CN116314340B - 一种沟槽型碳化硅mosfet器件及其制备方法 - Google Patents

一种沟槽型碳化硅mosfet器件及其制备方法 Download PDF

Info

Publication number
CN116314340B
CN116314340B CN202310581822.2A CN202310581822A CN116314340B CN 116314340 B CN116314340 B CN 116314340B CN 202310581822 A CN202310581822 A CN 202310581822A CN 116314340 B CN116314340 B CN 116314340B
Authority
CN
China
Prior art keywords
type
region
layer
trench
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310581822.2A
Other languages
English (en)
Other versions
CN116314340A (zh
Inventor
朱袁正
杨卓
朱晨凯
黄薛佺
叶鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi NCE Power Co Ltd
Original Assignee
Wuxi NCE Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi NCE Power Co Ltd filed Critical Wuxi NCE Power Co Ltd
Priority to CN202310581822.2A priority Critical patent/CN116314340B/zh
Publication of CN116314340A publication Critical patent/CN116314340A/zh
Application granted granted Critical
Publication of CN116314340B publication Critical patent/CN116314340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种沟槽型碳化硅MOSFET器件及其制备方法,器件包括漏极金属及其上方的N型衬底、N型外延层、N型JFET区、P型体区、N型源区和源极金属,在N型外延层的一端设有纵向沟槽,纵向沟槽的上端位于源极金属的内部,下端延伸至N型JFET区中,在纵向沟槽内部设有沟槽栅多晶硅,且沟槽栅多晶硅的上表面被栅极介质层覆盖,下表面和侧面被沟槽栅氧化层包裹;相邻两个纵向沟槽之间间隔设置P型屏蔽区,P型屏蔽区部分包裹纵向沟槽的表面,并且P型屏蔽区的上表面通过源极金属与N型源区相连接,P型屏蔽区的正下方设置有P型埋层区,P型埋层区N型JFET区进入N型外延层中。本发明沟槽型碳化硅器件的导通电阻大大降低。

Description

一种沟槽型碳化硅MOSFET器件及其制备方法
技术领域
本发明涉及一种半导体器件,尤其是一种沟槽型碳化硅MOSFET器件及其制备方法。
背景技术
碳化硅(Silicon Carbide)材料作为第三代宽禁带半导体材料的代表之一,与现有的硅材料相比,具有禁带宽度宽、临界击穿电场高、饱和漂移速度高等优势,以SiC材料制备的MOSFET器件,与相同耐压水平的硅基MOSFET相比,又具有导通电阻低,尺寸小,开关速度快等优势,使其在大功率、高温及高频电力电子领域具有广阔的应用前景。
碳化硅功率MOSFET器件结构的发展从LDMOS(横向平面双扩散MOSFET),VVMOS(V型槽MOSFET)到平面VDMOS(垂直双扩散MOSFET),再到沟槽型MOSFET(Trench MOSFET)。LDMOS结构简单,但扩散区和沟道区在器件表面,芯片面积利用率不高。VVMOS是在芯片的背面形成漏极,所以扩散区和沟道区位于垂直方向,因此可以大大提高芯片的导通电流,但是VVMOS的缺点是V型槽尖刺会导致电场集中而降低击穿电压特性。碳化硅沟槽MOSFET与VDMOS器件相比,导电沟道位于垂直方向,消除了平面VDMOS的寄生JFET电阻,减小了元胞尺寸,提高了元胞密度,从而使得电流密度显著提高,大幅度降低了器件的导通电阻。
目前传统的沟槽型碳化硅MOSFET器件结构如图2所示,其中主流的碳化硅沟槽栅结构都通过减小元胞尺寸的方式,提高电流密度,从而降低器件的导通电阻,但是随着元胞尺寸的减小,刻蚀沟槽的难度随之增加,这种方法也开始逐渐遇到了瓶颈。
发明内容
本发明的目的是提供一种沟槽型碳化硅MOSFET器件及其制备方法,本结构在器件反向耐压状态时,栅极接地电位或者负电位,此时的P型屏蔽区与源极相连,能够保护栅极沟槽中的栅氧化层,提高器件的击穿电压,同时P型屏蔽区下方的处于N型外延层中的P型埋层区能够增加器件的横向耗尽,使得可以使用较高掺杂的N型外延层,大幅度降低器件的特征导通电阻,该结构与传统结构元胞相比,同样存在两条导电沟道。
为实现以上技术目的,本发明的技术方案是:
第一方面,本发明实施例提供了一种沟槽型碳化硅MOSFET器件,包括漏极金属及所述漏极金属上方的N型衬底,在所述N型衬底上方依次为N型外延层、N型JFET区、P型体区以及N型源区和源极金属,其中N型外延层作为器件的漂移区,在所述N型外延层远离所述N型衬底的一端设有纵向沟槽,所述纵向沟槽贯穿所述N型源区以及P型体区,上端位于源极金属的内部,下端延伸至N型JFET区中,在所述纵向沟槽内部设有沟槽栅多晶硅,且所述沟槽栅多晶硅的上表面被栅极介质层覆盖,下表面和侧面被沟槽栅氧化层包裹;相邻两个纵向沟槽之间间隔设置P型屏蔽区,所述P型屏蔽区部分包裹所述纵向沟槽的表面,并且所述P型屏蔽区的上表面通过源极金属与N型源区相连接,所述P型屏蔽区的正下方设置有P型埋层区,所述P型埋层区穿过所述N型JFET区进入所述N型外延层中;
所述P型屏蔽区部分包裹所述纵向沟槽的外侧面和底部,所述P型屏蔽区的上端连接源极金属,下端延伸至N型JFET区内部;
所述P型埋层区上表面连接所述P型屏蔽区,下表面深入所述N型外延层中。
进一步地,相邻两个纵向沟槽构成一个元胞结构,其中元胞结构中存在两个栅极,除被P型屏蔽区所包裹的纵向沟槽两侧外还存在两条导电沟道。
进一步地,所述P型埋层区的掺杂浓度小于所述P型屏蔽区的掺杂浓度。
第二方面,本发明实施例提供了沟槽型碳化硅MOSFET器件的制备方法,应用于第一方面所述的沟槽型碳化硅MOSFET器件,包括以下步骤:
步骤一:选取N型衬底作为高浓度N型漏极,并生长N型外延层;
步骤二:在所述N型外延层远离N型衬底的一端注入施主离子形成N型JFET区;
步骤三:在所述N型外延层上,利用掩膜层选择性高能注入受主离子形成P型埋层区,并选择性注入受主离子形成P型体区;
步骤四:在所述N型外延层顶部,利用掩膜层选择性注入受主离子形成P型屏蔽区;
步骤五:在所述N型外延层顶部,利用掩膜层选择性刻蚀出纵向沟槽,所述纵向沟槽穿过P型体区延伸至N型JFET区中,并且纵向沟槽的深度小于所述P型屏蔽区的深度;
步骤六:在所述纵向沟槽内生长氧化层作为沟槽栅氧化层,并在所述纵向沟槽内淀积多晶硅形成沟槽栅多晶硅,去除多余的氧化层和多晶硅;
步骤七:在所述N型外延层表面淀积二氧化硅层,利用掩膜层选择性注入施主离子形成N型源区,接着选择性刻蚀,保留部分二氧化硅层形成栅极介质层;
步骤八:在所述N型外延层上表面和下表面分别淀积金属,形成源极金属和漏极金属。
第三方面,本发明实施例提供了一种沟槽型碳化硅MOSFET器件的制备方法,应用于第一方面所述的沟槽型碳化硅MOSFET器件,包括如下步骤:
步骤S1:选取N型衬底作为高浓度N型漏极,接着生长第一层N型外延层;
步骤S2:在所述第一层N型外延层上,利用掩膜层,选择性注入受主离子形成P型埋层区;
步骤S3:在所述第一层N型外延层顶部,通过外延生长的方法形成N型JFET区或者继续生长第二层外延层,用离子注入的方法注入施主离子形成N型JFET区;
步骤S4:在所述N型JFET区顶部,通过外延生长或者注入受主离子的方法形成P型体区;
步骤S5-S9同第二方面中的步骤四-步骤八。
与现有技术相比,本发明的主要优点如下:
本发明沟槽型碳化硅MOSFET器件中的P型屏蔽区在器件反向耐压时对器件的栅极有良好的屏蔽作用,提高了栅氧可靠性,使得器件的击穿电压得到提高,同时器件结构中的P型埋层区通过离子注入的形式形成,设置于P型屏蔽区下方以及纵向沟槽的下方,伸入到N型外延层中,增加了N型外延层的横向耗尽,使得在设计器件时可以选用较高浓度的N型外延层,显著降低了器件的导通电阻。
附图说明
图1为实施例1中沟槽型碳化硅MOSFET器件的剖面结构示意图。
图2为传统的沟槽型碳化硅MOSFET器件的剖面结构示意图。
图3为本发明实施例1提供的沟槽型碳化硅MOSFET器件与传统沟槽型碳化硅MOSFET器件的IV曲线图。
图4为本发明实施例1形成N型外延层后的剖面结构示意图。
图5为本发明实施例1形成N型JFET区后的剖面结构示意图。
图6为本发明实施例1形成P型体区和P型埋层区后的剖面结构示意图。
图7为本发明实施例1形成P型屏蔽区后的剖面结构示意图。
图8为本发明实施例1形成纵向沟槽后的剖面结构示意图。
图9为本发明实施例1形成沟槽栅氧化层和栅极后的剖面结构示意图。
图10为本发明实施例1形成栅极介质层后的剖面结构示意图。
图11为本发明实施例2形成P型埋层区后的剖面结构示意图。
图12为本发明实施例2形成N型JFET区后的剖面结构示意图。
图13为本发明实施例2形成P型体区后的剖面结构示意图。
附图标记说明:01—源极金属;02a—栅极介质层;02b—沟槽栅氧化层;03—N型源区;04—P型体区;05—沟槽栅多晶硅;06—P型屏蔽区;07—纵向沟槽;08—N型JFET区;09—P型埋层区;10—N型外延层;11—N型衬底;12—漏极金属。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互结合。下面将参考附图并结合实施例来详细说明本发明。
为了使本领域技术人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包括,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
如图1所示,一种沟槽型碳化硅MOSFET器件,包括漏极金属12及漏极金属12上方的高浓度N型衬底11,在高浓度N型衬底11上方依次为N型外延层10、N型JFET区08、P型体区04、N型源区03和源极金属01,其中N型外延层10作为器件的漂移区,在N型外延层10远离高浓度N型衬底11的一端设有纵向沟槽07,纵向沟槽07贯穿N型源区03以及P型体区04,上端位于源极金属01的内部,下端延伸至N型JFET区08中,在纵向沟槽07内部设有沟槽栅多晶硅05,且沟槽栅多晶硅05的上表面被栅极介质层02a覆盖,下表面和侧面被沟槽栅氧化层02b包裹;相邻两个纵向沟槽07之间间隔设置P型屏蔽区06,P型屏蔽区06部分包裹纵向沟槽07的表面,并且P型屏蔽区06的上表面通过源极金属01与N型源区03相连接,实现良好接地,P型屏蔽区06的正下方设置有P型埋层区09,P型埋层区09穿过N型JFET区08进入N型外延层10中。
具体地,P型屏蔽区06部分包裹纵向沟槽07的外侧面和底部,P型屏蔽区06的上端连接源极金属01,下端延伸至N型JFET区08内部。
相邻两个纵向沟槽07构成一个元胞结构,其中元胞结构中存在两个栅极,除被P型屏蔽区06所包裹的纵向沟槽07两侧外还存在两条导电沟道。
进一步地,P型埋层区09的掺杂浓度小于P型屏蔽区06的掺杂浓度。
P型埋层区09上表面连接P型屏蔽区06,下表面深入N型外延层10中。
在本实施例中,P型埋层区09的浓度以及深度通过离子注入时的剂量与能量进行控制,具体而言,当选择较高剂量的铝离子注入形成P型埋层区时,则可以选择较高浓度的N型外延层。
对比例1
传统的沟槽型碳化硅MOSFET器件的剖面图如图2所示,包括漏极金属12及位于其上方的高浓度N型衬底11,在高浓度N型衬底11上设有低浓度的N型外延层10作为MOSFET器件的漂移区,在N型外延层10上方设有P型体区04,在P型体区04表面还设有高浓度N型源区03,在N型外延层10远离高浓度N型衬底11的一端表面设有纵向沟槽07,纵向沟槽07内部设有沟槽栅多晶硅05,且沟槽栅多晶硅05外围被沟槽栅氧化层02b所包裹,沟槽栅多晶硅05上方被栅极介质层02a覆盖,P型体区04在N型外延层10中的注入深度小于纵向沟槽07的深度,高浓度N型源区03的表面与源极金属欧姆接触接源极信号。
沟槽型碳化硅MOSFET器件最主要的问题是反向耐压状态下栅氧的高电场强度问题,为了保持碳化硅MOSFET器件的长期可靠性,在器件反向耐压时栅氧的最高电场强度需要被限制在3MV/cm以下,未加保护结构的沟槽型碳化硅MOSFET反向耐压状态下栅氧场强常常达到8MV/cm以上,远远高于电场强度工作可靠性的要求。在纵向沟槽底部及侧壁设置接到源极电位的P型屏蔽区结构能够使得沟槽栅氧化层02b内的电场强度得到有效的缓解,保证了器件的可靠性。
如图3所示,是本发明实施例1提供的沟槽型碳化硅MOSFET器件与对比例1中传统沟槽型碳化硅MOSFET器件的IV曲线图。从图中可以看出,在相同的漏极电压下,本发明实施例1提供的沟槽型碳化硅MOSFET器件具有更大的漏极电流,即导通电阻小于传统沟槽型碳化硅MOSFET器件。
实施例2
一种沟槽型碳化硅MOSFET器件的制备方法,应用于实施例1所述的沟槽型碳化硅MOSFET器件,包括如下步骤:
步骤一:选取N型衬底11作为高浓度N型漏极,N型衬底11采用碳化硅,碳化硅可以是4H-SiC、6H-SiC或3C-SiC等材料,一般使用最多的是4H-SiC材料,然后外延生长N型外延层10,接着清洗外延片,得到如图4所示的器件结构;
步骤二:在N型外延层10远离N型衬底11的一端,用离子注入的方法,注入氮离子形成N型JFET区08,得到如图5所示的器件结构;
步骤三:在N型外延层10上淀积掩膜层,通过光刻工艺刻蚀出离子注入的窗口,然后使用高能离子注入的方法,注入能量范围为500-2500KeV的铝离子,形成P型埋层区09,接着去除掩膜层,在N型外延层10顶部注入铝离子形成P型体区04,得到如图6所示的器件结构;
步骤四:在N型外延层10顶部淀积掩膜层,通过光刻工艺刻蚀出离子注入的窗口,选择性注入铝离子形成P型屏蔽区06,然后去除掩膜层,得到如图7所示的器件结构;
步骤五:在N型外延层10顶部淀积掩膜层,通过光刻工艺刻蚀出沟槽窗口,向下刻蚀出纵向沟槽07,纵向沟槽07的深度小于P型屏蔽区06的深度,然后去除掩膜层,得到如图8所示的器件结构;
步骤六:首先在纵向沟槽07内生长牺牲氧化层,接着去除掉牺牲氧化层,然后通过热氧生长的方式生长沟槽栅氧化层02b,并进行退火处理,在此之后,在纵向沟槽07内淀积沟槽栅多晶硅05,接着去除N型外延层10表面多余的二氧化硅和多晶硅,形成沟槽中的栅极结构,得到如图9所示的器件结构,该结构存在两条导电沟道;
步骤七:在N型外延层10表面淀积二氧化硅层,接着在二氧化硅层上方淀积掩膜层,并通过光刻工艺刻蚀出源区窗口,然后用离子注入的方法注入氮离子形成N型源区03,去除掩膜层,其次,淀积新的掩膜层,通过光刻工艺刻蚀出P型屏蔽区06和源极区域03上方窗口,向下刻蚀多余的二氧化硅,形成栅极介质层02a,最后去除掩膜层,得到如图10所示的器件结构;
步骤八:在N型外延层10上表面淀积金属形成源极金属01,在高浓度N型衬底11底部淀积金属形成漏极金属12,得到如图1所示的最终器件结构。
实施例3
一种沟槽型碳化硅MOSFET器件的制备方法,应用于实施例1所述的沟槽型碳化硅MOSFET器件,包括如下步骤:
步骤S1:选取N型衬底11作为高浓度N型漏极,N型衬底11采用碳化硅,碳化硅衬底可以采用4H-SiC、6H-SiC或3C-SiC等材料,一般使用最多的是4H-SiC材料,然后外延生长第一层N型外延层10,得到如图4所示的器件结构;
步骤S2:在第一层N型外延层10上,淀积掩膜层,用光刻工艺刻蚀出窗口,接着用离子注入的方式注入铝离子形成P型埋层区09,得到如图11所示的器件结构;
步骤S3:在第一层N型外延层10上,通过外延生长的方法形成N型JFET区08或者生长第二层N型外延,利用掩膜层用离子注入的方法注入氮离子形成N型JFET区08,得到如图12所示的器件结构;
步骤S4:在N型JFET区08上,通过外延生长或者先生长外延后进行铝离子注入的方法形成P型体区04,得到如图13所示的器件结构;
步骤S5:在P型体区04表面,淀积掩膜层,然后用光刻工艺刻蚀出窗口,接着选择性离子注入铝离子形成P型屏蔽区06,得到如图7所示的器件结构;
步骤S6:在P型体区04表面,淀积掩膜层,然后用光刻工艺刻蚀出窗口,接着选择性刻蚀出纵向沟槽07,得到如图8所示的器件结构,其中纵向沟槽07深度小于P型屏蔽区06深度;
步骤S7:在纵向沟槽07内先生长一层牺牲氧化层,然后去除牺牲氧化层,接着用热生长的方法生长二氧化硅层作为沟槽栅氧化层02b,之后在纵向沟槽07内淀积多晶硅形成沟槽栅多晶硅05作为器件栅极,最后去除P型体区04表面多余的二氧化硅和多晶硅,得到如图9所示的器件结构,该结构存在两条导电沟道;
步骤S8:在P型体区04表面生长二氧化硅层,接着淀积掩膜层,用光刻工艺刻蚀出源区窗口,然后选择性注入氮离子形成N型源区,去除掩膜层,接着淀积掩膜层,淀积新的掩膜层,通过光刻工艺刻蚀出P型屏蔽区06和N型源区03上方窗口,向下刻蚀多余的二氧化硅,形成栅极介质层02a,最后去除掩膜层,得到如图10所示的器件结构;
步骤S9:在远离高浓度N型衬底11的一端表面淀积金属形成源极金属01,在高浓度N型衬底11底部淀积金属形成漏极金属12,得到如图1所示的最终器件结构。
以上对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的两种实施方式,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (4)

1.一种沟槽型碳化硅MOSFET器件,其特征在于,包括漏极金属(12)及所述漏极金属(12)上方的N型衬底(11),在所述N型衬底(11)上方依次为N型外延层(10)、N型JFET区(08)、P型体区(04)以及N型源区(03)和源极金属(01),其中N型外延层(10)作为器件的漂移区,在所述N型外延层(10)远离所述N型衬底(11)的一端设有纵向沟槽(07),所述纵向沟槽(07)贯穿所述N型源区(03)以及P型体区(04),上端位于源极金属(01)的内部,下端延伸至N型JFET区(08)中,在所述纵向沟槽(07)内部设有沟槽栅多晶硅(05),且所述沟槽栅多晶硅(05)的上表面被栅极介质层(02a)覆盖,下表面和侧面被沟槽栅氧化层(02b)包裹;相邻两个纵向沟槽(07)之间间隔设置P型屏蔽区(06),所述P型屏蔽区(06)部分包裹所述纵向沟槽(07)的表面,并且所述P型屏蔽区(06)的上表面通过源极金属(01)与N型源区(03)相连接,所述P型屏蔽区(06)的正下方设置有P型埋层区(09),所述P型埋层区(09)穿过所述N型JFET区(08)进入所述N型外延层(10)中;
所述P型屏蔽区(06)部分包裹所述纵向沟槽(07)的外侧面和底部,所述P型屏蔽区(06)的上端连接源极金属(01),下端延伸至N型JFET区(08)内部;
所述P型埋层区(09)上表面连接所述P型屏蔽区(06),下表面深入所述N型外延层(10)中;
所述P型埋层区(09)的掺杂浓度小于所述P型屏蔽区(06)的掺杂浓度。
2.根据权利要求1所述的沟槽型碳化硅MOSFET器件,其特征在于,相邻两个纵向沟槽(07)构成一个元胞结构,其中元胞结构中存在两个栅极,除被P型屏蔽区(06)所包裹的纵向沟槽(07)两侧外还存在两条导电沟道。
3.一种沟槽型碳化硅MOSFET器件的制备方法,其特征在于,应用于如权利要求1所述的沟槽型碳化硅MOSFET器件,包括以下步骤:
步骤一:选取N型衬底(11)作为高浓度N型漏极,并生长N型外延层(10);
步骤二:在所述N型外延层(10)远离N型衬底(11)的一端注入施主离子形成N型JFET区(08);
步骤三:在所述N型外延层(10)上,利用掩膜层选择性高能注入受主离子形成P型埋层区(09),并选择性注入受主离子形成P型体区(04);
步骤四:在所述N型外延层(10)顶部,利用掩膜层选择性注入受主离子形成P型屏蔽区(06);
步骤五:在所述N型外延层(10)顶部,利用掩膜层选择性刻蚀出纵向沟槽(07),所述纵向沟槽(07)穿过P型体区(04)延伸至N型JFET区(08)中,并且纵向沟槽(07)的深度小于所述P型屏蔽区(06)的深度;
步骤六:在所述纵向沟槽(07)内生长氧化层作为沟槽栅氧化层(02b),并在所述纵向沟槽(07)内淀积多晶硅形成沟槽栅多晶硅(05),去除多余的氧化层和多晶硅;
步骤七:在所述N型外延层(10)表面淀积二氧化硅层,利用掩膜层选择性注入施主离子形成N型源区(03),接着选择性刻蚀,保留部分二氧化硅层形成栅极介质层(02a);
步骤八:在所述N型外延层(10)上表面和下表面分别淀积金属,形成源极金属(01)和漏极金属(12)。
4.一种沟槽型碳化硅MOSFET器件的制备方法,应用于如权利要求1所述的沟槽型碳化硅MOSFET器件,其特征在于,包括如下步骤:
步骤S1:选取N型衬底(11)作为高浓度N型漏极,接着生长第一层N型外延层(10);
步骤S2:在所述第一层N型外延层(10)上,利用掩膜层,选择性注入受主离子形成P型埋层区(09);
步骤S3:在所述第一层N型外延层(10)顶部,通过外延生长的方法形成N型JFET区(08)或者继续生长第二层外延层,用离子注入的方法注入施主离子形成N型JFET区(08);
步骤S4:在所述N型JFET区(08)顶部,通过外延生长或者注入受主离子的方法形成P型体区(04);
步骤S5-S9同权利要求3中的步骤四-步骤八。
CN202310581822.2A 2023-05-23 2023-05-23 一种沟槽型碳化硅mosfet器件及其制备方法 Active CN116314340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310581822.2A CN116314340B (zh) 2023-05-23 2023-05-23 一种沟槽型碳化硅mosfet器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310581822.2A CN116314340B (zh) 2023-05-23 2023-05-23 一种沟槽型碳化硅mosfet器件及其制备方法

Publications (2)

Publication Number Publication Date
CN116314340A CN116314340A (zh) 2023-06-23
CN116314340B true CN116314340B (zh) 2023-09-01

Family

ID=86829097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310581822.2A Active CN116314340B (zh) 2023-05-23 2023-05-23 一种沟槽型碳化硅mosfet器件及其制备方法

Country Status (1)

Country Link
CN (1) CN116314340B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839943A (zh) * 2012-11-26 2014-06-04 英飞凌科技奥地利有限公司 半导体器件
CN114284358A (zh) * 2021-12-20 2022-04-05 北京大学 一种碳化硅功率器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015121566B4 (de) * 2015-12-10 2021-12-09 Infineon Technologies Ag Halbleiterbauelemente und eine Schaltung zum Steuern eines Feldeffekttransistors eines Halbleiterbauelements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839943A (zh) * 2012-11-26 2014-06-04 英飞凌科技奥地利有限公司 半导体器件
CN114284358A (zh) * 2021-12-20 2022-04-05 北京大学 一种碳化硅功率器件及其制备方法

Also Published As

Publication number Publication date
CN116314340A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
EP1745517B1 (en) Insulated gate semiconductor device
KR101735230B1 (ko) 게이트 산화물 층에 감소된 전기장을 갖는 반도체 디바이스들
US7915617B2 (en) Semiconductor device
CN109065542B (zh) 一种屏蔽栅功率mosfet器件及其制造方法
US7504307B2 (en) Semiconductor devices including voltage-sustaining space-charge zone and methods of manufacture thereof
JP4564510B2 (ja) 電力用半導体素子
KR100731141B1 (ko) 반도체소자 및 그의 제조방법
CN111969059A (zh) 一种屏蔽栅沟槽式金属氧化物半导体场效应管
CN104051540B (zh) 超级结器件及其制造方法
CN102299180A (zh) 包含单元区和具有高击穿电压结构的外围区的半导体器件
US20220052170A1 (en) Mosfet with distributed doped p-shield zones under trenches
CN115148826B (zh) 一种深沟槽碳化硅jfet结构的制作方法
CN114284358A (zh) 一种碳化硅功率器件及其制备方法
CN114597257A (zh) 一种沟槽栅碳化硅mosfet器件及其工艺方法
CN116154000A (zh) 多级沟槽型SiC MOSFET器件及其制造方法
CN116913969A (zh) 一种具有双沟槽源极结构的沟槽栅ldmos器件及生产工艺
CN114023810B (zh) 一种L型基区SiC MOSFET元胞结构、器件及制造方法
CN113488389B (zh) 一种沟槽栅双层超结vdmosfet半导体器件及其制备方法
CN117712177A (zh) 具有半包裹p型屏蔽层结构的碳化硅mosfet器件
KR101386132B1 (ko) 트렌치 구조를 갖는 SiC MOSFET 및 그 제조방법
CN117038455A (zh) Mosfet结构及工艺方法
CN114203825B (zh) 一种垂直型碳化硅功率mosfet器件及其制造方法
CN116314340B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
KR20010102278A (ko) 게이트 항복을 방지한 실리콘 탄화물 횡형 금속 산화물반도체 전계 효과 트랜지스터
CN114361247A (zh) 沟槽栅金属氧化物半导体场效应管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant