CN117154069A - 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料 - Google Patents

用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料 Download PDF

Info

Publication number
CN117154069A
CN117154069A CN202311010105.0A CN202311010105A CN117154069A CN 117154069 A CN117154069 A CN 117154069A CN 202311010105 A CN202311010105 A CN 202311010105A CN 117154069 A CN117154069 A CN 117154069A
Authority
CN
China
Prior art keywords
metal oxide
active material
battery
oxide nanomaterial
amo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311010105.0A
Other languages
English (en)
Inventor
佩奇·L·约翰逊
乔纳森·G·内夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lithium Hydrogen Helium Co ltd
Original Assignee
Lithium Hydrogen Helium Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lithium Hydrogen Helium Co ltd filed Critical Lithium Hydrogen Helium Co ltd
Publication of CN117154069A publication Critical patent/CN117154069A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Secondary Cells (AREA)

Abstract

一种酸化的金属氧化物(“AMO”)材料,优选呈单分散纳米颗粒形式,尺寸为20nm或更小,当以5wt%悬浮于水溶液中时pH<7,至少在其上表面上哈米特函数H0>‑12。AMO材料在电池电极,催化剂或光伏组件等应用中有用。

Description

用于储能,催化,光伏和传感器应用的合成表面官能化酸化金 属氧化物材料
背景技术
本发明属于用于化学能源存储和电力装置的材料领域,例如但不限于电池。更具体地,本发明涉及用于诸如电化学电池材料(电池),催化剂,光伏组件和传感器等应用的合成酸化金属氧化物(“AMO”)纳米材料。
金属氧化物是氧与金属键合的化合物,具有通式MmOx。它们存在于自然界中,但可以人工合成。在合成金属氧化物中,合成方法可以对表面的性质,包括其酸/碱特性具有广泛的影响。表面特性的变化可改变氧化物的特性,影响催化活性和电子迁移率等特征。然而,表面控制反应性的机制并不总被很好的表征或理解。例如,在光催化中,表面羟基被认为促进电子从导带转移到化学吸附的氧分子。
尽管表面特性的重要性,金属氧化物文献,包括科学论文和专利,都主要致力于创造新型纳米级结晶形式的金属氧化物,以改善能源储存和电力应用。金属氧化物表面特性被忽视,并且在化学催化文献外,针对控制或改变已知金属氧化物的表面以实现性能目标的创新非常少。
化学催化文献主要致力于创造“超强酸”——酸度大于纯硫酸(18.4MH2SO4)——通常用于烃裂解等大规模反应。超强酸性不能在传统的pH值上进行测量,而是用哈米特数进行量化。哈米特数(H0)可被认为是将pH范围扩展到0以下的负数。纯硫酸的H0为-12。
然而,有许多反应体系和应用中,超强酸性太强。例如,超强酸性可降解系统组分或催化不需要的副反应。然而,酸性在这些应用中提供增强的反应性和速率特性或和改善的电子迁移率可能仍然是有用的。
电池文献教导说,酸性基团在电池中是有害的,它们可以攻击金属集流体和外壳并导致其他电极部件的劣化。此外,现有技术教导了活性催化电极表面导致电解质分解,这可导致电池中产生气体并最终导致电池失效。
存在对呈酸性但至少在其表面上不具有超强酸性的合成金属氧化物的需要。
发明内容
根据本发明的材料是合成的,酸化的金属氧化物(“AMO”),优选呈单分散纳米颗粒形式(尺寸为20nm或更小),当以5wt%悬浮于水溶液中时具有pH<7,并且至少在其表面上哈米特函数H0>-12。AMO材料在诸如电池电极,催化剂,光伏组件或传感器等的应用中是有用的。
优选地,合成和表面官能化是在“单釜”水热法中完成的,其中当金属氧化物由合适的前体合成时,所述金属氧化物的表面被官能化。这种单釜法不需要任何超出那些合成金属氧化物本身所需步骤外的酸化步骤,并产生具有期望表面酸度(但不是超强酸性)的AMO材料。
在优选的实施例中,表面官能化的发生采用强吸电子基团(“EWGs”)——例如SO4,PO4,或卤素——无论单独使用或与彼此的一些组合。表面官能化也可使用比SO4,PO4或卤素弱的EWG。例如,合成的金属氧化物可以用乙酸盐(CH3COO),草酸盐(C2O4)和柠檬酸盐(C6H5O7)表面官能化。
附图说明
图1示出了用本发明公开的方法制备的AMO和市售的非AMO锡比较,相对于锂循环时的循环伏安图中的差异。
图2示出了AMO氧化锡的总反射率不同于市售的非AMO氧化锡。
图3是X射线光电子能谱(XPS)数据,其示出了由本发明公开的合成方法内生的表面官能化。显示的数字是以%表示的原子浓度。最右栏列出了以5wt%分散在在水溶液中时测量的合成纳米颗粒的相应pH值。
图4显示了相同条件下(除了使用不同的官能团外)合成的AMO纳米颗粒之间的形态差异。
图5显示了相同条件下(除了具有两个不同的总反应时间)合成的AMO纳米颗粒的形态和性能的差异。
图6是显示了球形和细长(针状或杆状)AMO在相对锂循环时表现差异的代表性半电池数据。
图7是使用两个一强(含磷)和一弱(乙酸盐)吸电子基团AMO合成的纳米颗粒的表面的X射线光电子能谱分析,其表明磷的原子浓度比与乙酸酯基团相关联的键的原子浓度更大。
图8A示出了一AMO,其在可见光中比另一AMO更活跃。
图8B示出了一AMO,其在紫外光下比其他AMO更具活性。
图9是比较两种AMO的图表,一种具有较高的容量,适于首次(一次性使用)电池应用,另一种具有较高的可循环性,适用于二次(可充电)电池应用。
图10示出了AMOs可提高电池性能,而不会恶化电池组件或产生气体。
定义
为了本公开的目的,以下术语具有以下含义:
酸性氧化物——科学文献中通用的术语,指氧与非金属元素的二元化合物。一个例子是二氧化碳,CO2。一些类金属(例如Si,Te,Po)的氧化物在其纯分子状态下同样具有弱酸性。
酸化金属氧化物(“AMO”)——在本文用来表示氧和金属的二元化合物的术语,其经过合成或更改而比其天然矿物状态具有更大酸度并且哈米特函数,H0>-12(不是超强酸)。平均粒径尺寸也小于天然矿物态下的尺寸。天然的矿物学形式不属于本发明的AMO材料的范围。然而,合成金属氧化物在本公开的范围内比其最丰富的矿物学形式(具有等效的化学计量比)酸度更大但不是落在本公开的范围内的超强酸,可以说是AMO材料,只要它满足本公开中讨论的某些其他条件即可。
酸性——在科学文献中通用的术语,指在水溶液中的PH值小于7的化合物。
吸电子基团(“EWG”)——将电子密度吸引到自己的原子或分子基团。EWG的强度是基于其在化学反应中的已知表现。例如,卤素已知是强EWG。有机酸基团已知是弱吸电子的。
哈米特函数——在高浓度酸溶液和超强酸中定量酸度的额外方法,其酸度由下式定义:H0=pKBH++log([B]/[BH+])。在此比例下,纯的18.4摩尔H2SO4具有-12的H0值。纯硫酸酸值H0=-12不能解释为pH=-12,而是表示存在的酸性物质在虚拟(理想)浓度为1012mol/L时具有等于H3O+的质子化能力,通过其质子化弱碱的能力来测量的。哈米特酸度函数在其方程中避免了水分。它在此用于提供从超强酸区分AMO材料的定量手段。哈米特函数可以与比色指示剂测试和程序升温脱附结果相关。
金属氧化物——在科学文献中用来指氧与金属元素的二元化合物的通用术语。根据它们在元素周期表中的位置,金属氧化物在其纯分子状态下从弱碱性到两性(同时显示酸性和碱性)变化。弱碱性金属氧化物是锂,钠,镁,钾,钙,铷,锶,铟,铯,钡和碲的氧化物。两性氧化物是铍,铝,镓,锗,砹,锡,锑,铅和铋的氧化物。
单分散——以均一尺寸的颗粒为特征,这些颗粒基本上彼此分离,不聚集成较大颗粒。
pH——一种科学文献中通用的功能性数值标度,用于指定水溶液的酸度或碱度。它是水合氢离子[H3O+]浓度的对数的负数。如本文所用,它描述了悬浮在水溶液中的纳米颗粒的相对酸度。
表面官能化——将小原子或分子基团附着到材料表面。
超强酸——比100%H2SO4酸性更强的物质,具有哈米特函数,H0<-12。
具体实施方式
这里描述的优选实施例提供了在诸如电池电极,催化剂或光伏组件的应用中有用的酸化金属氧化物(“AMO”)材料的说明性实例。这些AMO材料的表面是酸性的,但不是超强酸性。
金属氧化物的表面理想地是金属和氧中心的阵列,根据氧化物的晶体结构排序。实际上,阵列不完美,容易出现空位,变形和表面附着的影响。无论如何,任何暴露的金属中心都是阳离子(带正电的)并且可接受电子,因此发挥定义为路易斯酸位点的功能。氧中心是阴离子(带负电荷)并充当路易斯碱基位点以供电子。这导致了众所周知的金属氧化物表面的两性。
在正常的大气条件下,水蒸气的存在将分子化(水合)地或离解(羟基化)地吸附到金属氧化物表面。OH-和H+类型都可以吸附在氧化物表面上。负电荷的羟基物质将附着在金属阳离子(路易斯酸,电子受体)中心,并且H+将附着在氧阴离子(路易斯碱,电子供体)中心。两种吸附都导致金属氧化物表面上存在相同的官能团——羟基。
这些表面羟基可以用作布朗斯特酸或用作布朗斯特碱,因为这些基团可以放弃或接受质子。单个羟基为质子供体或质子受体的倾向受其所附着的金属阳离子或氧阴离子的配位的影响。金属氧化物表面的缺陷如氧空位或表面基团与其他化学物质的配位,意味着所有的阳离子和阴离子不是同样地配位。酸碱位点的数量和强度会有所不同。当在氧化物表面大致“总计”时,这可以使表面具有整体的酸性或碱性特征。
路易斯酸和碱位点的数量和强度(分别来自暴露的金属阳离子和氧阴离子)和布朗斯特酸和碱位点(来自表面羟基)——为金属氧化物增加了广泛的用途和功能以及其在化学反应和装置应用中的使用。这些位点是金属氧化物的化学反应性的强有力贡献者。它们可以作为其他化学基团的锚点,其他化学基团和甚至另外的金属氧化物可附着于其上。它们会影响表面电荷,亲水性和生物相容性。
改变金属氧化物表面的一种方法是在被称为表面官能化的方法中附着小的化学基团或吸电子基团(“EWG”)。EWG诱导氢氧键的极化并促进氢的离解。例如,更强的EWG将会产生极性更大的键并因此具有酸性更大的质子。路易斯位点的酸度可以通过诱导极化来增加,这有助于将电子提供到位点。当将如此制成的化合物置于水中时,酸性质子将解离并因此降低水性pH测量值。
尽管有些不精确,在测量固体酸/碱体系而不是液体体系时,传统的使用滴定法测量pH值的方法,pH试纸和pH探针可用于评估分散在水溶液中的金属氧化物的酸度。这些测量可以通过使用包括但不限于比色指示器,红外光谱和程序升温脱附数据的技术来补充,以建立金属氧化物表面的酸化性质。表面基团可通过标准分析技术检测,包括但不限于X射线光电子能谱。
表面官能化可在合成后完成,包括但不限于将金属氧化物暴露于酸性溶液或含有所需官能团的蒸气。它也可以通过固态方法完成,其中金属氧化物与含有所需官能团的固体混合和/或研磨。然而,所有这些方法都需要额外的表面官能化步骤或超出合成金属氧化物本身所需的步骤。
AMO材料的合成和表面官能化可在“单釜”水热合成方法或其等效方法中实现,其中当金属氧化物由合适的前体合成时金属氧化物的表面被官能化。含有EWG的前体盐被溶解,所得溶液用含有第二种EWG的酸来酸化。然后将该酸化溶液碱化,并将碱化溶液加热然后洗涤。干燥步骤产生固体AMO材料。
以举例的方式,使用以下单釜法合成了AMO形式的氧化锡并同时表面官能化的优选实施例:
1.首先,将7克氯化锡(II)二水合物(SnCl2·2H2O)溶于35毫升无水乙醇和77毫升蒸馏水的溶液中。
2.将所得溶液搅拌30分钟。
3.通过加入7mL 1.2M HCl将溶液酸化,逐滴加入,并将所得溶液搅拌15分钟。
4.通过加入1M碱的水溶液碱化溶液,滴加至溶液的pH值约为8.5。
5.然后将所得不透明白色悬浮液在搅拌下置于热水浴中(~60℃至90℃)至少2小时。
6.然后用蒸馏水和无水乙醇洗涤悬浮液。
7.将洗涤过的悬浮液在空气中100℃下干燥1小时,然后在空气中200℃下退火4小时。
该方法用氯产生表面官能化的锡的AMO,当以5wt%在水溶液及室温下测量时,其pH值约为2。根据定义它的哈米特函数,H0>-12。尽管这里描述了诸如烧瓶的开放系统,但也可以使用诸如高压灭菌器的封闭系统。
本领域技术人员将认识到,该方法的参数可以如水热合成中通常的那样变化。这些参数包括但不限于试剂的类型和浓度,酸和碱的类型和浓度,反应时间,温度和压力,搅拌速率和时间,洗涤步骤的数量和类型,干燥和煅烧的时间和温度,以及在干燥和煅烧过程中的气体暴露。可以单独或以任何组合进行变化,优选使用实验设计方法。此外,其他金属氧化物合成方法——例如喷雾热解方法,气相生长方法,电沉积方法,固态方法和水热或溶剂热方法——可用于实现与此处公开的方法相同或相似的结果。
AMO纳米材料的性能特征与非酸化金属氧化物纳米颗粒的性能特征不同。作为一个例子,图1显示了单釜法制备的AMO锡与市售非AMO锡相比,相对于锂循环时的循环伏安图中的差异。作为另一个例子,图2显示AMO氧化锡的总反射率不同于市售非AMO氧化锡的总反射率。数据表明AMO具有较低的带隙,因此作为光伏系统的组件具有更理想的性能。
AMO材料可被认为具有通式
MmOx/G
其中MmOx是金属氧化物,m最小为1且不大于5,x最小为1且不大于21;
G是至少一种EWG而不是氢氧化物,而且
/简单地区分金属氧化物和EWG,表示两者之间没有固定的数学关系或比率。
G可以表示单一类型的EWG,或者多于一种类型的EWG。
优选的AMO是酸化锡氧化物(SnxOy),酸化二氧化钛(TiaOb),酸化铁氧化物(FecOd)和酸化氧化锆(ZreOf)。优选的吸电子基团(“EWG”)是Cl,Br,BO3,SO4,PO4和CH3COO。无论具体的金属或EWG如何,AMO材料都是酸性的,但不是超强酸性的,当以5wt%悬浮在水溶液中时,产生的pH值小于7,至少在其表面上哈米特函数H0>-12。
AMO材料结构可以是结晶的或无定形的(或其组合),并且可以单独使用或者作为与另一材料与现在技术中已知的非酸化金属氧化物或与其他添加剂,粘合剂或导电助剂组合的复合材料。可将AMO材料以10wt%至80wt%且高达90wt%至95wt%的范围添加至导电辅助材料,例如石墨或导电碳(或其等价物)。在优选的实施例中,AMO以10wt%,33wt%,50wt%和80wt%添加。
为了使可用的总表面积最大化,AMO应为纳米颗粒形式(即,尺寸小于1微米)并且基本上是单分散的。更优选地,纳米颗粒尺寸小于100nm,甚至更优选小于20nm或10nm。
除了简单的或者二元氧化物之外,其他金属或金属氧化物存在于其中的混合金属AMO也已经被付诸实施。这些混合金属AMO可被认为具有通式
MmNnOx/G和MmNnRrOx/G
其中:
M是金属,m最小为1且不大于5;
N是金属且n大于0且不大于5;
R是金属且r大于0且不大于5;
O是与所有金属有关的总氧,x最小为1且不大于21;
/简单地区分金属氧化物和吸电子表面基团,表示两者之间没有固定的数学关系或比率;以及
G是至少一种EWG而不是氢氧化物。
G可表示单一类型的EWG,或者多于一种类型的EWG。
一些现有的混合金属氧化物体系,其中沸石是最突出的例子,它显示出强酸性,虽然每种简单的氧化物都不具有强酸性。本公开的混合金属AMO的优选实施例不同于那些系统,因为任何实施例必须包含至少一种呈简单MmOx/G形式的酸性(但不是超酸性)的AMO。优选的混合金属和金属氧化物体系是SnxFecOy+d和SnxTiyOy+b,其中y+d和y+b可以是整数或非整数值。
在一个优选的实施例中,混合金属AMO材料通过改进的单釜法产生:合成以两种金属前体盐而不是一种,以任何比例开始。例如,单釜法的步骤1可以如下改变:首先,将3.8g氯化锡(II)二水合物(SnCl2·2H2O)和0.2g氯化锂(LiCl)溶解在20mL纯乙醇和44mL蒸馏水中。
也可以以任何比例使用三种金属前体盐。根据所需的产品,金属前体盐可具有相同或不同的阴离子基团;可以在合成中的不同点引入;或者可以作为固体引入或引入溶剂中。
使用单釜法进行的实验产生了七个关键发现。首先,在所有情况下,表面官能化和酸性都是内源性产生的(见图3),而不是合成后产生。与现有技术的表面官能化方法不同,单釜法既不需要除了合成金属氧化物本身所需的步骤以外的任何额外的步骤用于表面官能化,也不需要使用含羟基的有机化合物或过氧化氢。
其次,该方法广泛地普遍适用于各种金属氧化物和EWG。使用该方法,合成了铁,锡,锑,铋,钛,锆,锰和铟的金属氧化物,并用氯化物,硫酸盐,乙酸盐,硝酸盐,磷酸盐,柠檬酸盐,草酸盐,硼酸盐和溴化物同时表面官能化。合成了锡铁,锡锰,锡锰铁,锡钛,铟锡,锑锡,铝锡,锂铁,锂锡等混合金属AMO。此外,表面官能化可使用比卤素和SO4弱的EWG完成,仍然产生酸性但不是超酸性表面。例如,该方法也被用于合成用乙酸盐(CH3COO),草酸盐(C2O4)和柠檬酸盐(C6H5O7)表面官能化的AMOs。
第三,EWG和纳米粒子的其他性质之间存在协同关系,例如尺寸,形态(如片状,球状,针状或杆状),氧化态和结晶度(无定形,结晶,或其混合物)。例如,在除了使用用于表面官能化的不同EWG之外,相同条件下合成的AMO纳米颗粒之间可能发生形态学差异(见图4)。表面官能化可能起到“固定”纳米颗粒尺寸的作用,阻止它们的生长。根据确切的合成条件,该固定可能仅发生在纳米粒子的一个维度上,或者发生在多个维度上。
第四,AMO的特性对合成条件和过程非常敏感。例如,在除了具有两个不同的总反应时间之外,相同的条件下合成AMO纳米粒子时可产生形态和性能的差异(见图5和6)。可以使用实验设计方法来确定最佳或最优的合成条件和程序以产生期望的特征或特征组。
第五,存在于前体盐中的阴离子和存在于酸中的阴离子都有助于AMO的表面官能化。在一个优选的实施例中,氯化锡前体和盐酸用于合成锡的AMO。这些颗粒的性能不同于使用氯化锡前体和硫酸的实施例,或者使用硫酸锡前体和盐酸的实施例。因此,匹配前体阴离子和酸性阴离子是优选的。
第六,当使用具有弱EWG和具有强EWG的酸的前体时,或反之亦然,强吸阴离子将主导表面官能化。这开辟了更广泛的合成可能性,允许使用在前体盐和酸中不易得到的离子官能化。它也可能允许用强和弱的EWG混合功能化。在一个实例中,乙酸锡前体和磷酸用于合成锡的AMO。表面的X射线光电子能谱分析表明磷的原子浓度大于与乙酸根相关的键(见图7)。
第七,最后,虽然所公开的方法是用于合成AMO的一般过程,但可以调整合成过程和条件以产生对于不同的应用被认为是所期望的大小,形态,氧化态和结晶态。作为一个实例,催化应用可能需要在可见光中更具活性的AMO材料(见图8A)或在紫外光下更具活性的AMO材料(见图8B)。
在另一个例子中,AMO材料可以用作电池电极。首次(一次性使用)电池应用可能需要具有导致最高容量特性的AMO,而二次(可充电)电池应用可能需要相同的AMO,但具有导致最高可循环性的特性(见图9)。AMO材料可以提高电池性能,而不会使电池部件劣化或产生气体(见图10)。这与现有技术所教导的完全相反。
实施例1
在实施例中,本公开的电池单元包含电极,所述电极包含基本上单分散纳米颗粒形式的表面官能化固体金属氧化物,并且对锂具有至少150至200次充放电循环的可循环性。固体金属氧化物至少在其表面上具有小于5.5的pH值,和大于-12的哈米特函数H0。pH值是当干燥形式的表面官能化的固体金属氧化物以5wt%重新悬浮于水中时测量得到。在一些实施例中,pH在2至5的范围内。固体金属氧化物可以具有小于20nm的粒径。
表面官能化固体金属氧化物可以包含氧化锡或氧化铁。在其他实施例中,固体金属氧化物包含锑,铋,钛,锆,锰或铟中的一种或多种的氧化物。在一些实施例中,固体金属氧化物具有球形形态。在其他实施例中,固体金属氧化物可以具有细长的形态。在其他实施例中,固体金属氧化物可以具有片状形态。
表面官能化固体金属氧化物可被配置为电池单元的阳极。电池可包括包含锂金属的第二电极。该电池可具有至少300次充放电循环,至少400次充放电循环,至少500次充电-放电循环,至少600次充电-放电循环,至少700次充电-放电循环,至少800次充放电循环,或至少900次充放电循环。表面官能化固体金属氧化物的锂化能力可以在900mAh/g到至少1400mAh/g的范围内。
表面官能化的固体金属氧化物可以用至少一个分子量小于200的吸电子基团进行表面官能化。固体金属氧化物可以用至少一个具有长度不大于4的碳链的吸电子表面基团表面官能化。在其它实施方案中,表面官能化固体金属氧化物用至少一个吸电子表面基团表面官能化,所述吸电子表面基团选自Cl,Br,BO3,SO4,PO4,CH3COO,C2O4和C6H5O7组成的组。
实施例2
在实施例中,本公开的电池单元包含电极,所述电极包含基本上单分散纳米颗粒形式的表面官能化固体金属氧化物,并且对锂具有至少150至200次充放电循环的循环性;表面官能化的固体金属氧化物的还进一步由式MmOx/G表征,其中
Mm是金属,m最小为1且不大于5;
Ox是总氧,x最小为1且不大于21;
MmOx是一种金属氧化物;
G是至少一个吸电子表面基团,并且
“/”区分金属氧化物和吸电子表面基团。
电极可以被配置为阳极。表面官能化的固体金属氧化物至少在其表面上具有小于5.5的pH值和大于-12的哈米特函数H0,pH值是当干燥形式的表面官能化固体金属氧化物以5wt%重新悬浮于水中时测量得到。pH值可在2至5的范围内。在一些实施例中,可循环性为至少300次充电-放电循环,至少400次充电-放电循环,至少500次充电-放电循环,至少600次充电-放电循环,至少700次充放电循环,至少800次充放电循环或至少900次充放电循环。
表面官能化的固体金属氧化物可用至少一个分子量小于200的吸电子基团进行表面官能化。固体金属氧化物可以用至少一个具有长度不大于4的碳链的吸电子表面基团表面官能化。在其它实施方案中,表面官能化固体金属氧化物用至少一个吸电子表面基团表面官能化,所述吸电子表面基团选自Cl,Br,BO3,SO4,PO4,CH3COO,C2O4和C6H5O7组成的组。
在一些实施方案中,表面官能化的固体金属氧化物进一步由式MmNnOx/G表征,其中Nn是不同于Mm的第二金属且n大于0且不大于5。在其他实施方案中,表面官能化的固体金属氧化物进一步由式MmNnRrOx/G表征,其中Rr是不同于Mm和Nn的第三金属,并且r大于0且不大于5。
表面官能化固体金属氧化物可以包含氧化锡或氧化铁。在其他实施例中,固体金属氧化物包含锑,铋,钛,锆,锰或铟中的一种或多种的氧化物。在一些实施例中,固体金属氧化物具有球形形态。在其他实施例中,固体金属氧化物可以具有细长的形态在其他实施例中,固体金属氧化物可以具有片状形态。
表面官能化的固体金属氧化物可以包含10wt%至50wt%的电极,10wt%至33wt%的电极,33wt%至50wt%的电极,或50wt%至80wt%的电极。金属可以是锡,铁,锑,铋,钛,锆,锰和铟。表面官能化固体金属氧化物的锂化能力可在900mAh/g到至少1400mAh/g的范围内。表面官能化固体金属氧化物的颗粒尺寸可小于20nm。
实施例3
在实施例中,本公开的电池单元包括电极,所述电极包含呈纳米颗粒形式的表面官能化固体金属氧化物,其具有小于20nm的粒径和相对于锂的至少150至200次充放电循环的可循环性。表面官能化固体金属氧化物至少在其表面上具有小于5.5的pH值和大于-12的哈米特H0,pH值是当干燥形式的表面官能化固体金属氧化物以5wt%重新悬浮在水中时测量得到。pH可以在2至5的范围内。电池单元可以具有至少300次充放电循环的循环性,至少400次充电-放电循环,至少500次充电-放电循环,至少600次充电-放电循环,至少700次充放电循环,至少800次充放电循环或至少900次充放电循环。
表面官能化的固体金属氧化物可以用至少一种分子量小于200的吸电子基团进行表面官能化。在其它实施方案中,表面官能化的固体金属氧化物被至少一种具有长度不大于4的碳链的吸电子基团表面官能化。在一些实施方案中,表面官能化固体金属氧化物用至少一个吸电子基团表面官能化,所述吸电子基团选自Cl,Br,BO3,SO4,PO4,CH3COO,C2O4和C6H5O7组成的组。表面官能化固体金属氧化物的锂化能力可以在900mAh/g至1400mAh/g的范围内。
表面官能化的固体金属氧化物可基本上是单分散的。固体金属氧化物可以包含氧化锡或氧化铁。在其他实施例中,固体金属氧化物包含锑,铋,钛,锆,锰或铟中的一种或多种的氧化物。在一些实施例中,固体金属氧化物具有球形形态。在其他实施例中,固体金属氧化物可以具有细长的形态。在其他实施例中,固体金属氧化物可以具有片状形态。
电极可以被配置为阳极。电池单元可包括包含锂金属的第二电极。表面官能化的固体金属氧化物可以包含10wt%至50wt%的电极,10wt%至33wt%的电极,33wt%至50wt%的电极,或50wt%至80wt%的电极。
实施例4
在实施例中,本公开的电池单元包括电极,所述电极包含纳米颗粒形式的表面官能化固体金属氧化物,其具有小于20nm的粒径和至少对锂150-200个充放电循环的可循环性;表面官能化的固体金属氧化物进一步由式MmOx/G表征,其中
Mm是金属,m最小为1且不大于5;
Ox是总氧,x最小为1且不大于21;
MmOx是一种金属氧化物;
G是至少一个吸电子表面基团,并且
“/”区分金属氧化物和吸电子表面基团。
表面官能化固体金属氧化物至少在其表面上具有小于5.5的pH值和大于-12的哈米特函数H0,pH值是当干燥形式的表面官能化固体金属氧化物以5wt%重新悬浮在水中时测量得到。在一些实施里中,pH在2至5的范围内。可循环性可以是至少300次充电-放电循环,至少400次充电-放电循环,至少500次充电-放电循环,至少600次充电-放电循环,至少700次充放电循环,至少800次充放电循环或至少900次充放电循环。
表面官能化的固体金属氧化物可以用至少一种分子量小于200的吸电子基团进行表面官能化。在其它实施例中,表面官能化的固体金属氧化物用至少一种具有长度不大于4的碳链吸电子基团表面官能化。在一些实施例中,表面官能化固体金属氧化物用至少一个吸电子表面基团表面官能化,所述吸电子表面基团选自Cl,Br,BO3,SO4,PO4,CH3COO,C2O4和C6H5O7组成的组。
表面官能化的固体金属氧化物可以基本上是单分散的。固体金属氧化物可以包含氧化锡或氧化铁。在其他实施例中,固体金属氧化物包含锑,铋,钛,锆,锰或铟中的一种或多种的氧化物。在一些实施例中,固体金属氧化物具有球形形态。在其他实施例中,固体金属氧化物可具有细长的形态。在其他实施例中,固体金属氧化物可以具有片状形态。表面官能化固体金属氧化物的锂化能力可以在900mAh/g至1400mAh/g的范围内。
电极可以被配置为阳极。电池单元可包括包含锂金属的第二电极。表面官能化的固体金属氧化物可以包含10wt%至50wt%的电极,10wt%至33wt%的电极,33wt%至50wt%的电极,或50wt%至80wt%的电极。

Claims (23)

1.一种电池活性材料,所述电池活性材料包括:
wt%的固体形式的氧化锡纳米材料,所述氧化锡纳米材料具有至少一种尺寸小于100nm的颗粒且pH<5,所述pH是当所述氧化锡纳米材料以5wt%悬浮在水中时在室温下测量的pH。
2.根据权利要求1所述的电池活性材料,其特征在于,所述wt%不大于33wt%。
3.根据权利要求1所述的电池活性材料,其特征在于,所述wt%不大于10wt%。
4.根据权利要求1所述的电池活性材料,其特征在于,所述氧化锡纳米材料包括选自铁、锰和钛的金属。
5.根据权利要求1所述的电池活性材料,其特征在于,所述氧化锡纳米材料包括至少一种尺寸小于20nm的颗粒。
6.根据权利要求1所述的电池活性材料,其特征在于,所述氧化锡纳米材料包括基本上单分散的纳米颗粒形式。
7.根据权利要求1所述的电池活性材料,其特征在于,所述氧化锡纳米材料用吸电子基团进行表面官能化。
8.根据权利要求7所述的电池活性材料,其特征在于,所述吸电子基团选自Cl,Br,BO3,SO4,PO4,CH3COO,C2O4和C6H5O7
9.一种电池活性材料,所述电池活性材料包括:
wt%的固体形式的混合金属氧化物纳米材料,所述混合金属氧化物纳米材料具有至少一种尺寸小于100nm的颗粒且pH<5,所述pH是当所述混合金属氧化物纳米材料以5wt%悬浮在水中时在室温下测量的pH,所述混合金属氧化物包括选自由锡、铁、锰和钛组成的组中的至少两种金属。
10.根据权利要求9所述的电池活性材料,其特征在于,所述wt%不大于33wt%。
11.根据权利要求9所述的电池活性材料,其特征在于,所述wt%不大于10wt%。
12.根据权利要求9所述的电池活性材料,其特征在于,所述混合金属氧化物纳米材料包括至少一种尺寸小于20nm的颗粒。
13.根据权利要求9所述的电池活性材料,其特征在于,所述混合金属氧化物纳米材料包括基本上单分散的纳米颗粒形式。
14.根据权利要求1所述的电池活性材料,其特征在于,所述混合金属氧化物纳米材料用吸电子基团进行表面官能化。
15.根据权利要求7所述的电池活性材料,其特征在于,所述吸电子基团选自Cl,Br,BO3,SO4,PO4,CH3COO,C2O4和C6H5O7
16.一种电池电极,包括:
活性材料,所述活性材料包括wt%的固体形式的氧化锡纳米材料,所述氧化锡纳米材料具有至少一种尺寸小于100nm的颗粒且pH<5,所述pH是当所述氧化锡纳米材料以5wt%悬浮在水中时在室温下测量的pH。
17.根据权利要求16所述的电池电极,其特征在于,所述wt%不大于33wt%。
18.根据权利要求16所述的电池电极,其特征在于,所述wt%不大于10wt%。
19.根据权利要求16所述的电池电极,其特征在于,所述氧化锡纳米材料包括选自铁、锰和钛的金属。
20.根据权利要求16所述的电池电极,其特征在于,所述氧化锡纳米材料包括至少一种尺寸小于20nm的颗粒。
21.根据权利要求16所述的电池电极,其特征在于,所述氧化锡纳米材料包括基本上单分散的纳米颗粒形式。
22.根据权利要求16所述的电池电极,其特征在于,所述氧化锡纳米材料用吸电子基团进行表面官能化。
23.根据权利要求22所述的电池电极,其特征在于,所述吸电子基团选自Cl,Br,BO3,SO4,PO4,CH3COO,C2O4和C6H5O7
CN202311010105.0A 2015-11-16 2016-11-15 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料 Pending CN117154069A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562256059P 2015-11-16 2015-11-16
US201562256065P 2015-11-16 2015-11-16
US62/256,059 2015-11-16
US62/256,065 2015-11-16
PCT/US2016/062068 WO2017087404A1 (en) 2015-11-16 2016-11-15 Synthesized surface-functionalized, acidified metal oxide materials for energy storage, catalytic, photovoltaic, and sensor applications
CN201680070252.9A CN108370025B (zh) 2015-11-16 2016-11-15 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680070252.9A Division CN108370025B (zh) 2015-11-16 2016-11-15 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料

Publications (1)

Publication Number Publication Date
CN117154069A true CN117154069A (zh) 2023-12-01

Family

ID=58692177

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680070252.9A Active CN108370025B (zh) 2015-11-16 2016-11-15 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料
CN202311010105.0A Pending CN117154069A (zh) 2015-11-16 2016-11-15 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680070252.9A Active CN108370025B (zh) 2015-11-16 2016-11-15 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料

Country Status (7)

Country Link
US (3) US9786910B2 (zh)
EP (1) EP3378114A4 (zh)
JP (3) JP6906541B2 (zh)
KR (1) KR20180071393A (zh)
CN (2) CN108370025B (zh)
CA (1) CA3005637A1 (zh)
WO (2) WO2017087408A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159755A1 (ja) * 2014-04-14 2015-10-22 東レ株式会社 光起電力素子
KR20180071393A (ko) * 2015-11-16 2018-06-27 에이치헬리, 엘엘씨 에너지 저장 용도, 촉매 용도, 광전지 용도 및 센서 용도를 위한 합성된 표면-관능화된, 산성화 금속 산화물 재료
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
WO2018093945A1 (en) 2016-11-15 2018-05-24 Hheli, Llc. A surface-functionalized, acidified metal oxide material in an acidified electrolyte system or an acidified electrode system
JP7237062B2 (ja) * 2017-04-10 2023-03-10 ヒーリー,エルエルシー 新規構成要素を含む電池
JP7340460B2 (ja) * 2017-05-17 2023-09-07 ヒーリー,エルエルシー 新規構造を有する電池セル
KR20230092026A (ko) 2017-05-17 2023-06-23 에이치헬리, 엘엘씨 산성화 캐소드와 리튬 애노드를 가진 배터리
US10978731B2 (en) 2017-06-21 2021-04-13 HHeLI, LLC Ultra high capacity performance battery cell
CA3076501A1 (en) * 2017-09-22 2019-03-28 HHeLI, LLC Construction of ultra high capacity performance battery cells
KR102632805B1 (ko) * 2018-09-10 2024-02-02 에이치헬리, 엘엘씨 초고용량 성능 배터리 셀의 사용 방법
JP2022517468A (ja) * 2018-10-24 2022-03-09 ヒーリー、エルエルシー ポリマー浸漬パウチセル
US11670767B2 (en) * 2018-12-01 2023-06-06 Nanodian Nanostructured inorganic electrode materials with functionalized surfaces
US20200395598A1 (en) * 2019-06-12 2020-12-17 HHeLI, LLC Blended active materials for battery cells
CN110451557A (zh) * 2019-07-25 2019-11-15 杭州电子科技大学 一种具有分级结构的SnO2纳米晶须/纳米颗粒复合簇团及其应用

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007945A (en) * 1996-10-15 1999-12-28 Electrofuel Inc. Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
GB9822569D0 (en) 1998-10-16 1998-12-09 Johnson Matthey Plc Substrate
US6171571B1 (en) 1999-05-10 2001-01-09 Uop Llc Crystalline multinary metal oxide compositions, process for preparing and processes for using the composition
JP3744751B2 (ja) 1999-12-08 2006-02-15 株式会社日本触媒 担体、複合酸化物触媒、およびアクリル酸の製造方法
JP3812324B2 (ja) 2000-11-06 2006-08-23 日本電気株式会社 リチウム二次電池とその製造方法
US6670300B2 (en) 2001-06-18 2003-12-30 Battelle Memorial Institute Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions
DE60210709T2 (de) 2001-06-18 2007-01-11 Rohm And Haas Co. Herstellung von hydrothermal synthetisierten Mo-V-M-X-Oxid Katalysatoren für die Oxidation von Kohlenwasserstoffen
DE10205920A1 (de) 2002-02-12 2003-08-21 Itn Nanovation Gmbh Nanoskaliger Rutil, sowie Verfahren zu dessen Herstellung
US20030186805A1 (en) 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
EP1407819A3 (en) 2002-10-01 2004-06-23 Rohm And Haas Company Hydrothermally synthesized Mo-V-M-Nb-X oxide catalysts for the selective oxidation of hydrocarbons
JP4061648B2 (ja) 2003-04-11 2008-03-19 ソニー株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US7314682B2 (en) 2003-04-24 2008-01-01 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium batteries
US7732096B2 (en) * 2003-04-24 2010-06-08 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium batteries
JP4055642B2 (ja) * 2003-05-01 2008-03-05 日産自動車株式会社 高速充放電用電極および電池
US7825064B2 (en) 2003-06-03 2010-11-02 William Marsh Rice University Supported catalysts using nanoparticles as the support material
US7147834B2 (en) 2003-08-11 2006-12-12 The Research Foundation Of State University Of New York Hydrothermal synthesis of perovskite nanotubes
US7645439B2 (en) 2003-10-10 2010-01-12 Instituto Mexicano Del Petroleo Nanostructured titanium oxide material and its synthesis procedure
US8617745B2 (en) 2004-02-06 2013-12-31 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
KR20050091488A (ko) * 2004-03-12 2005-09-15 주식회사 유피케미칼 세라믹 또는 금속박막 증착용 전구체 화합물 및 그제조방법
FR2872633B1 (fr) 2004-07-02 2006-09-15 Commissariat Energie Atomique Procede de charge d'un accumulateur lithium-ion a electrode negative
JP2008544936A (ja) 2005-05-12 2008-12-11 ジョージア テック リサーチ コーポレイション コーティングされた金属酸化物ナノ粒子およびその製造方法
EP1739139B1 (en) 2005-06-30 2010-10-06 Tohoku Techno Arch Co., Ltd. Organically modified fine particles
JP4640013B2 (ja) * 2005-07-25 2011-03-02 Tdk株式会社 電気化学素子用電極の製造方法および電気化学素子の製造方法
KR100950189B1 (ko) 2005-09-22 2010-03-29 미쓰비시 쥬시 가부시끼가이샤 다공 적층체의 제조 방법 및 다공 적층체
CA2534243A1 (fr) 2006-01-25 2007-07-25 Hydro Quebec Particules d'oxyde metallique enrobees a faible taux de dissolution, procedes de preparation et utilisation dans les systemes electrochimiques
KR100745745B1 (ko) 2006-02-21 2007-08-02 삼성전기주식회사 나노복합재료 및 그 제조방법
CN102916163A (zh) * 2006-05-04 2013-02-06 株式会社Lg化学 具有高稳定性的电极活性材料及使用该材料的电化学装置
WO2008054547A2 (en) 2006-05-31 2008-05-08 Uchicago Argonne, Llc Surface stabilized electrodes for lithium batteries
JP4888088B2 (ja) 2006-06-07 2012-02-29 東ソー株式会社 電解二酸化マンガン
CN101110476B (zh) * 2006-06-07 2012-04-11 东曹株式会社 电解二氧化锰、正极活性材料和电池
KR101125593B1 (ko) 2006-11-13 2012-03-19 주식회사 엘지화학 이차전지용 양극 활물질 및 그것을 포함하는 리튬 이차전지
WO2008066293A1 (en) 2006-11-27 2008-06-05 Korea Research Institute Of Chemical Technology A method for preparing porous organic-inorganic hybrid materials, porous organic-inorganic hybrid materials obtained by the method and catalytic uses of the materials
EP2104558A2 (en) 2006-12-12 2009-09-30 Sol-Gel Technologies Ltd. Formation of nanometric core-shell particles having a metal oxide shell
US20100016443A1 (en) 2007-02-01 2010-01-21 Sol-Gel Technologies Ltd. Method for preparing particles comprising metal oxide coating and particles with metal oxide coating
US9048508B2 (en) 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
CA2685475A1 (en) 2007-04-30 2008-11-06 The Governors Of The University Of Alberta Anode catalyst and methods of making and using the same
JP2008285388A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp リチウムイオン伝導性向上材
US7928735B2 (en) 2007-07-23 2011-04-19 Yung-Sheng Huang Battery performance monitor
JP2009043547A (ja) 2007-08-08 2009-02-26 Fdk Energy Co Ltd 電池用電解二酸化マンガン、正極合剤およびアルカリ電池
US8614878B2 (en) 2008-01-17 2013-12-24 Fraser W. SEYMOUR Nanoscale intercalation materials on carbon powder, process for production, and use thereof
US8503162B2 (en) 2008-01-17 2013-08-06 Fraser W. SEYMOUR Electrode, related material, process for production, and use thereof
US8493711B2 (en) 2008-01-17 2013-07-23 Fraser W. SEYMOUR Monolithic electrode, related material, process for production, and use thereof
DE102008017308B4 (de) 2008-04-04 2014-09-25 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Bismut-Molybdänmischoxidkatalysatoren
GB0808059D0 (en) 2008-05-02 2008-06-11 Oxis Energy Ltd Rechargeable battery with negative lithium electrode
US8685283B2 (en) 2008-08-29 2014-04-01 Agilent Technologies, Inc. Superficially porous metal oxide particles, methods for making them, and separation devices using them
US8357628B2 (en) 2008-08-29 2013-01-22 Agilent Technologies, Inc. Inorganic/organic hybrid totally porous metal oxide particles, methods for making them and separation devices using them
EP2189217A1 (en) 2008-11-17 2010-05-26 Technical University of Denmark Nanoparticular metal oxide/anatase catalysts.
CN101746733B (zh) 2008-12-11 2012-10-03 中科合成油技术有限公司 一种连续化制备金属氧化物材料和催化剂的方法及设备
JP5381078B2 (ja) 2008-12-19 2014-01-08 日産自動車株式会社 電極およびその製造方法
KR101226522B1 (ko) 2008-12-22 2013-01-25 제일모직주식회사 솔리드 스피어 구조를 갖는 담지촉매, 그 제조방법 및 이를 이용하여 제조한 탄소나노튜브
EP2202205A1 (de) 2008-12-23 2010-06-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanopartikuläre Titandioxid-Partikel mit kristallinem Kern, einer Schale aus einem Metalloxid und einer Aussenhaut, die organische Gruppen trägt, sowie Verfahren zu deren Herstellung
CN102414120B (zh) 2009-07-14 2015-06-24 日本艾罗西尔股份有限公司 表面改性的金属氧化物粉末及其制造方法
US9017867B2 (en) 2009-08-10 2015-04-28 Battelle Memorial Institute Self assembled multi-layer nanocomposite of graphene and metal oxide materials
KR101036067B1 (ko) 2009-11-27 2011-05-19 삼성에스디아이 주식회사 안전부재가 구비된 파우치형 리튬 이차전지
CN102130330B (zh) 2010-01-15 2015-07-29 清华大学 锂离子电池正极材料的制备方法
KR101816706B1 (ko) 2010-03-17 2018-02-21 삼성전자주식회사 다공성 산화물 촉매 및 그의 제조방법
US8691441B2 (en) 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries
JP2013537360A (ja) 2010-09-16 2013-09-30 ゼットパワー, エルエルシー 電極セパレータ
US8871374B2 (en) 2010-10-28 2014-10-28 Uchicago Argonne, Llc Amorphous titania/carbon composite electrode materials
US20130078518A1 (en) * 2010-11-17 2013-03-28 Uchicago Argonne, Llc Electrode Structures and Surfaces For Li Batteries
KR101292756B1 (ko) 2011-01-05 2013-08-02 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지용 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬이차전지
AU2012229109A1 (en) 2011-03-15 2013-10-10 Senseonics, Incorporated Integrated catalytic protection of oxidation sensitive materials
KR101292952B1 (ko) 2011-03-16 2013-08-02 삼성에스디아이 주식회사 전극조립체 및 이를 이용한 이차 전지
US20130026409A1 (en) 2011-04-08 2013-01-31 Recapping, Inc. Composite ionic conducting electrolytes
ES2395507B1 (es) 2011-06-03 2013-12-19 Nanobiomatters Research & Development, S.L. Materiales nanocompuestos basados en óxidos de metales con propiedades multifuncionales
CN103650214B (zh) 2011-07-12 2016-04-20 应用材料公司 制造锂离子电池电极膜的孔隙度变化的方法
JP2013048053A (ja) 2011-08-29 2013-03-07 Sony Corp 活物質、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US8921257B2 (en) 2011-12-02 2014-12-30 Saudi Basic Industries Corporation Dual function partial oxidation catalyst for propane to acrylic acid conversion
WO2013083637A1 (en) 2011-12-05 2013-06-13 Solvay Sa Use of atmospheric plasma for the surface of inorganic particles and inorganic particles comprising an organic fluorine-containing surface modification
US9437370B2 (en) 2012-02-27 2016-09-06 Nanotek Instruments, Inc. Lithium-ion cell having a high-capacity anode and a high-capacity cathode
US9048496B2 (en) * 2012-03-07 2015-06-02 A123 Systems Llc Surface treatment of electrochemically active materials for rechargeable cells
KR101988691B1 (ko) 2012-03-30 2019-06-12 린다 종 에너지 저장장치용 전극과 그 제조방법
US9725530B2 (en) 2012-04-20 2017-08-08 East China University Of Science And Technology Supported metal oxide double active center polyethylene catalyst, process for preparing the same and use thereof
EP2842626A4 (en) 2012-04-23 2015-10-28 Nippon Kayaku Kk METHOD FOR PRODUCING A MOLDED CATALYST AND METHOD FOR PRODUCING DIES OR AN UNSATURATED ALDEHYDE AND / OR AN UNSATURATED CARBOXYLIC ACID USING THIS SHAPED CATALYST
US20130330640A1 (en) 2012-06-12 2013-12-12 Michael Edward Badding Metal supported nanowire cathode catalysts for li-air batteries
US9548511B2 (en) 2012-07-18 2017-01-17 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US9409156B2 (en) 2012-10-19 2016-08-09 Instituto Mexicano Del Petroleo Oxidative dehydrogenation of ethane to ethylene and preparation of multimetallic mixed oxide catalyst for such process
JP6031615B2 (ja) * 2012-11-30 2016-11-30 ベレノス・クリーン・パワー・ホールディング・アーゲー 充電式バッテリ用スズ系アノード材料及びその調製方法
KR20140096915A (ko) * 2013-01-29 2014-08-06 삼성에스디아이 주식회사 복합음극활물질, 이를 채용한 음극과 리튬전지 및 그 제조방법
DE102013206736A1 (de) 2013-04-16 2014-10-16 Robert Bosch Gmbh Titanat-beschichteter Kohlenstoff als negatives Elektrodenmaterial in Lithium-Ionen-Zellen
WO2015005709A1 (ko) 2013-07-10 2015-01-15 주식회사 엘지화학 담지촉매, 탄소나노튜브 집합체 및 그 제조방법
US9564630B2 (en) 2013-08-08 2017-02-07 Nantek Instuments, Inc. Anode active material-coated graphene sheets for lithium batteries and process for producing same
US20150069295A1 (en) * 2013-09-09 2015-03-12 National University Of Singapore Hydrogel nanocomposite
CN103441255B (zh) 2013-09-16 2017-02-01 宁德新能源科技有限公司 锂离子电池正极材料及其制备方法
DE102013224206A1 (de) 2013-11-27 2015-05-28 Wacker Chemie Ag Oberflächenmodifizierte partikuläre Metalloxide
WO2015079624A1 (ja) 2013-11-29 2015-06-04 ソニー株式会社 電極および電池
WO2015127290A1 (en) 2014-02-21 2015-08-27 Kratos LLC Nanosilicon material preparation for functionalized group iva particle frameworks
KR20180071393A (ko) * 2015-11-16 2018-06-27 에이치헬리, 엘엘씨 에너지 저장 용도, 촉매 용도, 광전지 용도 및 센서 용도를 위한 합성된 표면-관능화된, 산성화 금속 산화물 재료
CN105543961A (zh) 2015-12-22 2016-05-04 国家纳米科学中心 一种纳米TiO2单晶材料、制备方法及其用途
US10629941B2 (en) 2016-01-22 2020-04-21 GM Global Technology Operations LLC Making a pouch format cell and attaching a tab to an electrode
JP7237062B2 (ja) * 2017-04-10 2023-03-10 ヒーリー,エルエルシー 新規構成要素を含む電池
KR20230092026A (ko) * 2017-05-17 2023-06-23 에이치헬리, 엘엘씨 산성화 캐소드와 리튬 애노드를 가진 배터리
US20220216525A1 (en) * 2019-06-12 2022-07-07 HHeLI, LLC Alkaline and Acidified Metal Oxide Blended Active Materials

Also Published As

Publication number Publication date
CA3005637A1 (en) 2017-05-26
JP6906541B2 (ja) 2021-07-21
CN108370025B (zh) 2023-09-01
EP3378114A4 (en) 2019-08-07
WO2017087408A1 (en) 2017-05-26
JP7267345B2 (ja) 2023-05-01
US20170141389A1 (en) 2017-05-18
US11962004B2 (en) 2024-04-16
US20220059828A1 (en) 2022-02-24
JP2021168300A (ja) 2021-10-21
US9786910B2 (en) 2017-10-10
US20230093787A9 (en) 2023-03-23
JP2023106374A (ja) 2023-08-01
CN108370025A (zh) 2018-08-03
WO2017087404A1 (en) 2017-05-26
KR20180071393A (ko) 2018-06-27
JP2018536272A (ja) 2018-12-06
US20180034049A1 (en) 2018-02-01
WO2017087408A9 (en) 2017-06-22
EP3378114A1 (en) 2018-09-26
US10978704B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
CN108370025B (zh) 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料
González et al. Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries
Zeng et al. A promising high‐voltage cathode material based on mesoporous Na3V2 (PO4) 3/C for rechargeable magnesium batteries
Kumar et al. Formation of hexagonal-molybdenum trioxide (h-MoO 3) nanostructures and their pseudocapacitive behavior
Sudant et al. Electrochemical lithium reactivity with nanotextured anatase-type TiO 2
CN110870113B (zh) 具有新型组分的电池
Gao et al. Microstructures, surface properties, and topotactic transitions of manganite nanorods
US20200287211A1 (en) Surface-functionalized, acidified metal oxide material in an acidified electrolyte system or an acidified electrode system
CN104136661A (zh) 使用碳负载MnOX的复合材料电解分解水
TW200951075A (en) Mesoporous manganese dioxide
Kijima et al. Lithium ion insertion and extraction reactions with Hollandite-type manganese dioxide free from any stabilizing cations in its tunnel cavity
KR20170012456A (ko) 텅스텐 함유 물질의 용도
Stenina et al. Synthesis and ionic conductivity of Li 4 Ti 5 O 12
Ekebas et al. Magnesium substituted cobalt spinel nanostructures for electrocatalytic water oxidation
Hong et al. Controlling the Co–S coordination environment in Co-doped WS 2 nanosheets for electrochemical oxygen reduction
US20150044542A1 (en) Amorphous titania/carbon composite electrode materials
Mishra et al. Hierarchical urchin-like cobalt-doped CuO for enhanced electrocatalytic oxygen evolution reaction
Jaber et al. Ex Situ X-ray diffraction, X-ray absorption near edge structure, electron spin resonance, and transmission electron microscopy study of the hydrothermal crystallization of vanadium oxide nanotubes: an insight into the mechanism of formation
JPH09188519A (ja) 電解二酸化マンガンおよびその製造方法、並びにマンガン乾電池
Monti et al. Microwaves as a synthetic route for preparing electrochemically active TiO2 nanoparticles
Sivakumar et al. Effect of sonochemistry: Li-and Mn-rich layered high specific capacity cathode materials for Li-ion batteries
Enblom An Initial Exploration of Transition Metal Nitroprussides as Electrode Materials for Sodium-ion Batteries
CN116334684A (zh) 一种氮掺杂碳点/磷化钴复合电催化剂的制备方法
Shahani et al. Morphological Transformations and Electrochemical Properties of Hydrothermally Synthesized MnO2 Nanostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination