沟槽侧壁的导电沟道可以在特定偏角的晶向上,以取得更高的沟道迁移率,而不牺牲电压阻断能力。
附图说明
图1为本发明第一实例的俯视图;
图2为本发明第一实例的内部结构图;
图3为本发明第二实例的俯视图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1和2所示,一种半导体器件,包括SiC单晶衬底、漏极金属电极8、第一掺杂外延层1、第二掺杂外延层2、第二重掺杂基区4、第一重掺杂源区3、沟槽5、栅氧介质、栅极金属电极、栅-源隔离介质、多晶硅栅6和源极金属电极7。
SiC单晶衬底的背面设置漏极金属电极8,SiC单晶衬底的正面具有一定厚度的第一掺杂缓冲层,在第一掺杂缓冲层上外延,形成第一掺杂外延层1。
第一掺杂可以为N掺杂,那么相应的第二掺杂为P掺杂,当然第一掺杂也可以为P掺杂,那么相应的第二掺杂就为N掺杂,这里的实施例中以第一掺杂为N掺杂,第二掺杂为P掺杂为例,即上述第一掺杂缓冲层为N掺杂缓冲层,即N掺杂外延层(4H-SiC层),N掺杂外延层的厚度在2~200μm之间,掺杂浓度在1×1015cm-3~1×1017cm-3之间,N掺杂外延层的掺杂浓度小于N掺杂缓冲层的掺杂浓度。
在第一掺杂外延层1的顶面外延形成第二掺杂外延层2,即低掺杂浓度的P掺杂外延层(4H-SiC层),外延厚度在0.1~2μm之间,掺杂浓度在1×1016cm-3~1×1018cm-3之间。可选的,在此之前在第一掺杂外延层1的顶面外延一层高掺杂浓度外延层,即N型掺杂的4H-SiC层,掺杂浓度大于第一掺杂外延层1。
第二掺杂外延层2的顶面两侧均离子注入第二掺杂类型杂质,形成第二重掺杂基区4,即P+基区,P+基区延伸至第一掺杂外延层1内,第一掺杂外延层1内两侧的P+基区之间为JFET区。
定义第二重掺杂基区4的顶面和第二掺杂外延层2的顶面构成注入面,注入面的部分区域注入第一掺杂类型杂质,形成第一重掺杂源区3,即N+源区,N+源区整体呈n形。
定义第一重掺杂源区3的顶面和第二重掺杂基区4的顶面构成刻蚀面,刻蚀面上刻蚀若干沟槽5,所有沟槽5相互平行,沟槽5的两侧延伸至第二重掺杂基区4内,沟槽5的中部延伸至第一掺杂外延层1内,沟槽5横穿刻蚀面,沟槽5与所述半导体器件的纵向线垂直(见图1)或有一定夹角(见图3),存在偏角的结构,使得位于沟槽5侧壁的导电沟道(图2中箭头)可以在特定偏角的晶向上,以取得更高的沟道迁移率,而不牺牲电压阻断能力。
沟槽5的槽壁上制作有栅氧介质,沟槽5内从上往下依次设置有栅极金属电极、栅-源隔离介质和多晶硅栅6,多晶硅栅6覆盖整个沟槽5槽底和槽壁、或者部分覆盖沟槽5槽底和槽壁,刻蚀面上设置源极金属电极7。
上述器件的导电沟道位于沟槽5的侧壁之上,元胞尺寸取决于SiC刻蚀精细程度,不受沟道长度、栅-源隔离和JFET区宽度的限制,可实现元胞尺寸减小、沟道密度提高、导通电阻下降的有益效果,并且上述器件的基区位于沟槽5之下,具有屏蔽强电场,保护栅氧介质的有益效果,且不增加源区到漏区的导通电阻。
进一步,本发明还公开了上述器件的制备方法,包括以下步骤:
步骤1,准备SiC单晶片,包括SiC单晶衬底,SiC单晶衬底的正面具有一定厚度的N掺杂缓冲层,在N掺杂缓冲层上外延形成具有一定厚度、更低掺杂浓度的N掺杂外延层。
步骤2,在N掺杂外延层上外延一层更高掺杂浓度外延层,然后再外延形成P掺杂外延层。
步骤3,在P掺杂外延层上形成掩蔽层,图形化去除掩蔽层两侧部分,离子注入P型掺杂杂质,形成P+基区,去除剩余掩蔽层;其中,掩蔽层可通过化学气相沉积或其他合适的方式制作,注入的温度可以在300℃~600℃,注入的掺杂杂质可以是铝、硼或其他合适的P型掺杂杂质。
步骤4,在P+基区的顶面和P掺杂外延层的顶面形成掩蔽层,图形化去除部分区域的掩蔽层,离子注入N型掺杂杂质,形成N+源区,去除剩余掩蔽层。
步骤5,退火,以激活注入的掺杂杂质;例如,通过在单晶片表面覆盖一层保护性碳膜,将SiC单晶片置于惰性保护气体中,在1500~2000℃温度下退火1~60min,随后去除保护性碳膜。
步骤6,N+源区的顶面和P+基区的顶面形成掩蔽层,并刻蚀形成沟槽5。
步骤7,牺牲氧化,在沟槽5的内壁上制作栅氧介质。
首先对刻蚀后的沟槽5进行牺牲氧化,例如,通过在1100℃~1500℃温度下氧化SiC晶片,随后去除氧化层,随后通过在1100℃~1500℃温度下氧化SiC晶片形成栅氧介质,栅氧介质的厚度可以是10nm~100nm,栅氧介质的形成也可以是其他方法。
步骤8,淀积掺杂多晶硅填充沟槽5,图形化形成多晶硅栅6。
在氧化后的SiC单晶片上通过合适的方法形成多晶硅层,例如化学气相沉积,并通过合适的方法图形化形成多晶硅栅6。可选的,图形化后对多晶硅进行氧化处理。
步骤9,淀积栅-源隔离介质,并图形化形成接触孔。
通过合适的方法在上表面形成隔离介质并图形化;隔离介质可以是氧化硅或其他合适的材料。
步骤10,淀积金属,退火形成源极接触,图形化形成栅极金属电极和源极金属电极7。
步骤11,制作SiC单晶衬底背面背面漏电极,并退火形成漏极金属电极8,例如在900℃~1100℃温度惰性气体保护下退火1~10min。
可以在形成漏电极之前对SiC单晶衬底进行减薄,并结合合适的方法形成欧姆接触,例如激光退火,可选的在退火完成后对金属电极进行加厚。
步骤12,制作正面钝化保护介质,并图形化形成栅极金属电极和源极金属电极7接触窗口;其中,钝化保护介质可以是氮化硅、氧化硅或其他合适的材料中的一种或多种复合。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

1.一种半导体器件,其特征在于,包括SiC单晶衬底,SiC单晶衬底的背面设置有漏极金属电极,SiC单晶衬底正面外延有第一掺杂外延层,第一掺杂外延层的顶面外延有第二掺杂外延层,第二掺杂外延层的顶面两侧均注入有第二掺杂类型杂质,形成第二重掺杂基区,第二重掺杂基区延伸至第一掺杂外延层内,第二重掺杂基区的顶面和第二掺杂外延层的顶面构成注入面,注入面的部分区域注入有第一掺杂类型杂质,形成第一重掺杂源区,第一重掺杂源区的顶面和第二重掺杂基区的顶面构成刻蚀面,刻蚀面上刻蚀有沟槽,沟槽的两侧延伸至第二重掺杂基区内,沟槽的中部延伸至第一掺杂外延层内,沟槽的内壁上氧化有栅氧介质,沟槽内从上往下依次设置有栅极金属电极、栅-源隔离介质和多晶硅栅,刻蚀面上设置有源极金属电极。
2.根据权利要求1所述的一种半导体器件,其特征在于,SiC单晶衬底正面和第一掺杂外延层之间设置有第一掺杂缓冲层。
3.根据权利要求1或2所述的一种半导体器件,其特征在于,第一掺杂为N掺杂,第二掺杂为P掺杂。
4.根据权利要求1或2所述的一种半导体器件,其特征在于,第一掺杂为P掺杂,第二掺杂为N掺杂。
5.根据权利要求1所述的一种半导体器件,其特征在于,所有沟槽相互平行,沟槽横穿刻蚀面,沟槽与所述半导体器件的纵向线垂直或有一定夹角。
6.根据权利要求1所述的一种半导体器件,其特征在于,多晶硅栅覆盖整个沟槽槽底和槽壁、或者部分覆盖沟槽槽底和槽壁。
7.基于权利要求1~6任意一项所述的一种半导体器件的制备方法,其特征在于,包括:
准备SiC单晶衬底,在SiC单晶衬底正面外延形成第一掺杂外延层;
在第一掺杂外延层上,外延形成第二掺杂外延层;
在第二掺杂外延层上形成掩蔽层,图形化去除掩蔽层两侧部分,离子注入第二掺杂类型杂质,形成第二重掺杂基区,去除剩余掩蔽层;
在第二重掺杂基区的顶面和第二掺杂外延层的顶面形成掩蔽层,图形化去除部分区域的掩蔽层,离子注入第一掺杂类型杂质,形成第一重掺杂源区,去除剩余掩蔽层;
退火,以激活注入的掺杂杂质;
在第一重掺杂源区的顶面和第二重掺杂基区的顶面形成掩蔽层,并刻蚀形成沟槽;
牺牲氧化,在沟槽的内壁形成栅氧介质;
淀积掺杂多晶硅填充沟槽,图形化形成多晶硅栅;
淀积栅-源隔离介质,并图形化形成接触孔;
淀积金属,退火形成源极接触,图形化形成栅极金属电极和源极金属电极;
制作SiC单晶衬底背面漏电极,并退火形成漏极金属电极;
制作正面钝化保护介质,并图形化形成栅极金属电极和源极金属电极接触窗口。
CN202211081902.3A 2022-09-06 2022-09-06 一种半导体器件及其制备方法 Pending CN115377200A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211081902.3A CN115377200A (zh) 2022-09-06 2022-09-06 一种半导体器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211081902.3A CN115377200A (zh) 2022-09-06 2022-09-06 一种半导体器件及其制备方法

Publications (1)

Publication Number Publication Date
CN115377200A true CN115377200A (zh) 2022-11-22

Family

ID=84069189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211081902.3A Pending CN115377200A (zh) 2022-09-06 2022-09-06 一种半导体器件及其制备方法

Country Status (1)

Country Link
CN (1) CN115377200A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344590A (zh) * 2023-05-23 2023-06-27 合肥晶合集成电路股份有限公司 一种半导体器件及其制作方法
CN116936610A (zh) * 2023-09-18 2023-10-24 成都功成半导体有限公司 一种深掺杂碳化硅耐压jfet结构及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344590A (zh) * 2023-05-23 2023-06-27 合肥晶合集成电路股份有限公司 一种半导体器件及其制作方法
CN116344590B (zh) * 2023-05-23 2023-09-12 合肥晶合集成电路股份有限公司 一种半导体器件及其制作方法
CN116936610A (zh) * 2023-09-18 2023-10-24 成都功成半导体有限公司 一种深掺杂碳化硅耐压jfet结构及其制备方法
CN116936610B (zh) * 2023-09-18 2023-12-01 成都功成半导体有限公司 一种深掺杂碳化硅耐压jfet结构及其制备方法

Similar Documents

Publication Publication Date Title
CN106876485B (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法
US6331467B1 (en) Method of manufacturing a trench gate field effect semiconductor device
CN115377200A (zh) 一种半导体器件及其制备方法
US11961904B2 (en) Semiconductor device including trench gate structure and buried shielding region and method of manufacturing
CN114420761B (zh) 一种耐高压碳化硅器件及其制备方法
JP4990458B2 (ja) 自己整合されたシリコンカーバイトlmosfet
CN112259598A (zh) 一种沟槽型mosfet器件及其制备方法
CN116154000A (zh) 多级沟槽型SiC MOSFET器件及其制造方法
CN115148820A (zh) 一种SiC沟槽MOSFET器件及其制造方法
CN112382655B (zh) 一种宽禁带功率半导体器件及制备方法
CN110416295B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN219419037U (zh) 一种沟槽型碳化硅mosfet器件
CN114628525B (zh) 一种沟槽型SiC MOSFET器件及其制造方法
CN116314302A (zh) 一种沟槽型碳化硅mosfet器件的制造方法
CN113078204B (zh) 一种氮化镓3d-resurf场效应晶体管及其制造方法
CN115148826A (zh) 一种深沟槽碳化硅jfet结构的制作方法
CN114551586A (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN116936626A (zh) Igbt器件及其制造方法
CN116072698A (zh) 一种锥形栅mosfet器件结构及其制作方法
CN113488540A (zh) 一种具有垂直场板保护的SiC基槽栅MOSFET结构
CN111509037A (zh) 一种带有槽型jfet的碳化硅mos器件及其制备工艺
CN213212168U (zh) 一种沟槽型mosfet器件
EP3637474A1 (en) Silicon carbide switch device and manufacturing method therefor
CN117238968B (zh) 一种沟槽栅碳化硅mosfet器件及其制备方法
CN116525683B (zh) 一种深阱型SiC Mosfet器件及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination