CN111040385A - 一种3d打印网格陶瓷增强树脂复合材料及其制备方法 - Google Patents

一种3d打印网格陶瓷增强树脂复合材料及其制备方法 Download PDF

Info

Publication number
CN111040385A
CN111040385A CN201911162969.8A CN201911162969A CN111040385A CN 111040385 A CN111040385 A CN 111040385A CN 201911162969 A CN201911162969 A CN 201911162969A CN 111040385 A CN111040385 A CN 111040385A
Authority
CN
China
Prior art keywords
ceramic
resin
grid
powder
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911162969.8A
Other languages
English (en)
Other versions
CN111040385B (zh
Inventor
姜艳丽
刘国庆
康晓安
何福明
喻亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201911162969.8A priority Critical patent/CN111040385B/zh
Publication of CN111040385A publication Critical patent/CN111040385A/zh
Application granted granted Critical
Publication of CN111040385B publication Critical patent/CN111040385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/1305Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/1315Non-ceramic binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1328Waste materials; Refuse; Residues without additional clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明涉及复合材料制备技术领域,具体涉及到一种3D打印网格陶瓷增强树脂复合材料及其制备方法。该3D打印网格陶瓷增强树脂复合材料由三部分组成:网格陶瓷、树脂和分散于树脂内的添加剂,网格陶瓷由铝灰与陶瓷粉混合后,经3D打印机成型,烘干,烧结得到;树脂填充在网格陶瓷的孔隙内;添加剂中含有稀释剂和固化剂。该3D打印网格陶瓷增强树脂复合材料的制备方法具有以下优点:(1)、该复合材料的导热性能优异,制作工艺简单,且成本更低;(2)、网格陶瓷增强体的孔隙容易调整,整体连续,与基体树脂结合牢固,强度高,韧性好,抗冲击,提高了材料的使用可靠性和寿命。

Description

一种3D打印网格陶瓷增强树脂复合材料及其制备方法
技术领域
本发明涉及复合材料制备技术领域,具体涉及到一种3D打印网格陶瓷增强树脂复合材料及其制备方法。
背景技术
提高树脂基复合材料的耐磨性,耐热性和导热能力和对抗热衰减能力,用于摩擦材料领域是树脂基材料研究的重要方向。现有技术公开的树脂基复合材料是采用纤维(二维)和颗粒(零维)增强的复合材料。此类材料存在耐磨性差,耐热性低,导热能力低,对抗热衰减能力弱的不足。这是因为二维或零维增强的复合材料显微结构是增强相是以不连续的形态嵌入在树脂基体材料中,复合材料的综合性能很大程度上取决于树脂基体。
为了解决现有技术存在的技术问题,本发明提出一种网络互穿结构的复合材料(Interpenetrating Phase Composite,简称IPC)。IPC的显微结构的设计原理与非连续增强(二维或零维)增强的复合材料相比是完全不同的。IPC是多相材料,增强相为网格陶瓷,基体相为树脂材料,网格陶瓷和树脂基体之间具有相互贯穿和支撑的连接关系,这种互联结构强化了复合材料抵抗各种破坏的能力。
现有技术制备的孔径在毫米级别的网孔陶瓷,多数都是采用发泡法、造孔剂法、溶胶-凝胶法、有机泡沫浸渍法,自蔓延高温合成法等方法。这样的网孔陶瓷又被称为泡沫陶瓷。泡沫陶瓷的孔隙不规则,不均匀,不能形成连通孔。本发明采用3D打印制备孔隙规则排列的网格陶瓷,解决了以上难题。同时,至关重要的是本发明选择合适的粉体作为3D打印的原料。
本发明人经过研究发现,将三次铝灰进行无害化处理后,铝灰粉体具有很高的比表面积和表面能,显微结构呈现层状结构,具有优越的自润滑性,适合作为3D打印的原料。经研究铝灰主要成分是氧化铝,其含量达到70%~80%。故本发明以铝灰-陶瓷粉末等为主要原料混合成高固含,高触变性浆料,利用3D打印成型机打印出网格陶瓷坯体,烧结后形成坚固的网格陶瓷骨架。网格陶瓷骨架与环氧树脂复合成为网格陶瓷/树脂复合材料。具有这样显微结构的IPC复合材料既能充分发挥陶瓷高硬度、高耐磨和高耐热性,铝灰的自润滑性,又能发挥树脂材料高强度、高韧性的特点,从而具有特殊的物理化学性能,机械性能。克服了传统非连续性的树脂基摩擦片在摩擦过程中摩擦发热引起的粘连、过量磨损、收缩、翘曲变形和疲劳损坏等典型缺陷。特别是在撞击摩损、磨损严重的严酷环境中,更能体现耐热性能好、对抗热衰减能力强的优越性。
发明内容
为了克服背景技术中存在的缺陷,本发明解决其技术问题所采用的技术方案是:一种3D打印网格陶瓷增强树脂复合材料,其特征在于:所述复合材料由三部分组成:网格陶瓷、树脂和分散于树脂内的添加剂;所述网格陶瓷由铝灰与陶瓷粉混合后,经3D打印机成型,烘干,烧结得到;所述树脂填充在网格陶瓷的孔隙内;所述添加剂中含有稀释剂和固化剂。
优选的所述网格陶瓷的孔隙率10%~90%,孔隙的平均孔径0.5~10mm,所述树脂粘度为500~2000 cps,导热系数0.1~1 W/(m·K)。
优选的所述铝灰的主要成分为Al2O3,所述陶瓷粉为MgO、ZrO2、TiO2、SiC、Si3N4、B4C或高岭土粉。
优选的所述树脂为环氧树脂、聚酯树脂、丙烯酸酯、硅氧烷、聚氯乙烯、聚乙酸乙烯、聚乙烯、氨基环氧、聚丙烯、聚甲醛、聚缩醛、聚乙烯醇中的一种或几种。
优选的所述稀释剂采用乙酸乙酯、乙醚、甲苯、丙酮、丁酮、乙醇中的一种;所述固化剂采用咪唑类剂或叔胺类剂
优选的所述稀释剂的用量为树脂用量的1~15wt.%(重量百分比,下同),所述固化剂的用量为树脂用量的1~2 wt.%。
所述一种3D打印网格陶瓷增强树脂复合材料的制备方法,其特征在于其步包括,(S1) 网格陶瓷制备及表面改性;(S2)树脂制备;(S3)树脂浸渗和固化,具体流程见图1;
其中,(S1) 网格陶瓷制备及表面改性步骤为:
(S1-a)按重量100g计算,以铝灰80~90g,陶瓷粉10~20g,羧甲基纤维素(CMC)0.5g,分散剂(DOLAPIX SPC7)1g、增塑剂(ZUSOPLAST PS1)1g、粘结剂(水溶性聚乙烯醇)0.5g为原料,称量后机械搅拌混合均匀,置于行星球磨机中,再加入100ml水中,加入碱性物质,将浆料pH值调至12,高速球磨10~15分钟,形成均匀浆料,炼泥机炼制、熟化、抽真空,制成陶泥备用。把陶泥放入挤泥筒,用3D打印通过出泥嘴挤出,出泥嘴配合运动,使泥条往复交织分布于模板上,外观形状根据材料的需要设计,泥条直径0.1~5mm;泥条孔隙2~6mm;陶瓷打印堆叠完成后,在模板上干燥,具有一定强度后,从模中取出,在配制好Al2O3的泥浆中挂浆;挂浆的目的是增加泥条交结点结合的强度,挂浆后烘干;网格陶瓷的孔隙率50%~80%,平均孔径3.5~6mm,参见图2和图3;
(S1-b)网格陶瓷坯体烘干与烧结;在空气中100~200℃烘干12~24小时,在陶瓷浆料中蘸桨,加固,再烘干、在空气中1300~1400℃烧结2~12小时得到网格陶瓷块;
(S1-c)清洗:超声清洗网格陶瓷块,在100~120℃烘箱中干燥8~20小时;
(S1-d)改性:将网格陶瓷块浸泡在硅烷偶联剂和稀释剂的混合溶液中,在80~100℃超声振荡溶液10~30分钟,在80℃~105℃干燥6~10小时;
其中,(S2) 树脂制备步骤为:
(S2-a)称取100g树脂与助剂一起在容器内形成混合溶液,将容器放置在真空干燥箱内60~120℃保温30分钟,降低树脂粘度;接着冷却到室温后,将环氧树脂放入真空箱中脱气;所述助剂包括环氧丙烷丁基醚、液体丁腈橡胶、酸酐类固化剂、咪唑类剂、邻苯二甲酸二丁酯、过氧化甲乙酮和丙酮中的一种或多种;
(S2-b)称取无机微粉5g,平均粒度d50=0.1~3μm的无机微粉,放入30ml乙醇的水溶剂中,加入0.5g偶联剂,利用搅拌和超声波振荡将陶瓷微粉在有机溶剂中均匀分散;
(S2-c)将(S2-b)中含有无机微粉的有机溶剂倒入(S2-a)中脱气后的树脂搅拌混合均匀,然后放入烘箱在80~120℃保温6~36小时,使偶联剂和无机微粉充分发生缩合反应;
其中,(S3)树脂浸渗和固化步骤为:
(S3-a) 按照块的需要设计铸型,将(S1-d)的网格陶瓷块排在模具中,并固定于铸型内;网格陶瓷块层叠1-5层,厚度为3~20mm;
(S3-b) 将固化剂倒入由(S2-c)所述混合液中搅拌,形成混合树脂;
(S3-c)将混合树脂灌入(S3-a)所述的有网格陶瓷块的模具中,适当加压0.3~20MPa,使混合树脂完全填充网格陶瓷块的间隙;
(S3-d)将浸有树脂的网格陶瓷在80℃~140℃的温度下保温0.5小时~2小时。冷却到室温脱模,得到增强树脂复合材料,然后按照工业要求切割成所需形状,见图5。
优选的所述网格陶瓷(1)的孔隙率50%~90%,孔隙的平均孔径0.5mm~6mm;所述树脂(2)的填充体积占网格陶瓷总体积50%~90%。优选地,所述树脂的粘度500~1000cps,导热系数0.1~0.3 W/(m·K);所述陶瓷粉为AlN、MgO、ZrO2、TiO2、SiC、Si3N4、B4C和高岭土粉末中的一种或多种;所述偶联剂为硅烷偶联剂、钛酸酯偶联剂或者铝酸酯偶联剂;所述稀释剂为乙酸乙酯、乙醚、甲苯、丙酮、丁酮、乙醇中的一种或几种;所述偶联剂的用量是稀释剂用量的0.2~0.5 wt.%。
优选的所述(S3) 树脂(2)浸渗和固化的条件为:在真空环境下,将网格陶瓷浸入树脂中,再释放真空至常压下,将树脂压入网格陶瓷的孔隙中,所述(S3) 树脂(2)浸渗和固化的条件为:将浸有树脂的网格陶瓷在80~140℃保温0.5~2小时。
优选的所述(S2-b)的无机微粉为纳米碳粉,Al2O3粉,SiC粉,SiO2粉,Cu粉,Fe粉,SiO2粉,cBN粉,MoS2中的一种或几种,微粉的平均粒径d50=0.1~0.5 μm,所述无机微粉用量为树脂(2)用量的0.5~5 wt.%。
本发明设计了一种3D打印网格陶瓷增强树脂复合材料及其制备方法,该3D打印网格陶瓷增强树脂复合材料的制备方法具有以下优点:
(1)本发明的设计原理是在网格陶瓷的孔隙中填充树脂,制得陶瓷复合材料。复合材料以网格陶瓷作为增强相,陶瓷具有较高热导率(例如:改性铝灰的导热系数>25W/m·K,AlN的导热系数大于150W/m·K。铝灰中含有2~4%的AlN,这样保证了以铝灰和其他陶瓷粉体经3D成型的网格陶瓷在复合材料中形成导热通路。相较于高分子导热复合材料,导热性能优异,制作工艺简单,且成本更低。
(2)网格陶瓷增强体的孔隙容易调整,整体连续,与基体树脂结合牢固,强度高,韧性好,抗冲击,提高了材料的使用可靠性和寿命。
(3)树脂中加入适量的偶联剂后,复合物的抗弯强度增加。这是因为陶瓷粉体与树脂间的热膨胀系数不同。在固化过程中,由于两者收缩特性的差异,在其接触面上容易产生较大的内应力,而成为断裂破坏源。偶联剂的作用:一方面在于改善了陶瓷粉体的亲有机性,同时与界面上树脂形成了稳定的化学键,使陶瓷粉体与树脂之间以相互渗透的网状结构联接,将应力由高模量的陶瓷粉体逐渐向低模量的环氧基传递,削弱了两者间因膨胀系数不同而造成的差异,消除了部分内应力,增强了填料与环氧基之间的附着力;另一方面是通过浸润作用使环氧基料分子插入陶瓷粉体间,使其分散,防止了因颗粒团聚而产生的沉淀。这样均匀地分散在树脂基体的陶瓷粉体就能更好地起到增韧补强的作用。
(4) 网格陶瓷也要经过偶联剂表面改性,以提高它与树脂基体的润湿性,改善了网格陶瓷的亲有机性,同时与界面上树脂形成了稳定的化学键。在摩擦工况下,应力由高模量的网格陶瓷向低模量的树脂传递。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明 3D打印网格陶瓷增强树脂复合材料的制备工艺流程图;
图2 是本发明中浆料的制备流程图;
图3 是本发明中3D打印机把陶瓷泥条叠层打印堆叠成网格陶瓷坯体示意图;
图4 是本发明中3D打印网格陶瓷坯体的扫描电镜图片;
图5是采用铝灰-高岭土网格陶瓷/环氧树脂复合材料的扫描电镜图片;
图6是具体实施例一中采用铝灰-MgO网格陶瓷增强环氧树脂复合材料的扫描电镜图片;
图7是具体实施例一中复合材料摩擦片的摩擦系数随载荷和滑动速度的变化图;
图8是具体实施例二采用铝灰-SiC网格陶瓷增强聚脂复合材料的扫描电镜图片;
图9是具体实施例二复合材料磨损率的示意图;
图10是具体实施例三采用铝灰-TiO2网格陶瓷增强酚醛树脂复合材料的扫描电镜图片;
图11是具体实施例三复合材料摩擦系数和摩擦系数稳定性的示意图;
其中:1、网格陶瓷;2、树脂;3、添加剂;4、稀释剂;5、固化剂。
具体实施方式
现在结合附图对本发明作进一步详细的说明。附图为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
具体实施例一,3D打印铝灰-MgO网格陶瓷增强环氧树脂复合材料的制备方法;
S1:制备铝灰-MgO网格陶瓷制备及表面改性
(S1-a)按重量100g计算,以铝灰80g,粉MgO20g,羧甲基纤维素(CMC)0.5g,分散剂(DOLAPIX SPC7)1g、增塑剂(ZUSOPLAST PS1)1g、粘结剂(水溶性聚乙烯醇)0.5g为原料,称量后机械搅拌混合均匀,置于行星球磨机中,再加入100ml水中,加入碱性物质,将浆料pH值调至12,高速球磨15分钟,形成均匀浆料。炼泥机炼制、熟化、抽真空,制成陶泥备用;把陶泥放入挤泥筒,用3D打印通过出泥嘴挤出,出泥嘴配合运动,使泥条往复交织分布于模板上,外观形状根据材料的需要设计;泥条直径2mm,泥条孔隙4mm,陶瓷打印堆叠完成后,在模板上干燥,具有一定强度后,从模中取出,在配制好Al2O3的泥浆中挂浆;挂浆的目的是增加泥条交结点结合的强度,挂浆后烘干;网格陶瓷的孔隙率70%,平均孔径3.8mm;
(S1-b)网格陶瓷坯体烘干与烧结:在空气中200℃烘干12小时,在陶瓷浆料中蘸桨,加固,再烘干、在空气中1400℃烧结2小时得到网格陶瓷块;
(S1-c)清洗:超声清洗网格陶瓷块,在120℃烘箱中干燥8小时;
(S1-d)改性:将网格陶瓷块浸泡在硅烷偶联剂中,优选硅烷偶联剂KH570和稀释剂的混合溶液,在80℃超声振荡溶液10分钟,在105℃干燥6小时;
S2:树脂2制备
(S2-a)配制环氧树脂混合液,组成成分如下,称取100g环氧树脂E51与助剂一起在容器内形成混合溶液,所述助剂为环氧丙烷丁基醚10g,液体丁腈橡胶15g,酸酐类固化剂90g和咪唑类剂1g,将容器放置在真空干燥箱内80℃保温30分钟,降低树脂粘度;接着冷却到室温后,将环氧树脂放入真空箱中脱气;
(S2-b)称取cBN(立方氮化硼)微粉5g,优选平均粒度d50=3μm,放入30ml乙醇的水溶剂中,利用cBN的片层状显微结构提供的润滑能力,降低复合材料摩擦系数,提高耐磨性;加入0.5g偶联剂,优选硅烷偶联剂KH550,利用搅拌将SiO2微粉在有机溶剂中均匀分散;
(S2-c)将(S2-b)中含有cBN微粉的有机溶剂倒入(S2-a)中脱气后的树脂搅拌混合均匀,然后放入烘箱在120℃保温12小时,使偶联剂和SiO2微粉充分发生缩合反应;
S3:树脂2浸渗和固化:
(S3-a) 按照块的需要设计铸型,将(S1-d)的网格陶瓷块排在模具中,并固定于铸型内,网格陶瓷块层叠2层,厚度为6mm;
(S3-b) 将适量的固化剂倒入由(S2-c)所述混合液中搅拌,形成混合树脂;
(S3-c)将混合树脂灌入(S3-a)所述的有网格陶瓷块的模具中,适当加压1MPa,使混合树脂完全填充网格陶瓷块的间隙;
(S3-d)将浸有树脂的网格陶瓷在120℃的温度下保温1小时。冷却到室温脱模,得到陶瓷/树脂摩擦材料,然后按照工业要求切割成所需形状,见图6。
所述(S3)树脂2浸渗步骤是在真空环境下,将(S1-d)改性的网格陶瓷浸入(S2-a)树脂中;通过负压将树脂压入多孔材料的孔隙中。
所述(S3-d)中将网格陶瓷在120℃下保温2小时,使网格陶瓷孔隙中的树脂固化,然后对网格陶瓷磨削、抛光处理,制得陶瓷复合材料。
所述(S2-b)中所述偶联剂的质量百分比占铝灰质量的0.1~0.5% wt.%。
所述(S2-b)中所述搅拌时,利用超声波进行振荡,增加了树脂的流动性,降低了粘度,有利于气泡排除。
性能测试表明:本实施例在室温时,抗弯强度、抗弯模量、抗压强度和抗压模量分别为113 MPa,3.4GPa,160 MPa,2.3GPa;本实施例的材料具有良好的高温尺寸稳定性,在180℃未发现变形,在120℃压缩时,抗压强度,抗压模量分别为51MPa,1.05GPa;本实施例的复合材料具有良好的耐磨性,摩擦系数稳定性较好,平均摩擦系数0.3~0.4,随着载荷,滑行速度的变化不大,见图7。本实施例以铝灰-MgO网格陶瓷作为基体材料,保证了导热通路的形成,cBN粉体在树脂中增强了树脂部分的导热和力学性能,导热系数4.7W/m·K,远优于高分子导热复合材料0.3W/m·K。
具体实施例二,3D打印铝灰-SiC网格陶瓷增强聚酯复合材料的制备方法:
S1:制备铝灰-SiC网格陶瓷制备及表面改性;
(S1-a)按重量100g计算,以铝灰85g,SiC粉15g,羧甲基纤维素(CMC)0.5g、分散剂(DOLAPIX SPC7)1g、增塑剂(ZUSOPLAST PS1)1g、粘结剂(水溶性聚乙烯醇)0.5g为原料,称量后机械搅拌混合均匀,置于球磨机中,再加入100ml水中,加入碱性物质,将浆料pH值调至12,高速球磨10~15分钟,形成均匀浆料。炼泥机炼制、熟化2天、抽真空,制成陶泥备用;把陶泥放入挤泥筒,用3D打印通过出泥嘴挤出,出泥嘴配合运动,使泥条往复交织分布于模板上,外观形状根据材料的需要设计;泥条直径3mm,泥条间隙6mm;陶瓷打印堆叠完成后,在模板上干燥,具有一定强度后,从模中取出,在配制好Al2O3的泥浆中挂浆。挂浆的目的是增加泥条交结点结合的强度,挂浆后烘干;网格陶瓷的孔隙率80%,平均孔径5.5mm;
(S1-b)网格陶瓷坯体烘干与烧结:在空气中200℃烘干12小时,在陶瓷浆料中蘸桨,加固,再烘干、在空气中1400℃烧结2小时得到网格陶瓷块;
(S1-c)清洗:超声清洗网格陶瓷块,在120℃烘箱中干燥8小时;
(S1-d)改性:将网格陶瓷浸泡在钛酸酯偶联剂和乙酸乙酯的混合溶液中,混合溶液中,钛酸酯偶联剂与乙酸乙酯的质量百分比为0.3%,同时在90℃环境中超声振荡溶液30分钟,再在100℃下干燥6小时;
S2:树脂2制备
(S2-a)配制树脂混合液,组成成分如下,称取聚酯100g与助剂一起在容器内形成混合溶液,所述助剂为液体丁腈橡胶10g、邻苯二甲酸二丁酯10g和过氧化甲乙酮0.2g,将容器放置在真空干燥箱内90℃保温30分钟;接着冷却到室温后,将聚酯混合液放入真空箱中脱气;
(S2-b)称取平均粒度d50=200nm的纳米碳粉5g,放入30ml乙醇的水溶剂中,加入0.5g偶联剂,偶联剂为硅烷偶联剂KH550,利用搅拌和超声波振荡将纳米碳粉在有机溶剂中均匀分散;
(S2-c)将(S2-b)中含有纳米碳粉的有机溶剂倒入(S2-a)中脱气后的树脂搅拌混合均匀,然后放入烘箱在80℃保温36小时,使偶联剂和纳米碳粉充分发生缩合反应;
S3 :树脂2浸渗和固化
(S3-a) 按照块的需要设计铸型,将(S1-d)的网格陶瓷块排在模具中,并固定于铸型内,网格陶瓷块层叠3层,厚度为10mm;
(S3-b) 将适量的固化剂(咪唑)倒入由(S2-c)所述混合液中搅拌,形成混合树脂;
(S3-c)将混合树脂灌入(S3-a)所述的有网格陶瓷块的模具中,适当加压0.5MPa,使混合树脂完全填充网格陶瓷块的间隙;
(S3-d)将网格陶瓷在80℃下保温2小时,使网格陶瓷的孔隙中的树脂固化,然后对网格陶瓷磨削、抛光处理,制得陶瓷复合材料,见图8。
经检测,本实施例复合材料在室温时,抗弯强度、抗弯模量、抗压强度和抗压模量分别为126MPa,4.1GPa,280MPa,2.4GPa;本实施例的材料具有良好的高温尺寸稳定性,在180℃未发现变形,在120℃压缩时,其抗压强度,抗压模量分别为55MPa,1.25GPa;复合材料具有良好的耐磨性,磨损量较低,见图9;摩擦系数稳定性较好,随着载荷,滑行速度和滑行时间的变化不大;本实施例以铝灰-SiC网格陶瓷作为基体材料,保证了导热通路的形成,纳米碳粉体树脂中增强了树脂部分的导热和力学性能,因此相较于高分子导热复合材料,导热系数5.4W/m·K,远优于高分子导热复合材料0.5W/m·K。
具体实施例三,3D打印铝灰- TiO2网格陶瓷增强酚醛树脂复合材料的制备方法:
S1:制备铝灰-TiO2网格陶瓷制备及表面改性
(S1-a)按重量100g计算,以铝灰80g,TiO2(钛白)粉20g,羧甲基纤维素(CMC)0.5g,分散剂(DOLAPIX SPC7)1g、增塑剂(ZUSOPLAST PS1)1g、粘结剂(水溶性聚乙烯醇)0.5g为原料,称量后机械搅拌混合均匀,置于球磨机中,再加入100ml水中,加入碱性物质,将浆料pH值调至12,高速球磨15分钟,形成均匀浆料。炼泥机炼制、熟化1天、抽真空,制成陶泥备用;把陶泥放入挤泥筒,用3D打印通过出泥嘴挤出,出泥嘴配合运动,使泥条往复交织分布于模板上,外观形状根据材料的需要设计;泥条直径1mm,泥条间2mm,陶瓷打印堆叠完成后,在模板上干燥,具有一定强度后,从模中取出,在配制好Al2O3的泥浆中挂浆,挂浆的目的是增加泥条交结点结合的强度,挂浆后烘干;网格陶瓷的孔隙率50%,平均孔径5.5mm;
(S1-b)网格陶瓷坯体烘干与烧结:在空气中200℃烘干12小时,在陶瓷浆料中蘸桨,加固,再烘干、在空气中1400℃烧结2小时得到网格陶瓷块;
(S1-c)清洗:超声清洗网格陶瓷块,在120℃烘箱中干燥8小时;
(S1-d)改性: 将网格陶瓷浸泡在钛酸酯偶联剂和乙酸乙酯的混合溶液中,混合溶液中,钛酸酯偶联剂与乙酸乙酯的质量百分比为0.3%,同时在90℃环境中超声振荡溶液30分钟,再在100℃下干燥6小时;
S2:配制酚醛树脂2:
(S2-a)制酚醛树脂混合液:组成成分如下,称取液体酚醛树脂100g与助剂一起在容器内形成混合溶液,所述助剂为稀释剂丙酮20g,将容器放置在真空干燥箱内90℃保温30分钟,降低树脂粘度;接着冷却到室温后,将酚醛树脂混合液放入真空箱中脱气,制得酚醛树脂混合液;
(S2-b)称取平均粒度d50=200nm的Cu(铜)粉5g,放入30ml乙醇的水溶剂中,加入0.5g偶联剂,优选钛酸酯偶联剂,利用搅拌和超声波振荡将纳米碳粉在有机溶剂中均匀分散;
(S2-c)将(S2-b)中含有Cu粉的有机溶剂倒入(S2-a)中脱气后的酚醛树脂搅拌混合均匀,然后放入烘箱在120℃保温36小时,使偶联剂和纳米碳粉充分发生缩合反应;
S3 :酚醛树脂2浸渗和固化
(S3-a) 按照块的需要设计铸型,将(S1-d)的网格陶瓷块排在模具中,并固定于铸型内,网格陶瓷块层叠2层,厚度为5mm;
(S3-b) 将适量的固化剂(叔胺)倒入由(S2-c)所述混合液中搅拌,形成混合树脂;
(S3-c)将混合树脂灌入(S3-a)所述的有网格陶瓷块的模具中,适当加压1.2MPa,使混合树脂完全填充网格陶瓷块的间隙;
(S3-d)将网格陶瓷在80℃下保温2小时,使网格陶瓷的孔隙中的树脂固化,然后对网格陶瓷磨削、抛光处理,制得陶瓷复合材料,见图10。
经检测,本实施例复合材料在室温时,抗弯强度、抗弯模量、抗压强度和抗压模量分别为126MPa,4.1GPa,280MPa,2.4GPa;本实施例的材料具有良好的高温尺寸稳定性,在180℃未发现变形,在120℃压缩时,其抗压强度,抗压模量分别为60MPa,1.41GPa;复合材料具有良好的耐磨性,其摩擦系数随着滑行速度变化不大,数值范围0.31~0.36。摩擦系数稳定性较好,平均值0.65,见图11;本实施例以铝灰-TiO2网格陶瓷作为基体材料,保证了导热通路的形成,Cu粉体在树脂中增强了树脂部分的导热和力学性能,因此相较于高分子导热复合材料,导热系数6.7W/m·K,远优于高分子导热复合材料。
本发明设计了一种3D打印网格陶瓷增强树脂复合材料及其制备方法,该3D打印网格陶瓷增强树脂复合材料的制备方法具有以下优点:
(1)本发明的设计原理是在网格陶瓷的孔隙中填充树脂,制得陶瓷复合材料。复合材料以网格陶瓷作为增强相,陶瓷具有较高热导率(例如:改性铝灰的导热系数>25W/m·K,AlN的导热系数大于150W/m·K。铝灰中含有2~4%的AlN,这样保证了以铝灰和其他陶瓷粉体经3D成型的网格陶瓷在复合材料中形成导热通路。相较于高分子导热复合材料,导热性能优异,制作工艺简单,且成本更低。
(2)网格陶瓷增强体的孔隙容易调整,整体连续,与基体树脂结合牢固,强度高,韧性好,抗冲击,提高了材料的使用可靠性和寿命。
(3)树脂中加入适量的偶联剂后,复合物的抗弯强度增加。这是因为陶瓷粉体与树脂间的热膨胀系数不同。在固化过程中,由于两者收缩特性的差异,在其接触面上容易产生较大的内应力,而成为断裂破坏源。偶联剂的作用:一方面在于改善了陶瓷粉体的亲有机性,同时与界面上树脂形成了稳定的化学键,使陶瓷粉体与树脂之间以相互渗透的网状结构联接,将应力由高模量的陶瓷粉体逐渐向低模量的环氧基传递,削弱了两者间因膨胀系数不同而造成的差异,消除了部分内应力,增强了填料与环氧基之间的附着力;另一方面是通过浸润作用使环氧基料分子插入陶瓷粉体间,使其分散,防止了因颗粒团聚而产生的沉淀。这样均匀地分散在树脂基体的陶瓷粉体就能更好地起到增韧补强的作用。
(4) 网格陶瓷也要经过偶联剂表面改性,以提高它与树脂基体的润湿性,改善了网格陶瓷的亲有机性,同时与界面上树脂形成了稳定的化学键。在摩擦工况下,应力由高模量的网格陶瓷向低模量的树脂传递。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种3D打印网格陶瓷增强树脂复合材料,其特征在于:所述复合材料由三部分组成:网格陶瓷(1)、树脂(2)和分散于树脂内的添加剂(3);所述网格陶瓷(1)由铝灰与陶瓷粉混合后,经3D打印机成型,烘干,烧结得到;所述树脂(2)填充在网格陶瓷的孔隙内;所述添加剂(3)中含有稀释剂(4)和固化剂(5)。
2.根据权利要求1所述的一种3D打印网格陶瓷增强树脂复合材料,其特征在于:所述网格陶瓷(1)的孔隙率10%~90%,孔隙的平均孔径0.5~10mm,所述树脂(2)粘度为500~2000cps,导热系数0.1~1 W/(m·K)。
3.根据权利要求1所述的一种3D打印网格陶瓷增强树脂复合材料,其特征在于:所述铝灰的主要成分为Al2O3,所述陶瓷粉为MgO、ZrO2、TiO2、SiC、Si3N4、B4C或高岭土粉。
4.根据权利要求1或2所述的一种3D打印网格陶瓷增强树脂复合材料,其特征在于:所述树脂(2)为环氧树脂、聚酯树脂、丙烯酸酯、硅氧烷、聚氯乙烯、聚乙酸乙烯、聚乙烯、氨基环氧、聚丙烯、聚甲醛、聚缩醛、聚乙烯醇中的一种或几种。
5.根据权利要求1所述的一种3D打印网格陶瓷增强树脂复合材料,其特征在于:所述稀释剂(4)采用乙酸乙酯、乙醚、甲苯、丙酮、丁酮、乙醇中的一种;所述固化剂(5)采用咪唑类剂或叔胺类剂。
6.根据权利要求1或5所述的一种3D打印网格陶瓷增强树脂复合材料,其特征在于:所述稀释剂(4)的用量为树脂(2)用量的1~15wt.%(重量百分比,下同),所述固化剂(5)的用量为树脂(2)用量的1~2 wt.%。
7.根据权利要求1所述的一种3D打印网格陶瓷增强树脂复合材料的制备方法,其特征在于其步包括,(S1) 网格陶瓷(1)制备及表面改性;(S2)树脂(2)制备;(S3)树脂(2)浸渗和固化;
其中,(S1) 网格陶瓷(1)制备及表面改性步骤为:
(S1-a)按重量100g计算,以铝灰80~90g,陶瓷粉10~20g,羧甲基纤维素(CMC)0.5g,分散剂(DOLAPIX SPC7)1g、增塑剂(ZUSOPLAST PS1)1g、粘结剂(水溶性聚乙烯醇)0.5g为原料,称量后机械搅拌混合均匀,置于行星球磨机中,再加入100ml水中,加入碱性物质,将浆料pH值调至12,高速球磨10~15分钟,形成均匀浆料,炼泥机炼制、熟化、抽真空,制成陶泥备用;
把陶泥放入挤泥筒,用3D打印通过出泥嘴挤出,出泥嘴配合运动,使泥条往复交织分布于模板上,外观形状根据材料的需要设计,泥条直径0.1~5mm;泥条孔隙2~6mm;陶瓷打印堆叠完成后,在模板上干燥,具有一定强度后,从模中取出,在配制好Al2O3的泥浆中挂浆;挂浆的目的是增加泥条交结点结合的强度,挂浆后烘干;网格陶瓷的孔隙率50%~80%,平均孔径3.5~6mm;
(S1-b)网格陶瓷坯体烘干与烧结;在空气中100~200℃烘干12~24小时,在陶瓷浆料中蘸桨,加固,再烘干、在空气中1300~1400℃烧结2~12小时得到网格陶瓷块;
(S1-c)清洗:超声清洗网格陶瓷块,在100~120℃烘箱中干燥8~20小时;
(S1-d)改性:将网格陶瓷块浸泡在硅烷偶联剂和稀释剂的混合溶液中,在80~100℃超声振荡溶液10~30分钟,在80℃~105℃干燥6~10小时;
其中,(S2) 树脂(2)制备步骤为:
(S2-a)称取100g树脂与助剂一起在容器内形成混合溶液,将容器放置在真空干燥箱内60~120℃保温30分钟,降低树脂粘度;接着冷却到室温后,将环氧树脂放入真空箱中脱气;所述助剂包括环氧丙烷丁基醚、液体丁腈橡胶、酸酐类固化剂、咪唑类剂、邻苯二甲酸二丁酯、过氧化甲乙酮和丙酮中的一种或多种;
(S2-b)称取无机微粉5g,平均粒度d50=0.1~3μm的无机微粉,放入30ml乙醇的水溶剂中,加入0.5g偶联剂,利用搅拌和超声波振荡将陶瓷微粉在有机溶剂中均匀分散;
(S2-c)将(S2-b)中含有无机微粉的有机溶剂倒入(S2-a)中脱气后的树脂搅拌混合均匀,然后放入烘箱在80~120℃保温6~36小时,使偶联剂和无机微粉充分发生缩合反应;
其中,(S3)树脂(2)浸渗和固化步骤为:
(S3-a) 按照块的需要设计铸型,将(S1-d)的网格陶瓷块排在模具中,并固定于铸型内;网格陶瓷块层叠1-5层,厚度为3~20mm;
(S3-b) 将固化剂倒入由(S2-c)所述混合液中搅拌,形成混合树脂;
(S3-c)将混合树脂灌入(S3-a)所述的有网格陶瓷块的模具中,适当加压0.3~20MPa,使混合树脂完全填充网格陶瓷块的间隙;
(S3-d)将浸有树脂的网格陶瓷在80℃~140℃的温度下保温0.5小时~2小时。冷却到室温脱模,得到增强树脂复合材料,然后按照工业要求切割成所需形状。
8.根据权利要求7所述的一种3D打印网格陶瓷增强树脂复合材料的制备方法,其特征在于,所述网格陶瓷(1)的孔隙率50%~90%,孔隙的平均孔径0.5mm~6mm;所述树脂(2)的填充体积占网格陶瓷总体积50%~90%。优选地,所述树脂的粘度500~1000cps,导热系数0.1~0.3W/(m·K);所述陶瓷粉为AlN、MgO、ZrO2、TiO2、SiC、Si3N4、B4C和高岭土粉末中的一种或多种;所述偶联剂为硅烷偶联剂、钛酸酯偶联剂或者铝酸酯偶联剂;所述稀释剂为乙酸乙酯、乙醚、甲苯、丙酮、丁酮、乙醇中的一种或几种;所述偶联剂的用量是稀释剂用量的0.2~0.5wt.%。
9.根据权利要求7所述的一种3D打印网格陶瓷增强树脂复合材料的制备方法,其特征在于,所述(S3) 树脂(2)浸渗和固化的条件为:在真空环境下,将网格陶瓷浸入树脂中,再释放真空至常压下,将树脂压入网格陶瓷的孔隙中,所述(S3) 树脂(2)浸渗和固化的条件为:将浸有树脂的网格陶瓷在80~140℃保温0.5~2小时。
10.根据权利要求7所述的一种3D打印网格陶瓷增强树脂复合材料的制备方法,其特征在于,所述(S2-b)的无机微粉为纳米碳粉,Al2O3粉,SiC粉,SiO2粉,Cu粉,Fe粉,SiO2粉,cBN粉,MoS2中的一种或几种,微粉的平均粒径d50=0.1~0.5 μm,所述无机微粉用量为树脂(2)用量的0.5~5 wt.%。
CN201911162969.8A 2019-11-25 2019-11-25 一种3d打印网格陶瓷增强树脂复合材料及其制备方法 Active CN111040385B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911162969.8A CN111040385B (zh) 2019-11-25 2019-11-25 一种3d打印网格陶瓷增强树脂复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911162969.8A CN111040385B (zh) 2019-11-25 2019-11-25 一种3d打印网格陶瓷增强树脂复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111040385A true CN111040385A (zh) 2020-04-21
CN111040385B CN111040385B (zh) 2023-06-27

Family

ID=70233831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911162969.8A Active CN111040385B (zh) 2019-11-25 2019-11-25 一种3d打印网格陶瓷增强树脂复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111040385B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588222A (zh) * 2020-11-25 2021-04-02 浙江大学 声表面波调控孔隙率与排布的多孔聚合物制备装置与方法
CN113105269A (zh) * 2021-05-07 2021-07-13 中国石油化工股份有限公司 陶瓷传热元件气孔填充剂、陶瓷传热元件气孔的填充方法及陶瓷传热元件
CN113490352A (zh) * 2021-06-30 2021-10-08 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN115010877A (zh) * 2022-05-27 2022-09-06 深圳大学 一种碳氧硅陶瓷前驱体、厚实致密陶瓷件及其3d打印制备方法
CN115179387A (zh) * 2022-05-26 2022-10-14 中南大学 一种木堆式pzt支架结构复合材料驱动器3d打印制备方法
CN115504813A (zh) * 2022-10-27 2022-12-23 中航装甲科技有限公司 一种陶瓷型芯室温强化剂及强化工艺
CN116835990A (zh) * 2023-08-29 2023-10-03 合肥阿基米德电子科技有限公司 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234187A (zh) * 2010-04-29 2011-11-09 比亚迪股份有限公司 一种陶瓷复合材料及其制备方法
US20180148379A1 (en) * 2016-11-30 2018-05-31 Hrl Laboratories, Llc Formulations and methods for 3d printing of ceramic matrix composites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234187A (zh) * 2010-04-29 2011-11-09 比亚迪股份有限公司 一种陶瓷复合材料及其制备方法
US20180148379A1 (en) * 2016-11-30 2018-05-31 Hrl Laboratories, Llc Formulations and methods for 3d printing of ceramic matrix composites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李妙妙等: "《高技术陶瓷3D打印制备方法研究进展》", 《江苏陶瓷》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588222A (zh) * 2020-11-25 2021-04-02 浙江大学 声表面波调控孔隙率与排布的多孔聚合物制备装置与方法
CN113105269A (zh) * 2021-05-07 2021-07-13 中国石油化工股份有限公司 陶瓷传热元件气孔填充剂、陶瓷传热元件气孔的填充方法及陶瓷传热元件
CN113490352A (zh) * 2021-06-30 2021-10-08 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN113490352B (zh) * 2021-06-30 2023-01-31 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN115179387A (zh) * 2022-05-26 2022-10-14 中南大学 一种木堆式pzt支架结构复合材料驱动器3d打印制备方法
CN115010877A (zh) * 2022-05-27 2022-09-06 深圳大学 一种碳氧硅陶瓷前驱体、厚实致密陶瓷件及其3d打印制备方法
CN115010877B (zh) * 2022-05-27 2023-11-24 深圳大学 一种碳氧硅陶瓷前驱体、厚实致密陶瓷件及其3d打印制备方法
CN115504813A (zh) * 2022-10-27 2022-12-23 中航装甲科技有限公司 一种陶瓷型芯室温强化剂及强化工艺
CN116835990A (zh) * 2023-08-29 2023-10-03 合肥阿基米德电子科技有限公司 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用
CN116835990B (zh) * 2023-08-29 2023-11-24 合肥阿基米德电子科技有限公司 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用

Also Published As

Publication number Publication date
CN111040385B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN111040385B (zh) 一种3d打印网格陶瓷增强树脂复合材料及其制备方法
CN100400473C (zh) 一种高强高韧SiC/Al泡沫材料及其制备方法
US10399907B2 (en) Ceramic composite structures and processing technologies
US4818633A (en) Fibre-reinforced metal matrix composites
US8016018B2 (en) Method of manufacturing a metal matrix composite
US8048544B2 (en) Ceramics made of preceramic paper or board structures, method of producing the same and use thereof
CN102292386B (zh) 复合片及其制造方法
US20090035554A1 (en) Preform for composite material and process for producing the same
CN113087534B (zh) 一种耐高温的碱激发铝硅酸盐粘结剂及其制备方法
CN1986491A (zh) 一种高导热、高强高密的SiC/Cu复相泡沫材料及其制备方法
WO2004007401A1 (ja) 炭化ケイ素基複合材料とその製造方法、および炭化ケイ素基複合材料部品の製造方法
MXPA04011775A (es) Filtro reforzado de fibra para filtrar metales fundidos y procedimiento de fabricacion de dichos filtros.
US5437832A (en) Process for preparing a ceramic porous body
CN113248263B (zh) Si3N4w/Si预制体及利用该预制体制备Si3N4w/Si3N4复合材料的方法
US5248705A (en) Method of forming a porous carbonaceous preform from water-based slurry
JPH08501523A (ja) ファイバー複合材料の製造方法
CN111479940A (zh) 铝合金基复合材料的制造方法及铝合金基复合材料
WO2008032598A1 (en) Metal composite material and process for production of metal composite material
WO2018174993A1 (en) Ceramic composite structures and processing technologies
CN1865388A (zh) 一种湿式铜基摩擦材料及其制备方法
US5238619A (en) Method of forming a porous carbonaceous preform from a water-based slurry
CN114874012A (zh) 一种高强度复相陶瓷部件及其制备方法
CN101244936B (zh) 一种强化金属熔渗用注射成形SiC陶瓷预成形坯的方法
CN112645713A (zh) 一种高强韧陶瓷复合材料及其制备方法
JPH1129831A (ja) 金属基複合材用プリフォーム及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant