CN117577688A - 一种沟槽型碳化硅mosfet器件及其制造方法 - Google Patents
一种沟槽型碳化硅mosfet器件及其制造方法 Download PDFInfo
- Publication number
- CN117577688A CN117577688A CN202311778099.3A CN202311778099A CN117577688A CN 117577688 A CN117577688 A CN 117577688A CN 202311778099 A CN202311778099 A CN 202311778099A CN 117577688 A CN117577688 A CN 117577688A
- Authority
- CN
- China
- Prior art keywords
- silicon carbide
- type
- layer
- type silicon
- epitaxial layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 102
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 98
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000010410 layer Substances 0.000 claims abstract description 150
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 210000000746 body region Anatomy 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 239000011229 interlayer Substances 0.000 claims abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 39
- 238000000151 deposition Methods 0.000 claims description 29
- 238000005530 etching Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 26
- 229920005591 polysilicon Polymers 0.000 claims description 23
- -1 aluminum ion Chemical class 0.000 claims description 15
- 238000001259 photo etching Methods 0.000 claims description 15
- 238000000231 atomic layer deposition Methods 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 230000005684 electric field Effects 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 239000002243 precursor Substances 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical group [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 241001391944 Commicarpus scandens Species 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002052 molecular layer Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/66068—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明属于半导体技术领域,具体涉及一种沟槽型碳化硅MOSFET器件及其制造方法。器件包括漏极金属及所述漏极金属上方的N+型碳化硅衬底,在所述N+型碳化硅衬底上方依次为N‑型碳化硅外延层、N型碳化硅外延层、P型体区、N+型源区、P+型源区以及层间绝缘介质层和源极金属,在所述N型碳化硅外延层远离所述N+型碳化硅衬底的一端设有纵向沟槽,所述纵向沟槽贯穿N型碳化硅外延层和P型体区,下端延伸至N‑型碳化硅外延层,沟槽底部和侧壁被屏蔽栅高k介质层包覆。本发明提供的沟槽型碳化硅器件屏蔽栅介质层使用复合高k材料介质,减少了SiC/SiO2界面处的缺陷;降低了屏蔽栅介质电场强度,提高了栅介质层的耐压能力。
Description
技术领域
本发明属于半导体技术领域,具体涉及一种沟槽型碳化硅MOSFET器件及其制造方法。
背景技术
碳化硅(SiC)材料因其优越的物理特性,受到人们的关注和研究,碳化硅材料较高的热导率决定了其高电流密度的特性,较高的禁带宽度又决定了SiC器件的高击穿场强和高工作温度。碳化硅沟槽MOSFET与平面VDMOS器件相比,导电沟道位于垂直方向,消除了平面VDMOS的寄生JFET电阻,减小了元胞尺寸,提高了元胞密度,从而使得电流密度显著提高,大幅度降低了器件的导通电阻。鉴于沟槽型碳化硅MOSFET的优势,越来越多的研究机构对沟槽型碳化硅MOSFET提高了研发力度,然而现有技术的制备方案中制备出的沟槽型碳化硅MOSFET对栅氧化层的电场保护不够,特别是拐角处的栅氧化层容易被电场击穿。SiO2的介电材料的介电常数KOX值仅有3.9,使得SiC/SiO2界面电场强度分布中SiO2一侧会出现较高电场强度,从而限制碳化硅高击穿电场强度。
目前沟槽型碳化硅MOSFET器件最主要的问题是反向耐压状态下栅氧化层的电场强度过高,对于二氧化硅介质层来讲,为了保持碳化硅MOSFET器件的长期可靠性,在器件反向耐压时栅介质层的最高电场强度需要被限制在3MV/cm以下,未加保护结构的沟槽型碳化硅MOSFET反向耐压状态下栅氧化层场强常常达到8MV/cm以上(如图1),远远高于电场强度工作可靠性的要求。
为了解决沟槽型碳化硅MOSFET拐角处的栅氧化层容易被电场击穿的问题,目前常用的解决方案是引入P型屏蔽区来降低栅氧化层的电场强度,但是P型屏蔽区的引入会重新带来JEFT效应,增加器件的导通电阻。
发明内容
有鉴于此,本发明提供了一种沟槽型碳化硅MOSFET器件及其制造方法,在不增加器件的导通电阻的前提下,用以解决现有技术中沟槽型碳化硅MOSFET对栅氧化层的电场保护不够,特别是拐角处的栅氧化层容易被电场击穿的技术问题。
本发明所采用的技术方案如下:
一种沟槽型碳化硅MOSFET器件,包括漏极金属及所述漏极金属上方的N+型碳化硅衬底,在所述N+型碳化硅衬底上方依次为N-型碳化硅外延层、N型碳化硅外延层、P型体区、N+型源区、P+型源区以及层间绝缘介质层和源极金属,在所述N型碳化硅外延层远离所述N+型碳化硅衬底的一端设有纵向沟槽,所述纵向沟槽贯穿N型碳化硅外延层和P型体区,下端延伸至N-型碳化硅外延层,在所述纵向沟槽内部设有被IPO介质层隔离的上下分立多晶硅,其中上部的N型多晶硅的上表面被层间绝缘介质层覆盖,侧面被沟道栅氧化层包裹,下部的P型多晶硅的侧壁和底部被复合高k介质层包裹。
优选的,所述N型碳化硅外延层的掺杂浓度大于所述N-型碳化硅外延层的掺杂浓度。
优选的,所述复合高k介质层的组成为Al2O3/LaxHfyO/Al2O3。
优选的,所述P+型源区和N+型源区设置在所述P型体区内。
优选的,所述纵向沟槽的深度为2~10um。
优选的,所述P+型源区的结深为0.1~0.5μm,杂质离子为铝离子,所述杂质离子的浓度为5×1019~1×1021cm-3;所述N+型源区接触区的结深为0.1~0.5μm,杂质离子为氮离子,所述杂质离子的浓度为1×1020~5×1021cm-3;所述P型体区的结深为0.8~1.2μm,杂质离子为铝离子,所述杂质离子的浓度为1×1018~1×1019cm-3。
优选的,所述Al2O3介质覆层的厚度为1~10nm;所述LaxHfyO介质层的厚度为100~500nm。
优选的,LaxHfyO中的x=0.1~0.9,y=1-x。
一种如上述沟槽型碳化硅MOSFET器件的制造方法,包括如下步骤:
步骤一:选取高浓度N+型碳化硅衬底作为漏极,在所述N+型碳化硅衬底的顶部生长N-型碳化硅外延层;
步骤二:在N-型碳化硅外延层上生长N型碳化硅外延层;
步骤三:在N型碳化硅外延层的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出离子注入的窗口,选择性注入铝离子形成P型体区,然后去除掩膜层;
步骤四:在N型碳化硅外延层的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出离子注入的窗口,选择性注入氮离子形成N+型源区,去除掩膜层;
步骤五:在N型碳化硅外延层的顶部淀积掩膜层,通过光刻工艺和刻蚀工艺刻蚀出离子注入的窗口,选择性注入铝离子形成P+型源区,去除掩膜层;
步骤六:在N型碳化硅外延层的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出沟槽的窗口,利用干法刻蚀选择性不同的特点向下刻蚀出纵向沟槽;
步骤七:首先在纵向沟槽内生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长薄层二氧化硅,采用ALD原子层沉积法在薄氧化层表面上淀积Al2O3介质层,之后采用ALD原子层沉积的方式在Al2O3的表面上沉积一层LaxHfyO,最后在LaxHfyO的表面沉积一层Al2O3介质层,进行RTA退火;
步骤八:在纵向沟槽内淀积P型多晶硅,通过化学机械研磨去除掉表面的多晶硅;
步骤九:通过干法和湿法刻蚀的方式分别去除部分多晶硅和复合高k介质层;
步骤十:在所述P型多晶硅的上表面利用高密度等离子体气相沉积技术形成IPO介质层;
步骤十:生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长的方式生长沟槽栅氧化层并进行退火处理,在沟槽内淀积N型多晶硅,接着去除N型外延层表面多余的二氧化硅和多晶硅,形成沟槽中的栅极结构;
步骤十一:在所述N型碳化硅外延层的上表面淀积层间绝缘介质层,并通过光刻工艺刻蚀出金属接触孔,淀积源极金属,背面淀积金属形成漏极金属。
本发明的有益技术效果如下:
本发明的器件在沟槽引入复合高k屏蔽栅介质层后,器件在反向耐压状态下,屏蔽栅的电场强度从之前的8MV/cm以上下降到2MV/cm以下(如图2),电场强度得到有效的缓解,保证了器件的可靠性。下多晶硅结构与高k介质结构的引入能够增加器件的横向耗尽,使得可以使用掺杂量比较高的N型碳化硅外延,降低器件的导通电阻。
附图说明
图1为沟槽型碳化硅MOSFET器件SiO2屏蔽栅结构在反向1900V下的电场强度仿真示意图。
图2为本发明专利中高k介质屏蔽栅结构在反向1900V下的电场强度仿真示意图。
图3为形成N-型碳化硅外延后的剖面结构示意图。
图4为形成N型碳化硅外延层后的剖面结构示意图。
图5为形成P型体区后的剖面结构示意图。
图6为形成N+型源区后的剖面结构示意图。
图7为形成P+型源区后的剖面结构示意图。
图8为形成纵向沟槽后的剖面结构示意图。
图9为形成沟槽侧高k介质层后的剖面结构示意图。
图10为填充P型掺杂的多晶硅后的剖面结构示意图。
图11刻蚀掉沟槽上方的P型多晶硅和部分高K介质层后的剖面结构示意图。
图12为形成IPO介质层后的剖面结构示意图。
图13为生长完栅氧化层、淀积N型多晶硅,研磨掉顶部剩余晶硅后的剖面结构示意图。
图14为形成绝缘介质、形成源极和漏极金属后的剖面结构示意图。
附图标记:01-N+型碳化硅衬底;02-N-型碳化硅外延层;03-N型碳化硅外延层;04-P型体区;05-N+型源区;06-P+型源区;07-纵向沟槽;08-复合高k介质层;09-P型多晶硅;10-IPO介质层;11-沟槽栅氧化层;12-N型多晶硅;13-层间绝缘介质层;14-源极金属;15-漏极金属。
具体实施方式
为了使本领域技术人员更好地理解本发明方案,下面将结合实施例及附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明在纵向沟槽内部设有被IPO(多晶硅间氧化层)隔离的上下分立多晶硅,其中所述上多晶硅的上表面被层间绝缘介质覆盖,侧面被沟槽栅氧化层包裹,下多晶硅的侧壁和底部被屏蔽栅高k介质层包裹;本发明高可靠性沟槽型碳化硅器件屏蔽栅介质层使用复合高k材料介质,能够减少SiC/SiO2界面处的因杂质和表面晶格缺陷造成的界面缺陷;能够降低屏蔽栅介质电场强度提高栅介质层的耐压能力。
实施例:
在本实施例中,本发明通过制备1.5-2um宽的碳化硅沟槽,在沟槽的侧壁制备沟槽栅氧化层11和屏蔽栅复合高k介质层08,利用IPO介质层10将上下多晶硅隔离开,下多晶硅与源极金属连接。
Al2O3ALD原子层沉积法的反应前驱体为三甲基铝TMA,氧化剂前驱体为臭氧O3,温度范围为100~350℃。
高温牺牲氧化的氧化温度为1200~1500℃,氧化时间为10~25min。
淀积La2O3纳米层的反应前驱体为La(iPrCp)3,氧化剂前驱体为臭氧O3,温度范围为300~400℃;淀积HfO2纳米层的反应前驱体为La2O3,氧化剂前驱体为臭氧O3,温度范围为300~400℃。
采用快速热退设备,并在氮气N2、氩气Ar或笑气N2O的环境下对Al2O3介质覆层、LaxHfyO介质层和Al2O3介质覆层构成的叠层结构进行退火;采用RTA退火,退火温度1000~1210℃,退火时间为10~30s。
本发明提供了一种沟槽型碳化硅MOSFET器件的制造方法,包括如下步骤:
步骤一:选取高浓度N+型衬底作为漏极,N+型衬底采用碳化硅,碳化硅衬底可以是4H-SiC、6H-SiC或3C-SiC等材料,一般使用最多的是4H-SiC材料,然后外延生长N-型碳化硅外延层02,接着清洗外延片,得到如图3所示的器件结构;
步骤二:在所述N-碳化硅外延层上生长N型碳化硅外延层03,得到如图4所示的器件结构;
步骤三:在N型碳化硅外延层03的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出离子注入的窗口,选择性注入铝离子形成P型体区04,然后去除掩膜层,得到如图5所示的器件结构;
步骤四:在N型碳化硅外延层03的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出离子注入的窗口选择性注入氮离子形成N+型源区05去除掩膜版后得到如图6所示的器件结构。
步骤五:在N型碳化硅外延层03的顶部淀积掩膜层,通过光刻工艺和刻蚀工艺刻蚀出离子注入的窗口选择性注入铝离子形成P+型源区06,去除掩膜版后得到如图7所示的器件结构;
步骤六:在N型碳化硅外延层03的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出沟槽的窗口,利用干法刻蚀选择性不同的特点向下刻蚀出纵向沟槽07得到如图8所示的器件结构;
步骤七:首先在纵向沟槽07内生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长薄层二氧化硅,采用ALD原子层沉积法在薄氧化层表面上淀积Al2O3介质层,之后采用ALD原子层沉积的方式在Al2O3的表面上沉积一层LaxHfyO,最后在LaxHfyO的表面沉积一层Al2O3介质层,进行RTA退火后得到如图9所示的器件结构;
步骤八:在纵向沟槽07内淀积P型多晶硅09,通过化学机械研磨去除掉表面的多晶硅,的到如图10所示的器件结构;
步骤九:通过干法和湿法刻蚀的方式分别去除部分多晶硅和复合高k介质层08,得到如图11所示的器件结构;
步骤十:在所述P型多晶硅09的上表面利用高密度等离子体气相沉积技术形成IPO介质层10,得到如图12所示的器件结构;
步骤十:生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长的方式生长沟槽栅氧化层11并进行退火处理,在沟槽内淀积N型多晶硅12,接着去除N型外延层03表面多余的二氧化硅和多晶硅,形成沟槽中的栅极结构得到如图13所示的器件结构;
步骤十一:在N型外延层03表面淀积层间绝缘介质层13,并通过光刻工艺刻蚀出金属接触孔,淀积源极金属14,背面淀积金属形成漏极金属15,得到如图14所示的器件结构。
Claims (9)
1.一种沟槽型碳化硅MOSFET器件,其特征在于:包括漏极金属(15)及所述漏极金属(15)上方的N+型碳化硅衬底(01),在所述N+型碳化硅衬底(01)上方依次为N-型碳化硅外延层(02)、N型碳化硅外延层(03)、P型体区(04)、N+型源区(05)、P+型源区(06)以及层间绝缘介质层(13)和源极金属(14),在所述N型碳化硅外延层(03)远离所述N+型碳化硅衬底(01)的一端设有纵向沟槽(07),所述纵向沟槽(07)贯穿N型碳化硅外延层(03)和P型体区(04),下端延伸至N-型碳化硅外延层(02),在所述纵向沟槽(07)内部设有被IPO介质层(10)隔离的上下分立多晶硅,其中上部的N型多晶硅(12)的上表面被层间绝缘介质层(13)覆盖,侧面被沟道栅氧化层(11)包裹,下部的P型多晶硅(09)的侧壁和底部被复合高k介质层(08)包裹。
2.根据权利要求1所述的沟槽型碳化硅MOSFET器件,其特征在于:所述N型碳化硅外延层(03)的掺杂浓度大于所述N-型碳化硅外延层(02)的掺杂浓度。
3.根据权利要求1所述的沟槽型碳化硅MOSFET器件,其特征在于:所述复合高k介质层(08)的组成为Al2O3/LaxHfyO/Al2O3。
4.根据权利要求1所述的沟槽型碳化硅MOSFET器件,其特征在于,所述P+型源区(06)和N+型源区(05)设置在所述P型体区(04)内。
5.根据权利要求1所述的沟槽型碳化硅MOSFET器件,其特征在于:所述纵向沟槽(07)的深度为2~10um。
6.根据权利要求1所述的沟槽型碳化硅MOSFET器件,其特征在于:所述P+型源区(6)的结深为0.1~0.5μm,杂质离子为铝离子,所述杂质离子的浓度为5×1019~1×1021cm-3;所述N+型源区(05)接触区的结深为0.1~0.5μm,杂质离子为氮离子,所述杂质离子的浓度为1×1020~5×1021cm-3;所述P型体区(04)的结深为0.8~1.2μm,杂质离子为铝离子,所述杂质离子的浓度为1×1018~1×1019cm-3。
7.根据权利要求3所述的沟槽型碳化硅MOSFET器件,其特征在于,所述Al2O3介质覆层的厚度为1~10nm;所述LaxHfyO介质层的厚度为100~500nm。
8.根据权利要求7所述的沟槽型碳化硅MOSFET器件,其特征在于,LaxHfyO中的x=0.1~0.9,y=1-x。
9.一种如权利要求1所述的沟槽型碳化硅MOSFET器件的制造方法,其特征在于,包括如下步骤:
步骤一:选取高浓度N+型碳化硅衬底(01)作为漏极,在所述N+型碳化硅衬底(01)的顶部生长N-型碳化硅外延层(02);
步骤二:在N-型碳化硅外延层(02)上生长N型碳化硅外延层(03);
步骤三:在N型碳化硅外延层(03)的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出离子注入的窗口,选择性注入铝离子形成P型体区(04),然后去除掩膜层;
步骤四:在N型碳化硅外延层(03)的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出离子注入的窗口,选择性注入氮离子形成N+型源区(05),去除掩膜层;
步骤五:在N型碳化硅外延层(03)的顶部淀积掩膜层,通过光刻工艺和刻蚀工艺刻蚀出离子注入的窗口,选择性注入铝离子形成P+型源区(06),去除掩膜层;
步骤六:在N型碳化硅外延层(03)的顶部淀积掩膜层,通过光刻和刻蚀工艺刻蚀出沟槽的窗口,利用干法刻蚀选择性不同的特点向下刻蚀出纵向沟槽(07);
步骤七:首先在纵向沟槽(07)内生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长薄层二氧化硅,采用ALD原子层沉积法在薄氧化层表面上淀积Al2O3介质层,之后采用ALD原子层沉积的方式在Al2O3的表面上沉积一层LaxHfyO,最后在LaxHfyO的表面沉积一层Al2O3介质层,进行RTA退火;
步骤八:在纵向沟槽(07)内淀积P型多晶硅(09),通过化学机械研磨去除掉表面的多晶硅;
步骤九:通过干法和湿法刻蚀的方式分别去除部分多晶硅和复合高k介质层(8);
步骤十:在所述P型多晶硅(9)的上表面利用高密度等离子体气相沉积技术形成IPO介质层(10);
步骤十:生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长的方式生长沟槽栅氧化层(11)并进行退火处理,在沟槽内淀积N型多晶硅(12),接着去除N型外延层(3)表面多余的二氧化硅和多晶硅,形成沟槽中的栅极结构;
步骤十一:在所述N型碳化硅外延层(03)的上表面淀积层间绝缘介质层(13),并通过光刻工艺刻蚀出金属接触孔,淀积源极金属(14),背面淀积金属形成漏极金属(15)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311778099.3A CN117577688A (zh) | 2023-12-22 | 2023-12-22 | 一种沟槽型碳化硅mosfet器件及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311778099.3A CN117577688A (zh) | 2023-12-22 | 2023-12-22 | 一种沟槽型碳化硅mosfet器件及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117577688A true CN117577688A (zh) | 2024-02-20 |
Family
ID=89888240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311778099.3A Pending CN117577688A (zh) | 2023-12-22 | 2023-12-22 | 一种沟槽型碳化硅mosfet器件及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117577688A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118213275A (zh) * | 2024-05-20 | 2024-06-18 | 扬州扬杰电子科技股份有限公司 | 一种沟槽型SiC MOSFET及其制备方法 |
CN118248737A (zh) * | 2024-05-27 | 2024-06-25 | 无锡市查奥微电子科技有限公司 | 沟槽型碳化硅mosfet器件及其制备方法 |
-
2023
- 2023-12-22 CN CN202311778099.3A patent/CN117577688A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118213275A (zh) * | 2024-05-20 | 2024-06-18 | 扬州扬杰电子科技股份有限公司 | 一种沟槽型SiC MOSFET及其制备方法 |
CN118248737A (zh) * | 2024-05-27 | 2024-06-25 | 无锡市查奥微电子科技有限公司 | 沟槽型碳化硅mosfet器件及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106876485B (zh) | 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法 | |
TWI311814B (en) | Silicon carbide semiconductor device and method for producing the same | |
CN117577688A (zh) | 一种沟槽型碳化硅mosfet器件及其制造方法 | |
CN116469923B (zh) | 高可靠性沟槽型碳化硅mosfet器件及其制造方法 | |
JP3784393B2 (ja) | 半導体装置及びその製造方法 | |
JP2007115875A (ja) | 炭化珪素半導体装置およびその製造方法 | |
CN114420761B (zh) | 一种耐高压碳化硅器件及其制备方法 | |
WO2010098076A1 (ja) | 蓄積型絶縁ゲート型電界効果型トランジスタ | |
CN101859706A (zh) | 碳化硅半导体装置的制造方法及碳化硅半导体装置 | |
JP5236281B2 (ja) | 縦型mosfetの製造方法 | |
CN110581068A (zh) | 一种使用栅介质去实现低导通电阻的增强型氮化镓晶体管的方法 | |
CN116013989A (zh) | 具有SiO2阻挡层的垂直结构Ga2O3晶体管及制备方法 | |
CN117711946A (zh) | 碳化硅mosfet器件及其自对准制造方法 | |
TW202220059A (zh) | 增加溝槽式閘極功率金氧半場效電晶體之溝槽轉角氧化層厚度的製造方法 | |
JP2009043880A (ja) | 炭化珪素半導体装置の製造方法および炭化珪素半導体装置 | |
CN115714141A (zh) | JFET注入型N沟道SiC MOSFET器件及其制备方法 | |
JP4049095B2 (ja) | 半導体装置及びその製造方法 | |
CN103681256A (zh) | 一种新型碳化硅mosfet器件及其制作方法 | |
CN117894846B (zh) | 低功耗平面栅型碳化硅mosfet功率器件及其制造方法 | |
CN113990744A (zh) | 带深l形基区的单侧斜面栅碳化硅mosfet器件及其制备方法 | |
CN117936581A (zh) | 一种改进型沟槽型碳化硅mosfet器件及其制造方法 | |
WO2023071284A1 (zh) | 沟槽栅半导体器件及其制造方法 | |
CN110676172A (zh) | 一种实现低导通电阻的增强型氮化镓晶体管的方法 | |
CN108231560B (zh) | 一种控制电极制备方法及mosfet功率器件 | |
CN106298946A (zh) | 一种降低低压Trench DMOS导通电阻的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |