CN116835990A - 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用 - Google Patents

复合陶瓷基板、覆铜陶瓷基板及制备方法和应用 Download PDF

Info

Publication number
CN116835990A
CN116835990A CN202311093069.9A CN202311093069A CN116835990A CN 116835990 A CN116835990 A CN 116835990A CN 202311093069 A CN202311093069 A CN 202311093069A CN 116835990 A CN116835990 A CN 116835990A
Authority
CN
China
Prior art keywords
ceramic substrate
silicon nitride
copper
composite ceramic
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311093069.9A
Other languages
English (en)
Other versions
CN116835990B (zh
Inventor
周洋
袁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Archimedes Electronic Technology Co ltd
Original Assignee
Hefei Archimedes Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Archimedes Electronic Technology Co ltd filed Critical Hefei Archimedes Electronic Technology Co ltd
Priority to CN202311093069.9A priority Critical patent/CN116835990B/zh
Publication of CN116835990A publication Critical patent/CN116835990A/zh
Application granted granted Critical
Publication of CN116835990B publication Critical patent/CN116835990B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供了一种复合陶瓷基板、覆铜陶瓷基板及制备方法和应用,属于半导体器件技术领域。本发明提供的复合陶瓷基板包括氮化铝基体以及分布在所述氮化铝基体中的氮化硅网状支架;所述氮化硅网状支架由多个氮化硅片形成,单个所述氮化硅片的厚度为0.2~1mm。本发明提供的复合陶瓷基板兼具氮化铝的高导热性和氮化硅的高抗弯强度,在较薄厚度条件下即可满足使用要求,且整体成本较低。

Description

复合陶瓷基板、覆铜陶瓷基板及制备方法和应用
技术领域
本发明涉及半导体器件技术领域,尤其涉及一种复合陶瓷基板、覆铜陶瓷基板及制备方法和应用。
背景技术
覆铜陶瓷基板是一种电子基础材料,具有高温稳定性、耐腐蚀性、高导热率、高机械强度等优良特性,在功率半导体行业、汽车电子、太阳能电池板等领域得到了广泛应用。传统覆铜陶瓷基板通常由陶瓷基板以及分别叠层设置在陶瓷基板上表面的第一铜层与下表面的第二铜层形成(如图1所示),目前常用陶瓷基板的材质主要是氧化铝(Al2O3)、氮化铝(AlN)或氮化硅(Si3N4)。其中氧化铝具有绝缘性高、来源丰富等优点,但是其导热率相对较低(20~30W/m·K)。氮化铝的导热率较高(170~240W/m·K),成本也低于氧化铝,但是氮化铝的三点抗弯强度(280~390MPa)却低于氧化铝(400~500MPa),单独使用氮化铝作为基板材料会使陶瓷基板厚度过大。氮化硅抗弯强度较大(600~900MPa),导热率中等(60~90W/m·K),但是单独使用氮化硅作为基板材料成本过高。
发明内容
本发明的目的在于提供一种复合陶瓷基板、覆铜陶瓷基板及制备方法和应用,本发明提供的复合陶瓷基板兼具氮化铝的高导热性和氮化硅的高抗弯强度,在较薄厚度条件下即可满足使用要求,且整体成本较低。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种复合陶瓷基板,包括氮化铝基体以及分布在所述氮化铝基体中的氮化硅网状支架;所述氮化硅网状支架由多个氮化硅片形成,单个所述氮化硅片的厚度为0.2~1mm。
优选地,所述复合陶瓷基板的厚度为0.2~1mm。
优选地,所述氮化硅网状支架的网孔孔径为0.2~1mm。
优选地,所述复合陶瓷基板中氮化硅网状支架的体积分数为30~70%。
本发明提供了上述技术方案所述复合陶瓷基板的制备方法,包括以下步骤:
提供氮化硅网状支架;
将氮化铝粉末进行成型处理并使所述氮化硅网状支架分布于所述成型处理后形成的氮化铝基体中,得到所述复合陶瓷基板。
优选地,所述氮化硅网状支架采用3D打印方法制备得到。
优选地,所述成型处理的方法包括干压成型、等静压成型、流延成型或注射成型。
本发明提供了一种覆铜陶瓷基板,包括依次叠层设置的第一铜层、复合陶瓷基板以及第二铜层,所述复合陶瓷基板为上述技术方案所述复合陶瓷基板或上述技术方案所述制备方法制备得到的复合陶瓷基板。
本发明提供了上述技术方案所述覆铜陶瓷基板的制备方法,包括以下步骤:
在复合陶瓷基板的上表面与下表面进行覆铜处理分别形成第一铜层与第二铜层,得到所述覆铜陶瓷基板。
本发明提供了上述技术方案所述覆铜陶瓷基板或上述技术方案所述制备方法制备得到的覆铜陶瓷基板在功率半导体芯片封装中的应用。
有益效果:本发明提供的复合陶瓷基板包括氮化铝基体以及分布在所述氮化铝基体中的氮化硅网状支架;所述氮化硅网状支架由多个氮化硅片形成,单个所述氮化硅片的厚度为0.2~1mm。本发明提供的复合陶瓷基板兼具氮化铝的高导热性和氮化硅的高抗弯强度,在较薄厚度条件下即可满足使用要求,且整体成本较低。
附图说明
图1为传统覆铜陶瓷基板的结构示意图(未体现出第二铜层);
图2为本发明中覆铜陶瓷基板的结构示意图(未体现出第二铜层);
图3为实施例1中采用5层氮化硅网状支架的示意图;
图4为实施例3中网孔形状为菱形的氮化硅网状支架的示意图;
图5为实施例4中采用双层氮化硅网状支架的示意图。
具体实施方式
本发明提供了一种复合陶瓷基板,包括氮化铝基体以及分布在所述氮化铝基体中的氮化硅网状支架;所述氮化硅网状支架由多个氮化硅片形成,单个所述氮化硅片的厚度为0.2~1mm。
在本发明中,单个所述氮化硅片的厚度为0.2~1mm,具体可以为0.3~0.5mm。在本发明中,所述氮化硅网状支架中氮化硅片交错形成网状结构;所述氮化硅网状支架的网孔形状优选为多边形,具体可以为三角形、矩形或菱形,所述氮化硅网状支架的网孔孔径优选为0.2~1mm,更优选为0.25~0.5mm。
在本发明中,所述复合陶瓷基板中氮化硅网状支架优选整体呈纵向排列,使得具有更高导热性的氮化铝纵向贯通,有利于提高复合陶瓷基板的导热性。在本发明中,所述复合陶瓷基板中氮化硅网状支架的层数≥1,优选为1~5层,具体可以为1层、2层、3层、4层或5层。在本发明中,所述复合陶瓷基板中氮化硅网状支架的体积分数优选为30~70%,更优选为50~60%。
在本发明中,所述复合陶瓷基板的厚度优选为0.2~1mm,更优选为0.3~0.5mm;本发明所述复合陶瓷基板的厚度即为所述氮化硅网状支架的总高度。
本发明提供了上述技术方案所述复合陶瓷基板的制备方法,包括以下步骤:
提供氮化硅网状支架;
将氮化铝粉末进行成型处理并使所述氮化硅网状支架分布于所述成型处理后形成的氮化铝基体中,得到所述复合陶瓷基板。
在本发明中,若无特殊说明,所用原料均为本领域技术人员熟知的市售商品或采用本领域技术人员熟知的方法制备得到。
在本发明中,所述氮化硅网状支架优选采用3D打印方法制备得到,具体可以采用光敏树脂选择性固化(SLA)、粉末材料选择性激光烧结(SLS)、熔融性沉积(SDM)、真空注塑型(PUG)或喷墨粉末打印(3DP)方法制备得到,优选为SLS或3DP方法,其中SLS方法具有精度高、材料利用率高以及成本低等优势。本发明对所述SLA、SLS、SDM、PUG或3DP方法的具体操作步骤与条件没有特殊限定,采用本领域技术人员熟知的操作步骤与条件即可。
在本发明中,如以所述SLS方法为例,所述氮化硅网状支架的制备方法优选包括以下步骤:根据所述氮化硅网状支架的结构建立三维模型,在工作台表面铺设一层氮化硅粉末,通过激光扫描使所述氮化硅粉末升温至熔点,按照所述三维模型选择性烧结需要打印的区域并形成粘结,之后使工作台下降一定高度,再铺上一层氮化硅粉末,进行下一次选择性烧结,并使当前层与上一层粘结在一起,重复前述步骤,直至完成整个三维模型,取出最终所得支架前驱体并进行后处理,得到所述氮化硅网状支架。在本发明中,所述后处理优选包括;将所述支架前驱体在室温条件下静置5~10h,用刷子去除表面残留粉末,再用砂纸或锉刀对表面进行打磨以去除毛刺,在400~900℃条件下加热3~8h使支架前驱体的形状得以保持,再在1500~1900℃条件下烧结8~15h以提高其强度,之后进行抛光使其表面光滑。
在本发明中,又如以3DP方法为例,所述氮化硅网状支架的制备方法优选包括以下步骤:根据所述氮化硅网状支架的结构建立三维模型,在工作台表面铺设一层氮化硅粉末,将胶水通过加压的方式输送到打印头中存储,并选择性的喷洒在所述氮化硅粉末上,所述氮化硅粉末遇胶水后粘结为实体,之后使工作台下降一定高度,再铺上一层氮化硅粉末,进行下一次胶水喷洒,并使当前层与上一层粘结在一起,重复前述步骤,直至完成整个三维模型,取出最终所得支架前驱体并进行后处理,得到所述氮化硅网状支架。在本发明中,所述后处理的具体操作方法优选与上述技术方案一致,在此不再赘述。
得到氮化硅网状支架后,本发明将氮化铝粉末进行成型处理并使所述氮化硅网状支架分布于所述成型处理后形成的氮化铝基体中,得到所述复合陶瓷基板。在本发明中,所述成型处理的方法优选包括干压成型、等静压成型、流延成型或注射成型,更优选为流延成型。本发明对所述干压成型、等静压成型、流延成型或注射成型的具体操作步骤与条件没有特殊限定,采用本领域技术人员熟知的操作步骤与条件即可。在本发明中,以流延成型为例,所述复合陶瓷基板的制备方法优选包括以下步骤:
将氮化铝粉末与复合粘合剂混合,得到氮化铝流延浆料;
将所述氮化硅网状支架与氮化铝流延浆料置于胚体中,干燥后得到素胚膜;
将所述素胚膜依次进行排胶与热压烧结,得到所述复合陶瓷基板。
本发明将氮化铝粉末与复合粘合剂混合,得到氮化铝流延浆料。在本发明中,所述氮化铝粉末的粒径优选为1~40μm,更优选为5~30μm;本发明对所述复合粘合剂的具体种类没有特殊限定,采用本领域技术人员熟知种类的复合粘合剂即可,具体如巴斯夫丙烯酸树脂(型号为BASF678);所述氮化铝粉末与复合粘合剂的质量比优选为1:0.1~0.3,更优选为1:0.2。本发明优选将氮化铝粉末与复合粘合剂混合后进行球磨,得到氮化铝流延浆料;本发明对所述球磨的条件没有特殊限定,保证各组分充分混合均匀即可。
得到氮化铝流延浆料后,本发明将所述氮化硅网状支架与氮化铝流延浆料置于胚体中,干燥后得到素胚膜。本发明优选将氮化硅网状支架置于胚体中,然后将所述氮化铝流延浆料倒入盛放有氮化硅网状支架的胚体中,并使所述氮化铝流延浆料覆盖所述氮化硅网状支架,之后干燥得到素胚膜。本发明对所述干燥的条件没有特殊限定,能够实现充分干燥即可。
得到素胚膜后,本发明将所述素胚膜依次进行排胶与热压烧结,得到所述复合陶瓷基板。在本发明中,所述排胶的温度优选为400~800℃,更优选为600~700℃;保温时间优选为60~250min,更优选为150~180min。在本发明中,所述排胶优选在保护气氛中进行,例如可以在氮气氛围中进行所述排胶;在本发明的实施例中,具体是在氮气炉中进行所述排胶。本发明优选在上述条件下进行排胶,有利于减少素胚膜中孔隙率,进而有利于提高最终所得复合陶瓷基板的强度以及平整度。在本发明中,所述热压烧结的压力优选为20~30MPa,更优选为25MPa;温度优选为1700~1900℃,更优选为1700~1800℃;保温保压时间优选为1~6h,更优选为3~4h。在本发明中,所述热压烧结优选在保护气氛中进行,例如可以在氮气氛围中进行所述热压烧结。本发明优选在上述条件下进行所述热压烧结,有利于最终形成具有较高机械强度的复合陶瓷基板。
本发明提供了一种覆铜陶瓷基板,如图2所示,包括依次叠层设置的第一铜层、复合陶瓷基板以及第二铜层,所述复合陶瓷基板为上述技术方案所述复合陶瓷基板或上述技术方案所述制备方法制备得到的复合陶瓷基板。在本发明中,所述第一铜层与第二铜层的厚度优选独立为0.2~0.5mm,更优选为0.38mm。
本发明提供了上述技术方案所述覆铜陶瓷基板的制备方法,包括以下步骤:
在复合陶瓷基板的上表面与下表面进行覆铜处理分别形成第一铜层与第二铜层,得到所述覆铜陶瓷基板。
本发明对所述覆铜处理的具体方法没有特殊限定,具体可以采用直接键合铜(DBC)、直接电镀铜(DPC)、活性金属钎焊(AMB)、低温共烧陶瓷(LTCC)或高温共烧陶瓷(HTCC)技术实现所述覆铜处理。本发明对上述各覆铜处理技术的具体操作步骤与条件没有特殊限定,采用本领域技术人员熟知的操作步骤与条件即可。
在本发明中,如以DBC为例,所述覆铜陶瓷基板的制备方法优选包括以下步骤:将铜箔叠层放置于所述复合陶瓷基板的上表面与下表面,在含氧的氮气中进行共晶键合,之后再根据预设图案对所述铜箔进行刻蚀,得到所述覆铜陶瓷基板。在本发明中,所述含氧的氮气中氧气含量优选为50~3000ppm,更优选为300~1500ppm;所述共晶键合具体是在含氧的氮气中将所述叠层设置的复合陶瓷基板与铜箔进行加热得到共晶熔体,之后经冷却实现铜箔与复合陶瓷基板的化学冶金结合。在本发明中,所述加热的温度优选为500~900℃,更优选为700~800℃。本发明对所述冷却的方式没有特殊限定,采用本领域技术人员熟知的方式即可。本发明对所述刻蚀没有特殊限定,采用本领域技术人员熟知的方法即可。
在本发明中,又如以AMB为例,所述覆铜陶瓷基板的制备方法优选包括以下步骤:银粉末、铜粉末、钛粉末与助焊剂混合,得到混合浆料;将所述混合浆料印刷在所述复合陶瓷基板表面,形成预设的图案和结构,之后依次进行干燥和第一烧结,在所得基板表面叠层放置铜箔,经钎焊处理使基板与铜箔结合,之后依次经第二烧结、光刻、刻蚀与镀镍,得到所述覆铜陶瓷基板。在本发明中,所述助焊剂优选为松香型助焊剂;所述银粉末、铜粉末、钛粉末与助焊剂的质量比优选为50~60:20~30:10~20:5~10,更优选为55:30:10:5。在本发明中,所述干燥的温度优选为50~200℃,更优选为100~150℃;时间优选为5~20h,更优选为10~15h。在本发明中,所述第一烧结的温度优选为1500~1900℃,更优选为1600~1700℃;保温时间优选为10~20h,更优选为12~15h。所述第一烧结后,本发明优选将所得基板进行后处理以改善外观,所述后处理优选包括喷砂或抛光。本发明对所述钎焊处理、第二烧结、光刻、刻蚀与镀镍的具体操作条件没有特殊限定,采用本领域技术人员熟知的操作条件即可;经所述镀镍形成的镍层的厚度优选为20~60μm。
本发明提供了上述技术方案所述覆铜陶瓷基板或上述技术方案所述制备方法制备得到的覆铜陶瓷基板在功率半导体芯片封装中的应用。本发明对所述覆铜陶瓷基板的具体应用方法没有特殊限定,采用本领域技术人员熟知的方法即可。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例中覆铜陶瓷基板包括依次叠层设置的第一铜层、复合陶瓷基板以及第二铜层,所述第一铜层与第二铜层的厚度为0.38mm,所述复合陶瓷基板的厚度为0.3mm(长为41mm、宽为37mm);所述复合陶瓷基板包括氮化铝基体以及分布在所述氮化铝基体中的氮化硅网状支架,且所述复合陶瓷基板中氮化硅网状支架为5层(具体如图3所示),所述复合陶瓷基板中氮化硅网状支架的体积分数为60%;每层所述氮化硅网状支架由多个氮化硅片交错形成网状结构,所述氮化硅片的厚度为0.3mm,所述网状结构的网孔形状具体为矩形,网孔孔径具体为1mm;所述覆铜陶瓷基板的制备方法如下:
采用SLS方法制备氮化硅网状支架,具体是根据所述氮化硅网状支架的结构建立三维模型,在工作台表面铺设一层氮化硅粉末,通过激光扫描使所述氮化硅粉末升温至熔点,按照所述三维模型选择性烧结需要打印的区域并形成粘结,之后使工作台下降一定高度,再铺上一层氮化硅粉末,进行下一次选择性烧结,并使当前层与上一层粘结在一起,重复前述步骤,直至完成整个三维模型,取出最终所得支架前驱体在室温条件下静置5h,用刷子去除表面残留粉末,再用砂纸对表面进行打磨以去除毛刺,在400℃条件下加热3h使支架前驱体的形状得以保持,再在1500℃条件下烧结8h以提高其强度,之后进行抛光,得到所述氮化硅网状支架;
采用流延成型方法制备复合陶瓷基板,具体是将氮化铝粉末与复合粘合剂混合后球磨,得到氮化铝流延浆料;所述氮化铝粉末的粒径为5~30μm,所述复合粘合剂具体为巴斯夫丙烯酸树脂(型号为BASF678),所述氮化铝粉末与复合粘合剂的质量比为1:0.2;之后将所述氮化硅网状支架置于流延机的胚体中,将所述氮化铝流延浆料倒入盛放有氮化硅网状支架的胚体中,并使所述氮化铝流延浆料覆盖所述氮化硅网状支架,经干燥得到素胚膜;之后将所述素胚膜置于氮气炉中,于700℃条件下保温进行排胶3h,得到排胶素胚膜;在氮气氛围中,将所述排胶素胚膜在温度为1700℃且压力为25MPa条件下保温保压烧结4h,得到复合陶瓷基板;
采用DBC方法在所述复合陶瓷基板上表面与下表面进行覆铜处理,具体是将铜箔叠层放置于所述复合陶瓷基板的上表面与下表面,在含氧的氮气(氧气含量具体为300ppm)中加热至800℃得到共晶熔体,之后冷却实现铜箔与复合陶瓷基板的化学冶金结合,并根据预设图案对所述铜箔进行刻蚀,得到所述覆铜陶瓷基板。
实施例2
本实施例中覆铜陶瓷基板包括依次叠层设置的第一铜层、复合陶瓷基板以及第二铜层,所述第一铜层与第二铜层的厚度为0.38mm,所述复合陶瓷基板的厚度为0.3mm(长为41mm、宽为37mm);所述复合陶瓷基板包括氮化铝基体以及分布在所述氮化铝基体中的氮化硅网状支架,且所述复合陶瓷基板中氮化硅网状支架为1层,所述复合陶瓷基板中氮化硅网状支架的体积分数为60%;每层所述氮化硅网状支架由多个氮化硅片交错形成网状结构,所述氮化硅片的厚度为0.3mm,所述网状结构的网孔形状具体为矩形,网孔孔径具体为1mm;所述覆铜陶瓷基板的制备方法如下:
采用3DP方法制备氮化硅网状支架,具体是根据所述氮化硅网状支架的结构建立三维模型,在工作台表面铺设一层氮化硅粉末,将胶水通过加压的方式输送到打印头中存储,并选择性的喷洒在所述氮化硅粉末上,所述氮化硅粉末遇胶水后粘结为实体,之后使工作台下降一定高度,再铺上一层氮化硅粉末,进行下一次胶水喷洒,并使当前层与上一层粘结在一起,重复前述步骤,直至完成整个三维模型,取出最终所得支架前驱体在室温条件下静置5~10h,用刷子去除表面残留粉末,再用砂纸对表面进行打磨以去除毛刺,在400℃条件下加热3h使支架前驱体的形状得以保持,再在1500℃条件下烧结8h以提高其强度,之后进行抛光,得到所述氮化硅网状支架;
按照实施例1的方法制备得到复合陶瓷基板;
采用AMB方法在所述复合陶瓷基板上表面与下表面进行覆铜处理,具体是银粉末、铜粉末、钛粉末与松香型助焊剂按照质量比为55:30:10:5的比例混合,得到混合浆料;将所述混合浆料印刷在所述复合陶瓷基板表面,形成预设的图案和结构,之后依次在100℃条件下干燥5h以及在1600℃条件下烧结10h,将所得基板进行抛光以改善外观,之后在所得基板表面叠层放置铜箔,经钎焊处理使基板与铜箔结合,之后依次经烧结、光刻、刻蚀与镀镍(形成的镍层厚度为30μm),得到所述覆铜陶瓷基板。
实施例3
按照实施例1的方法制备覆铜陶瓷基板,不同之处在于本实施例的覆铜陶瓷基板中,氮化硅网状支架由多个氮化硅片交错形成网状结构,且网状结构的网孔形状具体为菱形(如图4所示)。
实施例4
按照实施例1的方法制备覆铜陶瓷基板,不同之处在于本实施例的覆铜陶瓷基板中氮化硅网状支架为双层(如图5所示)。
对比例1
按照实施例1的方法制备覆铜陶瓷基板,不同之处在于将复合陶瓷基板替换为纯氮化铝基板,具体是在实施例1基础上省略掉氮化硅网状支架,利用氮化铝粉末基于流延成型方法制备得到纯氮化铝基板。
对比例2
按照实施例1的方法制备覆铜陶瓷基板,不同之处在于将复合陶瓷基板替换为纯氮化硅基板,具体是在实施例1基础上省略掉氮化硅网状支架,利用氮化硅粉末基于流延成型方法制备得到纯氮化硅基板。
在施加相同载荷的情况下,将实施例1与对比例1~2制备的覆铜陶瓷基板进行仿真性能测试,结果如表1所示。由表1可知,本发明提供的复合陶瓷基板的导热率介于氮化硅基板和氮化铝基板之间,变形量(抗弯强度)同样介于氮化硅和氮化铝之间,兼具良好的抗弯性能和导热系数。
表1 实施例1与对比例1~2制备的覆铜陶瓷基板的仿真性能测试结果
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种复合陶瓷基板,其特征在于,包括氮化铝基体以及分布在所述氮化铝基体中的氮化硅网状支架;所述氮化硅网状支架由多个氮化硅片形成,单个所述氮化硅片的厚度为0.2~1mm。
2.根据权利要求1所述的复合陶瓷基板,其特征在于,所述复合陶瓷基板的厚度为0.2~1mm。
3.根据权利要求1所述的复合陶瓷基板,其特征在于,所述氮化硅网状支架的网孔孔径为0.2~1mm。
4.根据权利要求1~3任一项所述的复合陶瓷基板,其特征在于,所述复合陶瓷基板中氮化硅网状支架的体积分数为30~70%。
5.权利要求1~4任一项所述复合陶瓷基板的制备方法,其特征在于,包括以下步骤:
提供氮化硅网状支架;
将氮化铝粉末进行成型处理并使所述氮化硅网状支架分布于所述成型处理后形成的氮化铝基体中,得到所述复合陶瓷基板。
6.根据权利要求5所述的制备方法,其特征在于,所述氮化硅网状支架采用3D打印方法制备得到。
7.根据权利要求5所述的制备方法,其特征在于,所述成型处理的方法包括干压成型、等静压成型、流延成型或注射成型。
8.一种覆铜陶瓷基板,其特征在于,包括依次叠层设置的第一铜层、复合陶瓷基板以及第二铜层,所述复合陶瓷基板为权利要求1~4任一项所述复合陶瓷基板或权利要求5~7任一项所述制备方法制备得到的复合陶瓷基板。
9.权利要求8所述覆铜陶瓷基板的制备方法,其特征在于,包括以下步骤:
在复合陶瓷基板的上表面与下表面进行覆铜处理分别形成第一铜层与第二铜层,得到所述覆铜陶瓷基板。
10.权利要求8所述覆铜陶瓷基板或权利要求9所述制备方法制备得到的覆铜陶瓷基板在功率半导体芯片封装中的应用。
CN202311093069.9A 2023-08-29 2023-08-29 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用 Active CN116835990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311093069.9A CN116835990B (zh) 2023-08-29 2023-08-29 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311093069.9A CN116835990B (zh) 2023-08-29 2023-08-29 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用

Publications (2)

Publication Number Publication Date
CN116835990A true CN116835990A (zh) 2023-10-03
CN116835990B CN116835990B (zh) 2023-11-24

Family

ID=88163766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311093069.9A Active CN116835990B (zh) 2023-08-29 2023-08-29 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用

Country Status (1)

Country Link
CN (1) CN116835990B (zh)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392161A (en) * 1971-12-21 1975-04-30 Toyoda Chuo Kenkyusho Kk Method of producing ceramics of silicon nitride
US4756976A (en) * 1983-09-30 1988-07-12 Kabushiki Kaisha Toshiba Ceramic with anisotropic heat conduction
EP0409193A2 (en) * 1989-07-18 1991-01-23 Sumitomo Electric Industries, Ltd. Process for production of sintered silicon nitride made article
JPH11274725A (ja) * 1998-03-24 1999-10-08 Kyocera Corp 多層配線基板およびその製造方法
JP2004043222A (ja) * 2002-07-10 2004-02-12 Sumitomo Electric Ind Ltd 窒化アルミニウム複合焼結体、セラミック基板、半導体装置及び焼結体の製造方法
JP2005286100A (ja) * 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk セラミックス二層回路基板
CN1830052A (zh) * 2003-07-31 2006-09-06 3M创新有限公司 用于复制精细结构的母模及其制造方法
CN102709439A (zh) * 2012-05-08 2012-10-03 东莞市凯昶德电子科技股份有限公司 Led陶瓷支架及其制备方法
CN104064478A (zh) * 2014-06-24 2014-09-24 南京航空航天大学 一种铜/氮化铝陶瓷复合导热基板的制作方法
TW201522275A (zh) * 2013-08-23 2015-06-16 Toyo Tanso Co 多孔質陶瓷及其製造方法
CN104844221A (zh) * 2015-04-20 2015-08-19 福建华清电子材料科技有限公司 一种大尺寸氮化铝陶瓷基板的制备方法
WO2016062163A1 (zh) * 2014-10-24 2016-04-28 比亚迪股份有限公司 金属陶瓷复合体及其制备方法
EP3412641A1 (en) * 2017-06-05 2018-12-12 Tallinn University of Technology Fibrous networks of si3n4 with complex geometry and manufacturing thereof
CN111040385A (zh) * 2019-11-25 2020-04-21 桂林理工大学 一种3d打印网格陶瓷增强树脂复合材料及其制备方法
CN113213948A (zh) * 2021-05-31 2021-08-06 福建工程学院 一种多级结构氮化硅陶瓷材料制备方法
CN113480828A (zh) * 2021-03-02 2021-10-08 海南大学 一种氮化铝纳米花/聚合物复合材料及其制备方法
CN113979764A (zh) * 2021-11-12 2022-01-28 南京理工大学 基于增材的网格微结构陶瓷-金属复合制品的制备方法
CN114315371A (zh) * 2021-10-25 2022-04-12 郴州功田电子陶瓷技术有限公司 一种氮化铝陶瓷基板
CN114478022A (zh) * 2021-12-31 2022-05-13 南通威斯派尔半导体技术有限公司 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法
CN115286409A (zh) * 2022-08-18 2022-11-04 广东环波新材料有限责任公司 一种氮化硅晶须增强氮化铝的复合陶瓷材料及其制备方法
CN115594514A (zh) * 2022-11-30 2023-01-13 常熟通乐电子材料有限公司(Cn) 一种三维SiC骨架增强SiC的高致密陶瓷及制备方法
CN116252385A (zh) * 2023-03-16 2023-06-13 无锡海古德新技术有限公司 一种氮化铝陶瓷厚基板的成型制备工艺

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392161A (en) * 1971-12-21 1975-04-30 Toyoda Chuo Kenkyusho Kk Method of producing ceramics of silicon nitride
US4756976A (en) * 1983-09-30 1988-07-12 Kabushiki Kaisha Toshiba Ceramic with anisotropic heat conduction
EP0409193A2 (en) * 1989-07-18 1991-01-23 Sumitomo Electric Industries, Ltd. Process for production of sintered silicon nitride made article
JPH11274725A (ja) * 1998-03-24 1999-10-08 Kyocera Corp 多層配線基板およびその製造方法
JP2004043222A (ja) * 2002-07-10 2004-02-12 Sumitomo Electric Ind Ltd 窒化アルミニウム複合焼結体、セラミック基板、半導体装置及び焼結体の製造方法
CN1830052A (zh) * 2003-07-31 2006-09-06 3M创新有限公司 用于复制精细结构的母模及其制造方法
JP2005286100A (ja) * 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk セラミックス二層回路基板
CN102709439A (zh) * 2012-05-08 2012-10-03 东莞市凯昶德电子科技股份有限公司 Led陶瓷支架及其制备方法
TW201522275A (zh) * 2013-08-23 2015-06-16 Toyo Tanso Co 多孔質陶瓷及其製造方法
CN104064478A (zh) * 2014-06-24 2014-09-24 南京航空航天大学 一种铜/氮化铝陶瓷复合导热基板的制作方法
WO2016062163A1 (zh) * 2014-10-24 2016-04-28 比亚迪股份有限公司 金属陶瓷复合体及其制备方法
CN104844221A (zh) * 2015-04-20 2015-08-19 福建华清电子材料科技有限公司 一种大尺寸氮化铝陶瓷基板的制备方法
EP3412641A1 (en) * 2017-06-05 2018-12-12 Tallinn University of Technology Fibrous networks of si3n4 with complex geometry and manufacturing thereof
CN111040385A (zh) * 2019-11-25 2020-04-21 桂林理工大学 一种3d打印网格陶瓷增强树脂复合材料及其制备方法
CN113480828A (zh) * 2021-03-02 2021-10-08 海南大学 一种氮化铝纳米花/聚合物复合材料及其制备方法
CN113213948A (zh) * 2021-05-31 2021-08-06 福建工程学院 一种多级结构氮化硅陶瓷材料制备方法
CN114315371A (zh) * 2021-10-25 2022-04-12 郴州功田电子陶瓷技术有限公司 一种氮化铝陶瓷基板
CN113979764A (zh) * 2021-11-12 2022-01-28 南京理工大学 基于增材的网格微结构陶瓷-金属复合制品的制备方法
CN114478022A (zh) * 2021-12-31 2022-05-13 南通威斯派尔半导体技术有限公司 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法
CN115286409A (zh) * 2022-08-18 2022-11-04 广东环波新材料有限责任公司 一种氮化硅晶须增强氮化铝的复合陶瓷材料及其制备方法
CN115594514A (zh) * 2022-11-30 2023-01-13 常熟通乐电子材料有限公司(Cn) 一种三维SiC骨架增强SiC的高致密陶瓷及制备方法
CN116252385A (zh) * 2023-03-16 2023-06-13 无锡海古德新技术有限公司 一种氮化铝陶瓷厚基板的成型制备工艺

Also Published As

Publication number Publication date
CN116835990B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
JP3115238B2 (ja) 窒化けい素回路基板
JP5729519B2 (ja) 窒化珪素焼結体基板及びその製造方法
US6346317B1 (en) Electronic components incorporating ceramic-metal composites
WO1996029736A1 (en) Silicon nitride circuit substrate
WO1998008256A1 (en) Silicon nitride circuit board and semiconductor module
WO2022156634A1 (zh) 一种覆铜板的氮化硅陶瓷基片的制备方法
KR20200021019A (ko) 질화물 세라믹스 활성금속 브레이징 기판의 제조방법
JPH1093211A (ja) 窒化けい素回路基板
JP2011139000A (ja) パワーモジュール構造体及びその製造方法
JP2698780B2 (ja) 窒化けい素回路基板
JP3193305B2 (ja) 複合回路基板
CN116835990B (zh) 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用
JP2939444B2 (ja) 多層窒化けい素回路基板
JP2772273B2 (ja) 窒化けい素回路基板
JP2017178715A (ja) セラミック焼結板の製造方法
JPH11154719A (ja) 窒化珪素回路基板、半導体装置及び窒化珪素回路基板の製造方法
JP2772274B2 (ja) 複合セラミックス基板
WO2021200866A1 (ja) 回路基板、接合体、及びこれらの製造方法
JP4772187B2 (ja) AlN焼結体およびこれを用いたAlN回路基板
JP4599783B2 (ja) 低温焼成セラミック回路基板の製造方法
JPH0624880A (ja) 金属−セラミックス複合体及びその製造方法
CN111517811A (zh) 一种陶瓷pcb基板的快速等离子烧结制备方法
JP2861357B2 (ja) 窒化アルミニウム―銅接合方法
JPH05163072A (ja) 多層セラミック焼結体の製造方法
EP4033524A1 (en) Circuit board and module comprising same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant