WO2022156634A1 - 一种覆铜板的氮化硅陶瓷基片的制备方法 - Google Patents

一种覆铜板的氮化硅陶瓷基片的制备方法 Download PDF

Info

Publication number
WO2022156634A1
WO2022156634A1 PCT/CN2022/072347 CN2022072347W WO2022156634A1 WO 2022156634 A1 WO2022156634 A1 WO 2022156634A1 CN 2022072347 W CN2022072347 W CN 2022072347W WO 2022156634 A1 WO2022156634 A1 WO 2022156634A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
ceramic substrate
nitride ceramic
atmosphere
powder
Prior art date
Application number
PCT/CN2022/072347
Other languages
English (en)
French (fr)
Inventor
刘学建
张辉
姚秀敏
刘岩
蒋金弟
黄政仁
陈忠明
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Priority to JP2023543222A priority Critical patent/JP2024506483A/ja
Priority to EP22742113.8A priority patent/EP4282848A1/en
Priority to US18/261,078 priority patent/US20240067577A1/en
Publication of WO2022156634A1 publication Critical patent/WO2022156634A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/783Bimodal, multi-modal or multi-fractional
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate

Definitions

  • the invention relates to a preparation method of a silicon nitride ceramic substrate of a copper clad plate, belonging to the field of semiconductor materials and devices.
  • semiconductor devices have developed rapidly along the direction of high power, high frequency and integration.
  • the heat generated by the operation of the semiconductor device is a key factor that causes the failure of the semiconductor device, and the thermal conductivity of the insulating substrate is the key to affecting the heat dissipation of the overall semiconductor device.
  • semiconductor devices are often faced with complex mechanical environments such as bumps and vibrations during use, which imposes strict requirements on the reliability of the materials used.
  • High thermal conductivity silicon nitride (Si 3 N 4 ) ceramics is considered to be the best semiconductor insulating substrate material with both high strength and high thermal conductivity due to its excellent mechanical and thermal properties. ) has great potential in cooling applications.
  • the theoretical thermal conductivity of silicon nitride crystals can reach more than 400W ⁇ m -1 ⁇ K -1 , which has the potential to become a high thermal conductivity substrate.
  • Excellent mechanical properties and good high thermal conductivity make silicon nitride ceramics expected to make up for the deficiencies of existing ceramic substrate materials such as alumina and aluminum nitride, and have great potential in the application of high-end semiconductor devices, especially high-power IGBT heat dissipation substrates.
  • the thermal conductivity of traditional silicon nitride ceramic materials is only 20-30W ⁇ m -1 ⁇ K -1 , which cannot meet the application requirements for heat dissipation of high-power semiconductor device substrates.
  • silicon nitride is a strong covalent bond compound, and it is difficult to sinter densely by means of solid-phase diffusion. It is necessary to add an appropriate amount (usually greater than 5wt%) of rare earth oxides and/or metal oxides as sintering aids (such as Y 2 O 3 , La 2 O 3 , MgO, Al 2 O 3 , CaO, etc.), but the addition of sintering aids will significantly reduce the thermal conductivity of silicon nitride ceramics, and a low content of sintering aids helps to obtain High thermal conductivity, but low content of sintering aids brings the problem of sintering and densification of silicon nitride ceramics.
  • sintering aids such as Y 2 O 3 , La 2 O 3 , MgO, Al 2 O 3 , CaO, etc.
  • Ceramic substrate also known as ceramic circuit board, includes a ceramic substrate and a metal circuit layer.
  • the packaging substrate plays a key role in connecting the top and bottom, connecting the internal and external heat dissipation channels, and also has functions such as electrical interconnection and mechanical support.
  • Silicon nitride ceramics have the advantages of high thermal conductivity, good heat resistance, high mechanical strength, and low thermal expansion coefficient, and are the preferred substrate materials for power semiconductor device packaging.
  • the ceramic copper clad laminate is an important component of high-power devices. It has the characteristics of high thermal conductivity, high electrical insulation, high mechanical strength, and low expansion of ceramics, as well as high electrical conductivity and excellent welding performance of oxygen-free copper.
  • Various patterns are etched like the polymer substrate PCB circuit board.
  • ceramic substrates can be divided into two categories: planar ceramic substrates and three-dimensional ceramic substrates.
  • planar ceramic substrates can be divided into thin-film ceramic substrates, thick-film printed ceramic substrates, directly bonded copper ceramic substrates, active metal brazed ceramic substrates, direct electroplated copper ceramic substrates, and laser-activated metal ceramic substrates.
  • active metal brazing ceramic substrate AMB ceramic substrate uses solder containing a small amount of active metal elements to realize the welding between copper foil and ceramic substrate, and AMB substrate relies on the chemical reaction between the active solder and ceramic interface to realize the bond Therefore, it has the unique advantages of high bonding strength, strong resistance to high and low temperature shock failure, and high reliability. It has become the preferred packaging material for new-generation semiconductors and new high-power power electronic devices.
  • the AMB welding process of the ceramic substrate and the copper foil is to first coat a layer of active metal solder on the surface of the ceramic substrate, and then heat it under vacuum conditions to chemically bond the active metal elements and the surface elements of the ceramic substrate, so as to achieve High-strength connection between the two.
  • the methods of coating the surface of the substrate with a solder layer mainly include screen printing, plating, sputtering, spray plating, etc. Different process methods have their own characteristics.
  • the purpose of the present invention is to provide a silicon nitride ceramic substrate of a copper clad laminate and a preparation method thereof.
  • the present invention provides a method for preparing a silicon nitride ceramic substrate of a copper clad laminate.
  • the total amount of impurities in the silicon nitride ceramic material is ⁇ 1.0 wt%; the impurities include at least one of lattice oxygen, metal impurity ions, and impurity carbon.
  • the thickness of the copper plate is 0.2mm ⁇ 1.0mm.
  • the average particle size of the silver powder is 5-20 ⁇ m, and the oxygen content is not more than 0.05%; the average particle size of the copper powder is 5-20 ⁇ m, and the oxygen content is not more than 0.05%; The average particle size is 1-5 ⁇ m, and the oxygen content is not more than 0.2%; the protective atmosphere is a nitrogen atmosphere.
  • the casting film green body is dried by a flowing heat N2 atmosphere with increasing temperature, the temperature range of the N2 atmosphere is 40-85°C, and the atmosphere pressure is 0.1-0.2MPa; preferably, the temperature of the nitrogen atmosphere is The stage is 2 stages, the atmospheric temperature range of the front stage is 40-65°C, the atmospheric temperature range of the back-stage is 60-85°C, and the atmospheric temperature of the front-stage is less than the atmospheric temperature of the back-stage.
  • the parameters of the debonding include: the pressure of the N 2 atmosphere is 0.1-0.2 MPa; the treatment temperature is 500-800° C.; and the treatment time is 1-3 hours.
  • the preparation method of the silicon nitride ceramic substrate includes: (1) using at least one of silicon powder and silicon nitride powder as the original powder, and using Y 2 O 3 powder and MgO powder as the original powder; As a sintering aid, an organic solvent and a binder are added, and mixed in a protective atmosphere to obtain a mixed slurry; (2) the obtained mixed slurry is cast-molded in a protective atmosphere to obtain a china; (3) the obtained The green body is placed in a reducing atmosphere and pretreated at 500-800 °C to obtain a green body; (4) the obtained green body is placed in a nitrogen atmosphere, firstly heat-treated at a low temperature of 1600-1800 °C, and then heated at 1800 °C.
  • the protective atmosphere is an inert atmosphere or a nitrogen atmosphere, preferably a nitrogen atmosphere; the reducing atmosphere is a hydrogen content not higher than 5vol% hydrogen/nitrogen atmosphere.
  • the preparation method of the nitrided ceramic silicon substrate includes: (1) using at least one of silicon powder and silicon nitride powder as the original powder, and using Y 2 O 3 powder and MgO powder as the original powder;
  • the green body is used as a sintering aid, and is mixed and formed in a protective atmosphere to obtain a green body;
  • the obtained green body is placed in a reducing atmosphere and pretreated at 500-800 ° C to obtain a green body; (3) ) placing the obtained green body in a nitrogen atmosphere, first performing a low-temperature heat treatment at 1600-1800°C, and then performing a high-temperature heat treatment at 1800-2000°C to obtain the silicon nitride ceramic substrate;
  • the protective atmosphere It is an inert atmosphere or a nitrogen atmosphere, preferably a nitrogen atmosphere;
  • the reducing atmosphere is a hydrogen/nitrogen mixed atmosphere with a hydrogen content not higher than 5 vol%.
  • the present invention reduces lattice vacancies and dislocations through the control of oxygen content in the preparation process (including the avoidance of raw material oxidation and reducing atmosphere pretreatment in the process of mixing and green body forming), the control of metal impurity ion content, and the control of carbon content.
  • the amount of structural defects is equal to achieve the purpose of improving the thermal conductivity and breakdown field strength of the silicon nitride ceramic material.
  • the composition and content of the grain boundary phase are controlled by a two-step sintering process.
  • the low-temperature sintering stage promotes the formation of a liquid phase of the sintering aid and promotes densification; the high-temperature stage makes the residual MgO sintering aid volatilize and further reduces the grain boundary phase.
  • the high breakdown field strength of the material is conducive to the application of high-power devices, and is conducive to reducing the thickness of the substrate material and reducing the thermal resistance, so that the copper clad laminate made of this material exhibits thermal shock resistance, high reliability, and use.
  • the present invention first adopts the tape casting method to realize the forming of the solder foil blanks, so as to ensure the uniform distribution and uniform thickness of each component in the solder;
  • the inert atmosphere is used to protect the metal powder to avoid oxidation of the metal powder, thereby ensuring the high-strength welding of the silicon nitride ceramic copper clad laminate.
  • the ceramic copper clad laminate based on the traditional aluminum nitride, aluminum oxide, zirconia toughened aluminum oxide (ZTA) ceramic substrate can only weld copper foil with a thin thickness (generally not more than 0.8mm) ), if the thickness of the copper foil is too large, the reliability will decrease sharply; and the method of the present invention is suitable for the welding of the high thermal conductivity ceramic substrate and the large thickness copper foil (0.1-1.5mm), even for the copper foil with a thickness of more than 1mm, High-strength, low-stress, and high-reliability silicon nitride ceramic copper clad laminates can still be prepared; while copper foils with larger thicknesses can withstand higher current density and are suitable for higher-power
  • FIG. 1 is the XRD pattern of the silicon nitride ceramic material prepared in Example 1.
  • FIG. 1 is the XRD pattern of the silicon nitride ceramic material prepared in Example 1.
  • FIG. 2 is a typical SEM microstructure of the silicon nitride ceramic material prepared in Example 1.
  • FIG. 2 is a typical SEM microstructure of the silicon nitride ceramic material prepared in Example 1.
  • FIG. 3 is a typical TEM microstructure of the silicon nitride ceramic material prepared in Example 1.
  • FIG. 4 is the XRD pattern of the material prepared after the nitridation treatment in Example 6.
  • FIG. 4 is the XRD pattern of the material prepared after the nitridation treatment in Example 6.
  • FIG. 5 is the XRD pattern of the material prepared after high temperature sintering in Example 6.
  • FIG. 6 is a typical SEM microstructure of the silicon nitride ceramic material prepared in Example 6.
  • Fig. 7 is the green body of the active metal solder foil prepared by the present invention.
  • FIG. 8 is a schematic structural diagram of a silicon nitride ceramic substrate of a copper clad laminate.
  • Example 9 is the silicon nitride ceramic substrate of the copper clad laminate prepared in Example 12.
  • Figure 10 shows the microstructure of the bonding area of the silicon nitride ceramic substrate of the copper clad laminate.
  • Fig. 11 shows the microstructure (a) of the welding zone of the silicon nitride ceramic substrate of the copper clad laminate and its composition analysis (b).
  • FIG. 12 is an ultrasonic scanning diagram of the silicon nitride ceramic substrate of the copper clad laminate after being thermally impacted by high and low temperature cycles.
  • Table 1 in FIG. 13 shows the composition of the silicon nitride ceramic material and its preparation process.
  • Table 2 in Figure 14 shows the phase composition and performance parameters of the silicon nitride ceramic material.
  • Table 3 in FIG. 15 shows the composition of the solder foils prepared according to the present invention.
  • Table 4 in FIG. 16 shows the preparation parameters and performance parameters of the silicon nitride ceramic substrate of the copper clad laminate in the present invention.
  • the silicon nitride ceramic material contains a silicon nitride phase of not less than 95%, and a grain boundary phase of a crystalline phase content of not less than 40%. Moreover, the content of lattice oxygen, metal impurity ions, carbon impurities, etc. in the obtained silicon nitride ceramic material is low, and the total amount is less than 1.0 wt %. Therefore, the silicon nitride ceramic material in the present invention has high thermal conductivity and breakdown field strength.
  • the preparation process under a clean and protective atmosphere, air or hot air is prevented from contacting the material, and the impurity content and oxygen content in the prepared ceramic are controlled, so that under the premise of not reducing the bending strength of the material, To achieve the purpose of improving the thermal conductivity of the material and the breakdown field strength.
  • the following exemplarily illustrates the preparation method of the silicon nitride ceramic material provided by the present invention.
  • the preparation method of the silicon nitride ceramic material specifically includes the following steps: mixing under protective atmosphere and forming green body, pretreatment under reducing atmosphere, sintering under nitrogen atmosphere and controlling the sintering system.
  • the original powder, sintering aid Y 2 O 3 powder and MgO powder are added in an airtight container into anhydrous ethanol as a solvent, mixed uniformly under the protection of a protective atmosphere, and then dried to obtain a mixed powder.
  • the binder may be 5-9 wt % of the total mass of the original powder + sintering aid.
  • the solid content of the obtained mixed slurry is 50-70 wt %.
  • the protective atmosphere used for the mixture is an inert atmosphere or a nitrogen atmosphere, preferably a nitrogen atmosphere.
  • the mixing is carried out in a closed container with a polyurethane or nylon lining, and nitrogen gas is introduced into the container to avoid the entry of air.
  • the original powder is silicon nitride powder, silicon powder, or a mixed powder of silicon nitride powder and silicon powder.
  • the mass percentage of silicon powder in the silicon nitride and silicon mixed powder is not less than 75%, that is, the silicon nitride formed by nitriding the Si powder accounts for more than 80% by mass of the total silicon nitride phase.
  • the total mass of the sintering aid does not exceed 5 wt % of the total mass of the original powder + the sintering aid. If the sintering aid is too much, the thermal conductivity and breakdown field strength of the material will be reduced due to the increase in the content of the grain boundary phase in the prepared silicon nitride ceramic material. If the sintering aid is too small, the densification cannot be fully promoted, resulting in low density and increased pores of the prepared silicon nitride ceramic material, thereby reducing the thermal conductivity and breakdown field strength of the material.
  • the molar ratio of Y 2 O 3 to MgO in the sintering aid may be 1.0-1.4:2.5-2.9. If MgO is excessive, the liquid eutectic temperature formed by the sintering aid is relatively low, and MgO volatilizes more seriously at high temperature, resulting in low thermal conductivity and breakdown field strength of the prepared silicon nitride ceramic material. If there is a small amount of MgO, due to the low proportion of MgO in the sintering aid, the liquid phase eutectic temperature formed by the sintering aid is relatively high, and the densification effect of the material is relatively poor, resulting in the thermal conductivity and thermal conductivity of the prepared silicon nitride ceramic material. The breakdown field strength was significantly reduced.
  • the mixed powder is directly pressed into shape to obtain a green body.
  • the press forming method includes but is not limited to dry pressing, isostatic pressing, and the like.
  • the mixed slurry is directly cast-molded to obtain a green body (sheet-like green body).
  • the mixed slurry is subjected to vacuum degassing treatment (the degree of vacuum is generally -0.1 to -10 kPa, and the time is 4 to 24 hours). More preferably, the thickness of the sheet-like china is adjusted by controlling the height of the blade of the tape casting.
  • the protective atmosphere used for china forming can be an inert atmosphere or a nitrogen atmosphere, preferably a nitrogen atmosphere. Generally, nitrogen protection is directly introduced into the molding process.
  • Pretreatment of shaped green bodies in a reducing atmosphere is carried out in a reducing atmosphere and a certain temperature, to remove the oxygen in the original powder and to remove the organic matter in the formed green body.
  • the original powder is silicon powder, or a mixed powder of silicon nitride and silicon
  • the shaped green body is first pretreated in a reducing atmosphere at a certain temperature, and then placed in a reducing atmosphere. further nitriding treatment.
  • the pretreatment can be performed in a reducing nitrogen atmosphere with a hydrogen content not higher than 5%, and the gas pressure of the reducing atmosphere is 0.1-0.2 MPa.
  • the pretreatment temperature can be 500-800°C, and the holding time can be 1-3 hours.
  • the nitriding treatment can be performed in a nitrogen atmosphere with a hydrogen content of not more than 5%, and the atmosphere pressure is 0.1-0.2 MPa.
  • the nitriding temperature is 1350-1450°C, and the holding time is 3-6 hours.
  • the sintering treatment of the green body includes low temperature heat treatment and high temperature heat treatment. Specifically, sintering and densification is carried out under high nitrogen pressure using a step-by-step sintering process, the step-by-step sintering process includes a low-temperature heat treatment for inhibiting the volatilization of low-melting substances in the sintering aid, and further high-temperature sintering for densification.
  • the sintering treatment should adopt air pressure sintering under the condition of high nitrogen pressure, and the atmospheric pressure may be 0.5-10 MPa.
  • the green body can be placed in a BN crucible for sintering.
  • the temperature of the low-temperature heat treatment may be 1600-1800° C., and the holding time may be 1.5-2.5 hours.
  • the temperature of the high-temperature heat treatment may be 1800-2000° C., and the holding time may be 4-12 hours.
  • the content of lattice oxygen, metal impurity ions, impurity carbon, etc. in the prepared silicon nitride ceramic is low, and has the characteristics of high thermal conductivity and high breakdown field strength, and its thermal conductivity is 90W ⁇ m -1 ⁇ K -1 or above, and the breakdown field strength is above 30KV/mm.
  • an active metal brazing process is used to prepare a silicon nitride ceramic copper clad laminate, which includes the following steps: mixing of solder, forming of solder foil blanks, cutting and lamination of solder foil blanks, lamination of laminates Debonding and vacuum soldering of silicon nitride copper clad laminates.
  • the following exemplarily illustrates the preparation method of the silicon nitride ceramic substrate of the copper clad laminate provided by the present invention.
  • Solder mix Under the protection of an airtight container and N2 atmosphere, uniformly mix silver powder, copper powder, titanium powder, organic solvent and binder to obtain a mixed slurry. Specifically, the materials were mixed by wet ball milling in an airtight container, and a 0.1 MPa N 2 atmosphere was poured into the container to avoid the entry of air.
  • the mass percentage of silver powder can be 60-65%, the average particle size can be 5-20 ⁇ m, and the oxygen content is not more than 0.05%; the mass percentage of copper powder can be 33-37%, and the average particle size can be 5-20 ⁇ m , the oxygen content is not more than 0.05%; the mass percentage of the titanium powder can be 1-4%, the average particle size can be 1-5 ⁇ m, and the oxygen content is not more than 0.2%.
  • the binder may be polyvinyl butyral (PVB), and the addition amount of the binder may be 5-15 wt % of the total mass of silver powder, copper powder and titanium powder.
  • the slurry also includes other auxiliary agents, such as at least one of a defoaming agent, a dispersing agent, and a plasticizer.
  • a defoaming agent can be oleic acid, and the added amount can be 0.2-1.0 wt % of the total mass of silver powder, copper powder and titanium powder.
  • the dispersing agent can be at least one of polyethylene glycol (PEG) and triethyl phosphate (TEP), and the added amount can be 0.2-1.0 wt % of the total mass of silver powder, copper powder and titanium powder.
  • the plasticizer can be at least one of diethyl phthalate (DEP), dibutyl phthalate (DBP), polyethylene glycol (PEG), and the amount added can be silver powder, copper powder and titanium 2-6wt% of the total mass of the powder.
  • the solid content of the mixed paste of the solder is 55 to 75 wt %.
  • solder foil blanks Forming of solder foil blanks.
  • the mixed slurry was tape-molded under N2 atmosphere and dried under hot N2 atmosphere to realize the preparation of solder foil green body with uniform thickness.
  • the thickness of the formed solder foil blank is 20-60 ⁇ m, and the thickness deviation is not more than ⁇ 10 ⁇ m.
  • the casting film green body is dried by a flowing hot N 2 atmosphere with increasing temperature, the temperature of the hot N 2 atmosphere is 40-85° C., and the atmosphere pressure is 0.1-0.2 MPa.
  • the temperature range of the atmosphere in the first stage is 40-65°C, and the temperature range of the atmosphere in the latter stage is 60-85°C.
  • solder foil blanks The dried solder foil blank is cut into a foil that matches the size of the silicon nitride ceramic substrate, and the silicon nitride ceramic substrate, the solder blank foil and the copper foil are laminated.
  • the lamination of the solder blank is to place a piece of solder foil blank on the upper and lower sides of the silicon nitride substrate, and then place a layer of copper foil with a matching size on the outer side of the solder foil blank.
  • the laminated sheet is heat-treated under slightly positive pressure and a certain temperature.
  • a slight positive pressure is generated by passing in an N 2 atmosphere, the atmosphere pressure is 0.1-0.2 MPa, the processing temperature is 500-800° C., and the processing time is 1-3 h.
  • Vacuum welding of silicon nitride copper clad laminates The laminates are vacuum welded under vacuum and certain temperature conditions.
  • the parameters of vacuum welding include: the degree of vacuum is 10 -2 to 10 -4 Pa; the welding temperature is 860 to 920° C., and the holding time is 5 to 20 minutes.
  • the silicon nitride ceramic material can also be made into a copper clad laminate, which can be used as a heat dissipation substrate for a high-power insulated gate bipolar transistor (IGBT) module.
  • the copper clad laminate made of the obtained silicon nitride ceramic has the characteristics of thermal shock resistance, high reliability and long service life.
  • the bending strength of the silicon nitride ceramic substrate material prepared in Example 1 is 810 MPa, the thermal conductivity is 106 W ⁇ m - 1 ⁇ K -1 , and the breakdown field strength is 45 KV/mm.
  • the XRD pattern of the material is shown in Figure 1, there are only high-intensity ⁇ -Si 3 N 4 diffraction peaks, and no obvious steamed bread peak, which indicates that the content of ⁇ -Si 3 N 4 phase in the prepared material is greater than 95wt %, the content of grain boundary phase is less than 5%.
  • the typical SEM microstructure of the material is shown in Figure 2.
  • the material has high density and uniform microstructure, and the Si3N4 grains (grey - black area) exhibit a typical bimodal distribution, consisting of fine equiaxed Si3N4
  • the grains and the large long columnar Si 3 N 4 grains are inlaid with each other; the grain boundary phase (grey area) is low in content and uniformly dispersed in the Si 3 N 4 matrix; further statistical analysis through at least 10 SEM images, combined with The total introduced amount of sintering aids in the raw material is less than or equal to 5% by weight, and it can be concluded that the content of the grain boundary phase in the silicon nitride ceramic material prepared in this example is less than 5%.
  • the typical TEM microstructure of the material is shown in Figure 3 (B in Figure 3 is a partial enlarged view of the dotted box area in Figure 3 A), and grain boundaries are dispersed among the Si 3 N 4 grains (gray-black area). phase (grey-white area), while the grain boundary phase consists of glass phase (light-colored area) and crystalline phase (dark-colored area); through statistical analysis of at least 10 TEM images, it can be concluded that the silicon nitride ceramic material prepared in this example The content of the crystalline phase in the grain boundary phase is about 54 vol%.
  • the forming substrate blank is cut into a desired shape and placed in a BN crucible, and it is loaded into a carbon tube furnace; then, heat treatment is performed according to the following process sequence: (1) at 0.2MPa N 2 ( ( 2 ) Under the protection of 0.2MPa N 2 (containing 5% H 2 ) atmosphere, the temperature was raised to 600°C at a rate of 4°C/min for 3 h; The rate of heating to 1450 °C per minute was followed by nitriding treatment for 6 h; (3) under the protection of 3MPa N2 atmosphere, the temperature was raised to 1700 °C at the rate of 6 °C/min and then low temperature heat treatment for 2h; (4) under the protection of 8MPa N2 atmosphere The temperature was increased to 1950°C at a rate of 5°C/min and then sintered at high temperature for 10h; (5) cooled to room temperature with the furnace.
  • the bending strength of the silicon nitride ceramic substrate material prepared in Example 6 is 710MPa, the thermal conductivity is 110W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , and the breakdown field strength is 48KV/mm.
  • the XRD pattern of the material after the nitriding process (the above-mentioned process (2)) is shown in Figure 4, the main crystal phase is ⁇ -Si 3 N 4 , and contains a small amount of ⁇ -Si 3 N 4 phase ( 5 to 10%).
  • the XRD pattern of the material after the high temperature sintering process (the above process (4)) is shown in Figure 5, there is only ⁇ -Si 3 N 4 diffraction peak, and no obvious steamed bread peak, which indicates that the ⁇ -Si 3 N 4 peak in the prepared material is
  • the content of Si 3 N 4 phase is greater than 95wt%, and the content of grain boundary phase is less than 5wt%; further using the same method as in Example 1 above, the content of crystal phase in the grain boundary phase of the prepared material is measured to be about 60vol%.
  • the typical SEM microstructure of the material fracture is shown in Figure 6.
  • the material has high density and uniform microstructure, which is composed of fine equiaxed Si 3 N 4 grains and large long columnar Si 3 N 4 grains inlaid with each other.
  • 1g castor oil 1g PEG, 70g dehydrated alcohol
  • 200g silicon nitride grinding balls are put into the lined polyurethane ball mill jar with atmosphere protection
  • the specific parameters such as the ratio of raw materials, the composition of sintering aids, the pretreatment process, and the sintering process are the same as those in Example 1 (see Table 1).
  • the composition and properties of the prepared materials are shown in Table 1. Because the nitrogen atmosphere protection measures of the present invention are not adopted in the material preparation process, the silicon nitride powder in the raw material is oxidized to different degrees, resulting in the thermal conductivity and breakdown field strength of the prepared silicon nitride ceramic material. were significantly reduced, but the flexural strength remained basically unchanged.
  • composition ratio of the sintering aid, the pretreatment process, and the sintering process are the same as those in Example 1 (see Table 1), except that the total amount of the sintering aid is increased.
  • the composition and properties of the prepared materials are shown in Table 2. Due to the high content of sintering aids, the grain boundary phase with lower thermal conductivity formed by the sintering aids has a higher content, resulting in a significant decrease in the thermal conductivity and breakdown field strength of the prepared silicon nitride ceramic materials. But the flexural strength remains basically the same.
  • the composition and properties of the prepared materials are shown in Table 2. Due to the high proportion of MgO in the sintering aid, the liquid eutectic temperature formed by the sintering aid is relatively low, and the high temperature volatilization is serious, resulting in a significant decrease in the thermal conductivity and breakdown field strength of the prepared silicon nitride ceramic material. .
  • the composition and properties of the prepared materials are shown in Table 2. Due to the low proportion of MgO in the sintering aid, the liquid eutectic temperature formed by the sintering aid is relatively high, and the densification effect of the material is relatively poor, resulting in the thermal conductivity and breakdown field strength of the prepared silicon nitride ceramic material. were significantly reduced.
  • Example 2 The specific parameters such as the ratio of raw materials, the composition of sintering aids, and the pretreatment process are the same as those in Example 1 (see Table 1), and the process is similar to that in Example 1, except that the sintering process is one-step sintering.
  • the composition and properties of the prepared materials are shown in Table 2. Because the low-temperature heat treatment process is not included, serious volatilization of MgO begins to occur without sufficient densification, and the densification effect of the material is relatively poor, resulting in obvious thermal conductivity and breakdown field strength of the prepared silicon nitride ceramic material. reduce.
  • Example 1 The specific parameters such as raw material ratio, sintering aid composition, pretreatment process and sintering process are the same as in Example 1 (see Table 1), and the process is the same as in Example 1, except that the low temperature heat treatment temperature is on the lower side.
  • the composition and properties of the prepared materials are shown in Table 2. Because the low temperature heat treatment temperature is relatively low, the densification effect of the material is relatively poor, resulting in a significant decrease in the thermal conductivity and breakdown field strength of the prepared silicon nitride ceramic material.
  • Example 8 The specific parameters such as the ratio of raw materials, the composition of sintering aids, the pretreatment process, and the sintering process are the same as those in Example 8 (see Table 1). or high (Comparative Example 8).
  • the composition and properties of the prepared materials are shown in Table 2. Due to the low (comparative example 7) or high (comparative example 8) nitriding temperature, the Si powder in the material was not sufficiently nitrided (comparative example 7) or partially silicided (comparative example 8), resulting in the prepared nitrogen The mechanical, thermal and electrical properties of silicon carbide ceramic materials are significantly reduced.
  • solder foil blank (1) Ag powder (average particle size 8 ⁇ m, oxygen content 0.01%), Cu powder (average particle size 6 ⁇ m, oxygen content 0.01%) and Ti powder (average particle size 2 ⁇ m, Oxygen content 0.1%) was weighed according to the mass ratio of 63:35:2 and placed in a ball mill lined with polyurethane, while adding 0.2% oleic acid, 0.5% PEG, 2% PVA, 1% DEP, 200% nitrogen Silicon grinding balls and 110% anhydrous ethanol were evacuated and passed into a 1 atm N2 atmosphere for protection, and the mixture was ball-milled at 100 rpm for 8 h to obtain a slurry with uniform dispersion and no agglomeration; (2) Vacuum the prepared slurry The bubble removal treatment was performed for 8 hours, and the vacuum degree was -0.5kPa; (3) the above-mentioned slurry after bubble removal was tape-casted under a N2 protective atmosphere, and the thickness of the cast film blank was controlled at
  • AMB vacuum brazing (1) Assemble the prepared silicon nitride ceramic substrate, solder foil blank and oxygen-free copper foil with a thickness of 0.3 mm to form the laminate assembly shown in Figure 8; (2) Debonding the laminated sheet assembly under 0.15MPa N 2 atmosphere at 650°C for 2 hours; (3) Put the debonded laminated sheet assembly into a vacuum brazing furnace, under 10 -3 Pa vacuum, 900 °C, heat preservation for 10min for welding; (4) Cool down to room temperature with the furnace.
  • Figure 9 shows the prepared high-strength, low-stress, high-reliability silicon nitride ceramic copper clad laminate, in which the bonding strength (copper foil peeling strength) is 15N/mm (refer to GB/T4722-2017 "Rigid cladding for printed circuits").
  • the flatness of the copper clad laminate is 0.2mm;
  • Figure 10 and Figure 11 show the microstructure and composition analysis of the silicon nitride copper clad laminate welding area.
  • the welding area with a width of about 50 ⁇ m between the silicon ceramic substrate and the copper foil layer (the width is consistent with the width of the solder foil), and the welding area is mainly composed of Cu (light gray area) and Ag (grey area), in which Cu forms Basically continuous phase, Ag forms dispersed Ag particles (grey-white small particles) and part-area Ag continuous phase (grey-white network structure); there is an element diffusion reaction transition zone with a width of about 100nm between the silicon nitride ceramic and the welding zone , a new phase (such as Ti 5 Si 3 ) formed by the reaction of Ti and Si elements is formed, thereby ensuring the welding strength; Intermediate cooling and quenching for 10 minutes is a thermal shock), the prepared silicon nitride copper clad laminate is intact (the high and low temperature cycle thermal shock limit test is not carried out), and there are no visible defects such as microcracks, warpage, and cracking ( Figure 12).
  • Example 12 The specific parameters such as material composition, tape casting, copper foil thickness, debonding and vacuum welding process are shown in Table 3, and the process process refers to Example 12, the difference is: the silicon nitride ceramic material prepared in Example 8 is selected as silicon nitride Ceramic substrate, its thickness is 0.5mm. The characteristics of the prepared silicon nitride ceramic copper clad laminate are shown in Table 4.
  • solder composition The specific parameters such as solder composition, tape casting, copper foil thickness, debonding and vacuum welding process are shown in Table 3.
  • the process refers to Example 12.
  • the characteristics of the prepared silicon nitride ceramic copper clad laminate are shown in Table 4. Because the active metal Ti content in the solder composition is too low (comparative example 9) or too high (comparative example 10), the copper layer peel strength and thermal shock cycle life of the prepared ceramic copper clad laminates are significantly reduced (after 120 and 150 cycles, respectively). After thermal shock cycles, cracking defects occurred in the ceramic substrate and part of the soldered area of the soldered copper foil).
  • solder composition The specific parameters such as solder composition, tape casting, copper foil thickness, debonding and vacuum welding process are shown in Table 3.
  • the process refers to Example 12.
  • the characteristics of the prepared silicon nitride ceramic copper clad laminate are shown in Table 4. Because the thickness of the solder foil is too small (Comparative Example 11) or too large (Comparative Example 12), the peel strength of the copper layer of the prepared ceramic copper clad laminate is partially reduced (Comparative Example 11) or significantly reduced (Comparative Example 12), thermal shock The cycle life was significantly reduced (the ceramic substrate and part of the soldered copper foil had cracking defects after 120 and 100 thermal shock cycles, respectively).
  • the specific parameters such as solder composition, tape casting, copper foil thickness, debonding and vacuum welding process are shown in Table 3.
  • the process refers to Example 12.
  • the characteristics of the prepared silicon nitride ceramic copper clad laminate are shown in Table 4. Because the thickness of the welded copper foil is too large (2mm), although the peeling strength of the copper layer of the prepared ceramic copper clad laminate is high, the thermal stress generated during the thermal shock cycle is large, and the thermal shock life is significantly reduced (after 80 shocks). After cycling, a cracking defect developed between the ceramic substrate and the copper foil).
  • solder composition solder composition
  • tape casting copper foil thickness
  • debonding and vacuum welding process The specific parameters such as solder composition, tape casting, copper foil thickness, debonding and vacuum welding process are shown in Table 3.
  • the process refers to Example 12.
  • the characteristics of the prepared silicon nitride ceramic copper clad laminate are shown in Table 4. Due to the low degree of vacuum in the vacuum welding process, the bonding force between the two is low, and the copper layer peel strength and thermal shock cycle life of the prepared ceramic copper clad laminate are significantly reduced (after 130 impact cycles, the ceramic substrate and A cracking defect occurs between the copper foils).
  • solder composition The specific parameters such as solder composition, tape casting, copper foil thickness, debonding and vacuum welding process are shown in Table 3.
  • the process refers to Example 12.
  • the characteristics of the prepared silicon nitride ceramic copper clad laminate are shown in Table 4. Due to the high temperature of the vacuum welding process, which obviously exceeds the eutectic temperature of the solder, the solder overflows after being melted at a high temperature, and no effective welding is formed between the ceramic substrate and the copper foil, which directly cracks.
  • solder composition The specific parameters such as solder composition, tape casting, copper foil thickness, debonding and vacuum welding process are shown in Table 3.
  • the process refers to Example 12.
  • the characteristics of the prepared silicon nitride ceramic copper clad laminate are shown in Table 4. Because the temperature of the vacuum welding process is too low, the eutectic temperature of the solder is not fully reached, so that the active metal is not fully diffused and forms a good chemical bond, and the copper layer peel strength and thermal shock cycle life of the prepared ceramic copper clad laminate are significantly reduced.
  • the specific parameters such as solder composition, tape casting, copper foil thickness, debonding and vacuum welding process are shown in Table 3.
  • the process refers to Example 12.
  • the characteristics of the prepared silicon nitride ceramic copper clad laminate are shown in Table 4. Because the holding time at the temperature of the vacuum welding process is too long (Comparative Example 17) or too short (Comparative Example 18), the two do not reach the optimal combination state, and the copper layer peel strength and thermal shock cycle life of the prepared ceramic copper clad laminate somewhat reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种覆铜板的氮化硅陶瓷基片的制备方法,覆铜板的氮化陶硅瓷基片的结构包括氮化陶硅瓷基片、分布在氮化陶硅瓷基片上下两侧的铜板,以及分布在铜板和氮化陶硅瓷基片之间的焊接层;其中,氮化陶硅瓷基片的组分包括氮化硅相和晶界相,氮化硅相的含量≥95wt%;晶界相为至少含有Y、Mg、O三种元素的混合物;晶界相的含量≤5wt%,且晶界相中结晶相的含量≥40vol%;制备氮化硅陶瓷基片采用的烧结助剂为Y 2O 3与MgO,二者摩尔比为1.0~1.4:2.5~2.9,采用两步烧结工艺包括:在氮气气氛中,气氛压力为0.5~10MPa,先在1600~1800℃低温热处理后,再于1800~2000℃进行高温热处理;氮化硅陶瓷基片的厚度为0.2~2.0mm。

Description

一种覆铜板的氮化硅陶瓷基片的制备方法 技术领域
本发明涉及一种覆铜板的氮化硅陶瓷基片的制备方法,属于半导体材料与器件领域。
背景技术
近年来,半导体器件沿着大功率化、高频化、集成化的方向迅猛发展。半导体器件工作产生的热量是引起半导体器件失效的关键因素,而绝缘基板的导热性是影响整体半导体器件散热的关键。此外,如在电动汽车、高速铁路、轨道交通等领域,半导体器件使用过程中往往要面临颠簸、震动等复杂的力学环境,这对所用材料的可靠性提出了严苛的要求。
高导热氮化硅(Si 3N 4)陶瓷由于其优异的力学和热学性能,被认为是兼具高强度和高导热的最佳半导体绝缘基板材料,在大功率绝缘栅双极型晶体管(IGBT)的散热应用方面极具潜力。氮化硅晶体的理论热导率可达400W·m -1·K -1以上,具有成为高导热基板的潜力。优良的力学性能和良好的高导热潜质使氮化硅陶瓷有望弥补现有氧化铝、氮化铝等陶瓷基板材料的不足,在高端半导体器件、特别是大功率IGBT散热基板应用方面具有巨大潜力。然而,传统氮化硅陶瓷材料的热导率只有20~30W·m -1·K -1,根本无法满足大功率半导体器件基板散热的应用需求。
另一方面,氮化硅属于强共价键化合物,依靠固相扩散很难烧结致密,必须添加适量(添加量通常大于5wt%)的稀土氧化物和(或)金属氧化物作为烧结助剂(如Y 2O 3、La 2O 3、MgO、Al 2O 3、CaO等),但烧结助剂的添加会显著降低氮化硅陶瓷的热导率,低的烧结助剂含量有助于获得高的热导,然而低烧结助剂含量又带来氮化硅陶瓷烧结致密化的难题。
而且,伴随着功率器件(包括LED、LD、IGBT、CPV等)的发展,散热成为影响器件性能与可靠性的关键技术。对于电子器件而言,通常温度每升高10℃,器件有效寿命就降低30%~50%。因此,选用合适的封装材料与工艺、提高器件散热能力成为发展功率器件的技术瓶颈。
陶瓷基板又称陶瓷电路板,包括陶瓷基片和金属线路层。对于电子封装而言,封装基板起着承上启下、连接内外散热通道的关键作用,同时兼有电气互连和机械支撑等功能。氮化硅陶瓷具有热导率高、耐热性好、机械强度高、热膨胀系数低等优势,是功率半导体器件封装优选的基片材料。其中陶瓷覆铜板是大功率器件的重要组成部件,具有陶瓷的高导 热、高电绝缘、高机械强度、低膨胀等特性,又兼具无氧铜的高导电性和优异焊接性能,且能像高分子基板PCB线路板一样刻蚀出各种图形。
根据封装结构和应用要求,陶瓷基板可分为平面陶瓷基板和三维陶瓷基板两大类。根据制备原理与工艺不同,平面陶瓷基板可分为薄膜陶瓷基板、厚膜印刷陶瓷基板、直接键合铜陶瓷基板、活性金属钎焊陶瓷基板、直接电镀铜陶瓷基板和激光活化金属陶瓷基板等。其中,活性金属钎焊陶瓷基板(AMB):AMB陶瓷基板利用含少量活性金属元素的焊料实现铜箔与陶瓷基片之间的焊接,AMB基板依靠活性焊料与陶瓷界面之间发生化学反应实现键合,因此结合强度高,具有耐高低温冲击失效能力强、可靠性高等独特优势,已成为新一代半导体和新型大功率电力电子器件的首选封装材料。
陶瓷基片与铜箔的AMB焊接工艺是首先在陶瓷基片表面涂覆一层活性金属焊料层,然后在真空条件下加热使活性金属元素与陶瓷基片表面元素之间发生化学键合,从而实现二者的高强度连接。基片表面涂覆焊料层的方法主要有丝网印刷、镀覆法、溅射法、喷镀法等,不同工艺方法具有各自特点。
发明内容
针对上述问题,本发明的目的在于提供一种覆铜板的氮化陶硅瓷基片及其制备方法。
一方面,本发明提供了一种覆铜板的氮化硅陶瓷基片的制备方法,所述覆铜板的氮化硅陶瓷基片包括氮化硅陶瓷基片、分布在氮化硅陶瓷基片上下两侧的铜板,以及分布在铜板和氮化硅陶瓷基片之间的焊接层;所述氮化硅陶瓷基片的组分包括氮化硅相和晶界相;所述氮化硅相的含量≥95wt%;所述晶界相为至少含有Y、Mg、O三种元素的混合物,通过两步烧结工艺来调控晶界相的组分和含量使得所述晶界相的含量≤5wt%,且晶界相中结晶相的含量≥40vol%;制备氮化硅陶瓷基片所用烧结助剂为Y 2O 3与MgO,二者摩尔比为1.0~1.4:2.5~2.9,所述两步烧结工艺包括:在氮气气氛中,气氛压力为0.5~10MPa,先在1600~1800℃低温热处理后,再于1800~2000℃进行高温热处理;所述氮化硅陶瓷基片的厚度为0.2~2.0mm;所述焊接层的组分为AgCuTi,其中Ag:Cu:Ti的质量比为x:y:z,其中x=0.60~0.65,y=0.33~0.37,z=0.01~0.04,且x+y+z=1,焊接层的厚度为20~60微米;所述铜板的厚度为0.1~1.5mm;将铜板、形成焊接层的焊料箔片和氮化硅陶瓷基片按照覆铜板的氮化硅陶瓷基片的结构叠层,在保护气氛中脱粘后,再在860~920℃、保温5~20min的条件下真空焊接得到所述覆铜板的氮化硅陶瓷基片。
较佳的,所述氮化硅陶瓷材料中的杂质总量≤1.0wt%;所述杂质包括晶格氧、金属 杂质离子、杂质碳中的至少一种。
较佳的,所述铜板的厚度为0.2mm~1.0mm。
较佳的,所述银粉的平均粒径为5~20μm,含氧量不大于0.05%;所述铜粉的平均粒径为5~20μm,含氧量不大于0.05%;所述钛粉的平均粒径为1~5μm,含氧量不大于0.2%;所述保护气氛为氮气气氛。
较佳的,采用温度递增的流动热N 2气氛对流延膜素坯进行干燥,所述N 2气氛的温度范围为40~85℃,气氛压力为0.1~0.2MPa;优选地,氮气气氛的温度阶段为2段,前段气氛温度范围为40~65℃,后段气氛温度范围为60~85℃,且前段气氛温度<后段气氛温度。
较佳的,所述脱粘的参数包括:N 2气氛的压力为0.1~0.2MPa;处理温度为500~800℃;处理时间为1~3小时。
较佳的,所述氮化陶硅瓷基片的制备方法包括:(1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y 2O 3粉体和MgO粉体作为烧结助剂,再加入有机溶剂和粘结剂,在保护气氛混合,得到混合浆料;(2)将所得混合浆料在保护气氛中经过流延成型,得到素坯;(3)将所得素坯置于还原性气氛中、在500~800℃下进行预处理,得到坯体;(4)将所得坯体置于氮气气氛中,先在1600~1800℃下低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化陶硅瓷基片;优选地,所述保护气氛为惰性气氛或氮气气氛,优选为氮气气氛;所述还原性气氛为氢气含量不高于5vol%的氢气/氮气混合气氛。
较佳的,所述的氮化陶硅瓷基片的制备方法包括:(1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y 2O 3粉体和MgO粉体作为烧结助剂,在保护气氛中,经混合和成型,得到素坯;(2)将所得素坯置于还原性气氛中、在500~800℃下进行预处理,得到坯体;(3)将所得坯体置于氮气气氛中,先在1600~1800℃下低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化陶硅瓷基片;优选地,所述保护气氛为惰性气氛或氮气气氛,优选为氮气气氛;所述还原性气氛为氢气含量不高于5vol%的氢气/氮气混合气氛。
有益效果:
本发明通过制备工艺过程中氧含量的控制(包括混料和素坯成型过程中避免原料氧化、还原性气氛预处理)、金属杂质离子含量控制、碳含量的控制,减少晶格空位、位错等结构缺陷的量,达到提高氮化硅陶瓷材料热导率和击穿场强的目的。同时,通过两步烧结工艺来调控晶界相的组分和含量,低温烧结阶段促使烧结助剂生成液相,促进致密化;高温阶段使残余的MgO烧结助剂挥发,同时进一步降低晶界相中玻璃相含量,从而达到减少晶界相含量、 增加结晶化程度、进而提高热导率的目的。同时,材料的高击穿场强有利于在大功率器件应用、并有利于减小基片材料的厚度和降低热阻,使采用该材料制成的覆铜板呈现抗热冲击、高可靠、使用寿命长的典型特点;本发明在活性金属粉体均匀混合的基础上,首先采用流延成型方法实现焊料箔片素坯的成型,保证焊料中各组分的均匀分布和厚度一致;通过在焊料的混料、成型过程中采用惰性气氛保护,避免金属粉体的氧化,进而保证氮化硅陶瓷覆铜板的高强度焊接;同时,采用成型焊料箔片素坯的方式实现焊料在陶瓷基片表面的均匀涂覆,避免传统丝网印刷工艺易导致的焊料不均匀现象,实现氮化硅陶瓷覆铜板的低应力焊接,具有陶瓷基片与铜片之间金属焊料层分布均匀、避免漏焊、提高可靠性的特点;此外,基于传统的氮化铝、氧化铝、氧化锆增韧氧化铝(ZTA)陶瓷基片制备的陶瓷覆铜板仅能焊接厚度较薄的铜箔(一般不大于0.8mm),若铜箔厚度过大,则可靠性急剧降低;而本发明方法适用于高热导陶瓷基片与大厚度铜箔(0.1~1.5mm)的焊接,即使对于厚度在1mm以上的铜箔,仍然可以制备出高强度、低应力、高可靠的氮化硅陶瓷覆铜板;而厚度较大的铜箔则能够承受更大的电流密度,适用于更大功率的半导体器件。
附图说明
图1为实施例1制备氮化硅陶瓷材料的XRD图谱。
图2为实施例1制备氮化硅陶瓷材料的典型SEM微观结构。
图3为实施例1制备氮化硅陶瓷材料的典型TEM微观结构。
图4为实施例6氮化处理后所制备材料的XRD图谱。
图5为实施例6高温烧结后所制备材料的XRD图谱。
图6为实施例6制备氮化硅陶瓷材料的典型SEM微观结构。
图7为本发明制备的活性金属焊料箔片的素坯。
图8为覆铜板的氮化硅陶瓷基片的结构示意图。
图9为实施例12制备的覆铜板的氮化硅陶瓷基片。
图10为覆铜板的氮化硅陶瓷基片的焊接区微观结构。
图11为覆铜板的氮化硅陶瓷基片的焊接区微观结构(a)及其成分分析(b)。
图12为覆铜板的氮化硅陶瓷基片经高低温循环热冲击后的超声扫描图。
图13中表1为氮化硅陶瓷材料的组成及其制备工艺。
图14中表2为氮化硅陶瓷材料的相组成及性能参数。
图15中表3为本发明制备的焊料箔片的组分。
图16中表4为本发明中覆铜板的氮化硅陶瓷基片的制备参数及性能参数。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,氮化硅陶瓷材料中含有不低于95%的氮化硅相、和结晶相含量不低于40%的晶界相。而且,所得氮化硅陶瓷材料中晶格氧、金属杂质离子、碳杂质等含量低,总量在1.0wt%以下。因此,本发明中氮化硅陶瓷材料具有高的热导率和击穿场强。
在本发明一实施方式中,通过采用洁净化、保护气氛下的制备工艺,避免空气或热空气接触材料,控制制备陶瓷中的杂质含量和氧含量,从而在不降低材料弯曲强度的前提下,达到提高材料热导率和击穿场强的目的。以下示例性地说明本发明提供的氮化硅陶瓷材料的制备方法。
该氮化硅陶瓷材料的制备方法具体包含以下步骤:在保护气氛下的混料和素坯成型、还原性气氛下的预处理、氮气气氛下的烧结并控制烧结制度。
保护气氛下的混料。将原始粉体、烧结助剂Y 2O 3粉体与MgO粉体在密闭容器中加入无水乙醇作为溶剂,在保护气氛保护下混合均匀,再经干燥,得到混合粉体。或者,将原始粉体、烧结助剂Y 2O 3粉体与MgO粉体置于密闭容器中,再加入无水乙醇作为有机溶剂、PVB作为粘结剂,然后在保护气氛保护下混合均匀,得到混合浆料。其中,粘结剂可为原始粉体+烧结助剂总质量的5~9wt%。所得混合浆料的固含量为50~70wt%。
在可选的实施方式中,混料所用保护气氛为惰性气氛或氮气气氛,优选为氮气气氛。优选,采用具有聚氨酯或尼龙内衬的密闭容器进行混料,并在容器中通入氮气,避免空气的进入。
在可选的实施方式中,原始粉体为氮化硅粉体、硅粉、或氮化硅粉与硅粉混合粉体。其中,氮化硅与硅混合粉体中硅粉的质量百分比不低于75%,即由Si粉氮化后所生成氮化硅占全部氮化硅相质量百分比80%以上。
在可选的实施方式中,烧结助剂(Y 2O 3粉体与MgO粉体)的总质量不超过原始粉体+烧结助剂总质量的5wt%。若烧结助剂过多,则因所制备氮化硅陶瓷材料中晶界相含量增加而降低材料的热导率和击穿场强。若烧结助剂过少,则不能充分促进致密化,导致所制备氮化硅陶瓷材料致密度偏低,气孔增加,从而降低材料的热导率和击穿场强。进一步优选,烧结助剂中Y 2O 3与MgO的摩尔比可为1.0~1.4:2.5~2.9。若MgO过量,则由烧结助剂形成的液相共熔点温度相对偏低,MgO在高温下挥发较严重,致使所制备氮化硅陶瓷材料的热导率和击穿场强偏低。若MgO少量,因烧结助剂中MgO比例偏低,由烧结助剂形成的液 相共熔点温度相对偏高,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
保护气氛下的素坯成型。在保护气氛中,将混合粉体直接压制成型,得到素坯。其中压制成型的方式包括但不仅限于干压成型、等静压成型等。或者,在保护气氛中,将混合浆料直接流延成型,得到素坯(片状素坯)。优选,在流延成型之前,将混合浆料进行真空除气处理(真空度一般为-0.1~-10kPa,时间为4~24小时)。更优选,通过控制流延成型的刮刀高度来调节片状素坯的厚度。在可选的实施方式中,素坯成型所用保护气氛可为惰性气氛或氮气气氛,优选为氮气气氛。一般是在成型过程中直接通入氮气保护。
还原性气氛下成型素坯的预处理。在还原性气氛、一定温度下进行成型素坯的预处理,去除原始粉体中的氧,脱除成型素坯中的有机物。在可选的实施方式中,当原始粉体为硅粉、或氮化硅与硅的混合粉体时,成型素坯先在还原性气氛中、一定温度下预处理之后,再在还原性气氛中进一步氮化处理。
在可选的实施方式中,所述预处理可在氢气含量不高于5%的还原性氮气气氛中进行,还原性气氛的气体压力为0.1~0.2MPa。预处理温度可为500~800℃,保温时间可为1~3小时。
在可选的实施方式中,所述氮化处理可在氢气含量不高于5%的氮气气氛中进行,气氛压力为0.1~0.2MPa。氮化处理温度为1350~1450℃,保温时间为3~6小时。
坯体的烧结处理,包括低温热处理和高温热处理。具体来说,在高氮气压力下、采用分步烧结工艺进行烧结致密化,所述分步烧结工艺包括抑制烧结助剂中低熔点物质挥发的低温热处理,以及进一步的高温烧结使其致密。在本发明中,烧结处理应采用高氮气压力条件下的气压烧结,气氛压力可为0.5~10MPa。可将坯体放在BN坩埚中进行烧结处理。其中,低温热处理(低温烧结)的温度可为1600~1800℃,保温时间可为1.5~2.5小时。高温热处理(高温烧结)的温度可为1800~2000℃,保温时间可为4~12小时。
在本发明中,所制备的氮化硅陶瓷中晶格氧、金属杂质离子、杂质碳等的含量低,具有高热导、高击穿场强的特点,其热导率在90W·m -1·K -1以上,同时击穿场强达30KV/mm以上。
在本公开中,采用活性金属钎焊工艺制备氮化硅陶瓷覆铜板,包含以下步骤:焊料的混合、焊料箔片素坯的成型、焊料箔片素坯的裁剪与叠层、叠层片的脱粘和氮化硅覆铜板的真空焊接。以下示例性地说明本发明提供的覆铜板的氮化硅陶瓷基片的制备方法。
焊料的混合。在密闭容器和N 2气氛保护下,将银粉、铜粉、钛粉、有机溶剂和粘结 剂均匀混合,得到混合浆料。具体来说,采用密闭容器通过湿法球磨进行混料,并在容器中冲入0.1MPa N 2气氛,避免空气的进入。其中,银粉的质量百分比可为60~65%,平均粒径可为5~20μm,含氧量不大于0.05%;铜粉的质量百分比可为33~37%,平均粒径可为5~20μm,含氧量不大于0.05%;钛粉的质量百分比可为1~4%,平均粒径可为1~5μm,含氧量不大于0.2%。在可选的实施方式中,粘结剂可为聚乙烯醇缩丁醛(PVB),粘结剂的加入量可为银粉、铜粉和钛粉总质量的5~15wt%。优选地,该浆料中还包括其他助剂,例如消泡剂、分散剂、增塑剂中的至少一种。消泡剂可为油酸,加入量可为银粉、铜粉和钛粉总质量的0.2~1.0wt%。分散剂可为聚乙二醇(PEG)、磷酸三乙酯(TEP)中的至少一种,加入量可为银粉、铜粉和钛粉总质量的0.2~1.0wt%。增塑剂可为邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、聚乙二醇(PEG)中的至少一种,加入量可为银粉、铜粉和钛粉总质量的2~6wt%。该焊料的混合浆料的固含量为55~75wt%。
焊料箔片素坯的成型。将混合浆料在N 2气氛下流延成型和热N 2气氛下干燥,实现厚度均匀焊料箔片素坯的制备。所述的成型焊料箔片素坯的厚度为20~60μm,厚度偏差不大于±10μm。
在可选的实施方式中,采用温度递增的流动热N 2气氛对流延膜素坯进行干燥,热N 2气氛的温度范围为40~85℃,气氛压力为0.1~0.2MPa。所述温度递增的流动热N 2气氛,其中,前段气氛温度范围为40~65℃,后段气氛温度范围为60~85℃。
焊料箔片素坯的裁剪与叠层。将干燥后的焊料箔片素坯裁剪成与氮化硅陶瓷基片尺寸相匹配的箔片,并进行氮化硅陶瓷基片、焊料素坯箔片和铜箔的叠层。其中,焊料素坯的叠层是在氮化硅基片的上下面均放置一片焊料箔片素坯,再在焊料箔片素坯的外侧分别放置一层尺寸相匹配的铜箔。
叠层片的脱粘。在微正压、一定温度条件下对叠层片进行热处理。其中,所述的叠层片的脱粘,通过通入N 2气氛产生微正压,气氛压力为0.1~0.2MPa,处理温度为500~800℃,处理时间为1~3h。
氮化硅覆铜板的真空焊接。在真空、一定温度条件下对叠层片进行真空焊接。其中,真空焊接的参数包括:真空度为10 -2~10 -4Pa;焊接温度为860~920℃,保温时间为5~20min。
在本发明中,还可将氮化硅陶瓷材料制成覆铜板后可用于大功率绝缘栅双极型晶体管(IGBT)模块的散热基板。采用所得氮化硅陶瓷制成的覆铜板后具有抗热冲击、高可靠、使用寿命长的特点。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
首先,将95g Si 3N 4粉体、5g烧结助剂粉体(Y 2O 3:MgO=1.2:2.5,摩尔比)、1g蓖麻油、1g PEG、70g无水乙醇和200g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N 2保护气氛,球磨混合6h后得到浆料;在上述浆料中进一步添加5g PVB和3g DBP,继续在N 2气氛保护下球磨6h后得到均匀浆料;其次,对浆料真空脱气处理6h,在N 2气氛保护下进行流延成型基片素坯,基片素坯厚度d±0.05mm(d=0.2~2.0);再次,将成型基片素坯裁剪成所需的形状放入BN坩埚中,并将其装入碳管炉中;然后,按照以下工艺顺序进行热处理:(1)在0.15MPa N 2(含有5%H 2)气氛保护下、以5℃/min的速率升温至600℃后脱粘预处理2h;(2)在2MPa N 2气氛保护下、以5℃/min的速率升温至1650℃后低温热处理2h;(3)在8MPa N 2气氛保护下、以3℃/min的速率升温至1950℃后高温烧结8h;(4)随炉冷却至室温。
由本实施例1制得氮化硅陶瓷基板材料的弯曲强度为810MPa,热导率为106W·m - 1·K -1,击穿场强为45KV/mm。该材料的XRD图谱如图1所示,仅存在高强度的β-Si 3N 4衍射峰、且没有明显的馒头峰,这表明所制备材料中的β-Si 3N 4相的含量大于95wt%、晶界相的含量小于5%。材料的典型SEM微观结构如图2所示,材料具有高致密度,微观结构均匀,Si 3N 4晶粒(灰黑色区域)呈现典型的双峰分布,由细小的等轴状Si 3N 4晶粒和大的长柱状Si 3N 4晶粒相互镶嵌组成;晶界相(灰白色区域)含量低,均匀弥散分布在Si 3N 4基质中;进一步通过至少10张SEM图片统计分析,并结合原料中烧结助剂的总引入量≤5wt%,可以得出本实施例所制备氮化硅陶瓷材料中晶界相的含量小于5%。材料的典型TEM微观结构如图3所示(图3中B为图3中A中虚线方框区域的局部放大图),Si 3N 4晶粒(灰黑色区域)之间弥散分布着晶界相(灰白色区域),而晶界相由玻璃相(浅色区域)和结晶相(深色区域)组成;通过至少10张TEM图片统计分析,可以得出本实施例所制备氮化硅陶瓷材料的晶界相中结晶相的含量约为54vol%。
实施例2-5
原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数按照表1所示,工艺过程参 照实施例1,所制备材料组成和性能如表2所示。
实施例6
首先,将3g Si 3N 4粉体、55g Si粉体、4.5g烧结助剂粉体(Y 2O 3:MgO=1.4:2.6,摩尔比)、0.7g蓖麻油、0.6g PEG、50g无水乙醇和130g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N 2保护气氛,球磨混合8h后得到浆料;在上述浆料中进一步添加4g PVB和2.5g DBP,继续在N 2气氛保护下球磨6h后得到均匀浆料;其次,对浆料真空脱气处理6h,在N 2气氛保护下进行流延成型基片素坯;再次,将成型基片素坯裁剪成所需的形状放入BN坩埚中,并将其装入碳管炉中;然后,按照以下工艺顺序进行热处理:(1)在0.2MPa N 2(含有5%H 2)气氛保护下、以4℃/min的速率升温至600℃后脱粘预处理3h;(2)在0.2MPa N 2(含有5%H 2)气氛保护下、以5℃/min的速率升温至1450℃后氮化处理6h;(3)在3MPa N 2气氛保护下、以6℃/min的速率升温至1700℃后低温热处理2h;(4)在8MPa N 2气氛保护下、以5℃/min的速率升温至1950℃后高温烧结10h;(5)随炉冷却至室温。
由本实施例6制得氮化硅陶瓷基板材料的弯曲强度为710MPa,热导率为110W·m - 1·K -1,击穿场强为48KV/mm。该材料经氮化处理工艺(上述工艺过程(2))后的XRD图谱如图4所示,主晶相均为α-Si 3N 4,同时含有少量的β-Si 3N 4物相(5~10%)。该材料经高温烧结工艺(上述工艺过程(4))后的XRD图谱如图5所示,仅存在β-Si 3N 4衍射峰、且没有明显的馒头峰,这表明所制备材料中β-Si 3N 4相的含量大于95wt%、晶界相的含量小于5wt%;进一步采用上述实施例1相同的方法,测出所制备材料晶界相中的结晶相含量约为60vol%。材料断口的典型SEM微观结构如图6所示,材料具有高致密度,微观结构均匀,由细小的等轴状Si 3N 4晶粒和大的长柱状Si 3N 4晶粒相互镶嵌组成。
实施例7-10
原材料配比、烧结助剂组成、预处理工艺、氮化处理工艺、烧结工艺等具体参数按照表1所示,工艺过程参照实施例6,所制备材料组成和性能如表2所示。
实施例11
本实施例11中氮化硅陶瓷材料的制备过程参照实施例1,主要区别在于:将95g Si 3N 4粉体、5g烧结助剂粉体(Y 2O 3:MgO=1.2:2.5,摩尔比)、1g蓖麻油、1g PEG、70g无水乙醇和200g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N 2保护气氛,球磨混合6h后得到浆料。然后在氮气气氛中进行干燥、过筛、干压成型(20MPa)和冷等静压成型(200MPa),得到素坯。
对比例1
原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),工艺过程参照实施例1,区别在于:球磨混料和素坯成型等工艺过程未采用氮气气氛保护措施。所制备材料组成和性能如表1所示。因在材料制备工艺过程中未采用本发明所述的氮气气氛保护措施,原料中的氮化硅粉体发生不同程度的氧化,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低,但弯曲强度基本保持不变。
对比例2
烧结助剂组成比例、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂总量增加。所制备材料组成和性能如表2所示。因烧结助剂含量偏高,由烧结助剂形成的具有较低热导率特性的晶界相含量较高,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低,但弯曲强度基本保持不变。
对比例3
原材料配比、烧结助剂种类和总量、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂配比不同(Y 2O 3:MgO=1.2:4.0)。所制备材料组成和性能如表2所示。因烧结助剂中MgO比例偏高,由烧结助剂形成的液相共熔点温度相对偏低,高温挥发较严重,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
对比例4
原材料配比、烧结助剂种类和总量、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂配比不同(Y 2O 3:MgO=1.3:2.0)。所制备材料组成和性能如表2所示。因烧结助剂中MgO比例偏低,由烧结助剂形成的液相共熔点温度相对偏高,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
对比例5
原材料配比、烧结助剂组成、预处理工艺等具体参数与实施例1相同(见表1),工艺过程与实施例1近似,区别在于:烧结工艺为一步烧结。所制备材料组成和性能如表2所示。因不包含低温热处理过程,在未充分致密化情况下就开始发生较严重的MgO挥发,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。
对比例6
原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),工艺过程同实施例1,区别在于:低温热处理温度偏低。所制备材料组成和性能如表2所示。因低温热处理温度偏低,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热 导率和击穿场强均明显降低。
对比例7-8
原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例8相同(见表1),工艺过程同实施例8,区别在于:氮化处理温度偏低(对比例7)或偏高(对比例8)。所制备材料组成和性能如表2所示。因氮化处理温度偏低(对比例7)或偏高(对比例8),材料中的Si粉氮化不充分(对比例7)或发生部分硅化现象(对比例8),致使所制备氮化硅陶瓷材料的力学、热学和电学性能均明显降低。
实施例12
焊料箔片素坯的制备:(1)将Ag粉(平均粒径8μm,含氧量0.01%)、Cu粉(平均粒径6μm,含氧量0.01%)和Ti粉(平均粒径2μm,含氧量0.1%)按照质量比63:35:2称量后置入内衬聚氨酯的球磨罐中,同时加入0.2%油酸、0.5%PEG、2%PVA、1%DEP、200%氮化硅研磨球和110%无水乙醇,抽真空后通入1atm N 2气氛保护,在100rpm下球磨混料8h后得到分散均匀、无团聚的浆料;(2)对制备的浆料进行抽真空除气泡处理8h,真空度为-0.5kPa;(3)在N 2保护气氛下对上述除气泡后的浆料进行流延成型,通过调节刮刀高度控制流延膜素坯厚度在50±10μm;采用流动的温度递增的热N 2气氛对流延膜素坯进行干燥,N 2气氛压力为0.12MPa,前后两段N 2气氛的温度分别为45℃和65℃;(4)将干燥后的流延膜素坯裁剪成与实施例1制备的氮化硅陶瓷基片相匹配的尺寸,实现焊料箔片素坯的制备。制备的活性金属焊料箔片素坯见图7,箔片厚度50±5μm,表面均匀、光滑、平整,具有良好的柔韧性,可卷曲,可裁剪。
AMB真空钎焊:(1)将所制备的氮化硅陶瓷基片、焊料箔片素坯和厚度为0.3mm的无氧铜箔组装而成图8所示的叠层片组件;(2)将叠层片组件在0.15MPa的N 2气氛下650℃保温2h脱粘;(3)将脱粘后的叠层片组件放入真空钎焊炉中,在10 -3Pa真空度下、900℃、保温10min进行焊接;(4)随炉冷却至室温。图9给出了所制备的高强度、低应力、高可靠氮化硅陶瓷覆铜板,其中结合强度(铜箔剥离强度)为15N/mm(参照GB/T4722-2017《印制电路用刚性覆铜箔层压板试验方法》检测),覆铜板的平面度为0.2mm;图10和图11分别给出了氮化硅覆铜板焊接区微观结构及其成分分析照片,可以看出:在氮化硅陶瓷基片和铜箔层之间有一个宽度约50μm的焊接区(宽度与焊料箔片宽度相一致),焊接区主要由Cu(浅灰色区域)和Ag(灰白色区域)组成,其中Cu形成基本连续相,Ag形成弥散分布的Ag颗粒(灰白色小颗粒)和部分区域Ag连续相(灰白色网状结构);在氮化硅陶瓷和焊接区之间有一个宽度约100nm的元素扩散反应过渡区,形成了由Ti和Si元素反 应形成的新物相(如Ti 5Si 3),从而保证了焊接强度;经过200次高低温循环热冲击后(在300℃保温10分钟后立即放入室温水浴中冷淬10分钟为一次热冲击),所制备氮化硅覆铜板完好无损(未进行高低温循环热冲击极限实验),没有产生微裂纹、翘曲、开裂等肉眼可见缺陷(图12)。
实施例13-16
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。
实施例17-18
料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,区别在于:选用实施例8制备氮化硅陶瓷材料作为氮化硅陶瓷基片,其厚度为0.5mm。所制备氮化硅陶瓷覆铜板特性如表4。
对比例9-10
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因焊料组成中活性金属Ti含量过低(对比例9)或过高(对比例10),所制备陶瓷覆铜板的铜层剥离强度和热冲击循环寿命均明显降低(分别经120次和150次热冲击循环后,陶瓷基片和焊接铜箔的部分焊接区域就产生了开裂缺陷)。
对比例11-12
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因焊料箔片厚度过小(对比例11)或过大(对比例12),所制备陶瓷覆铜板的铜层剥离强度有部分降低(对比例11)或明显降低(对比例12),热冲击循环寿命均明显降低(分别经120次和100次热冲击循环后,陶瓷基片和焊接铜箔的部分焊接区域就产生了开裂缺陷)。
对比例13
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因所焊接的铜箔厚度太大(2mm),虽然所制备陶瓷覆铜板的铜层剥离强度较高,但在热冲击循环过程中产生的热应力大,热冲击寿命明显降低(经80次冲击循环后,陶瓷基片和铜箔之间就产生了开裂缺陷)。
对比例14
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因真空焊接过程中的真空度偏低,导致二者之间结合力较低,所制备陶瓷覆铜板的铜层剥离强度和热冲击循环寿命明显降低(经130次冲击循环后,陶瓷基片和铜箔之间就产生了开裂缺陷)。
对比例15
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因真空焊接工艺温度过高,明显超过焊料的共熔点温度,致使焊料高温熔化后溢流,陶瓷基片和铜箔之间未形成有效焊接,直接开裂。
对比例16
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因真空焊接工艺温度过低,未充分达到焊料的共熔点温度,致使活性金属未充分扩散并形成良好化学结合,所制备陶瓷覆铜板的铜层剥离强度和热冲击循环寿命明显降低。
对比例17-18
焊料组成、流延成型、铜箔厚度、脱粘和真空焊接工艺等具体参数按照表3所示,工艺过程参照实施例12,所制备氮化硅陶瓷覆铜板特性如表4所示。因真空焊接工艺温度下的保温时间过长(对比例17)或过短(对比例18),二者未达到最佳结合状态,所制备陶瓷覆铜板的铜层剥离强度和热冲击循环寿命均有所降低。

Claims (12)

  1. 一种覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述覆铜板的氮化硅陶瓷基片包括氮化硅陶瓷基片、分布在氮化硅陶瓷基片上下两侧的铜板,以及分布在铜板和氮化硅陶瓷基片之间的焊接层;所述氮化硅陶瓷基片的组分包括氮化硅相和晶界相;所述氮化硅相的含量≥95wt%;所述晶界相为至少含有Y、Mg、O三种元素的混合物,通过两步烧结工艺来调控晶界相的组分和含量使得所述晶界相的含量≤5wt%,且晶界相中结晶相的含量≥40vol%;制备氮化硅陶瓷基片所用烧结助剂为Y 2O 3与MgO,二者摩尔比为1.0~1.4:2.5~2.9,所述两步烧结工艺包括:在氮气气氛中,气氛压力为0.5~10MPa,先在1600~1800℃低温热处理后,再于1800~2000℃进行高温热处理;所述氮化硅陶瓷基片的厚度为0.2~2.0mm;所述焊接层的组分为AgCuTi,其中Ag:Cu:Ti的质量比为x:y:z,其中x=0.60~0.65,y=0.33~0.37,z=0.01~0.04,且x+y+z=1,焊接层的厚度为20~60微米;所述铜板的厚度为0.1~1.5mm;将铜板、形成焊接层的焊料箔片和氮化硅陶瓷基片按照覆铜板的氮化硅陶瓷基片的结构叠层,在保护气氛中脱粘后,再在860~920℃、保温5~20min的条件下真空焊接得到所述覆铜板的氮化硅陶瓷基片。
  2. 根据权利要求1所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮化硅陶瓷基片中的杂质总量≤1.0wt%;所述杂质包括晶格氧、金属杂质离子、杂质碳中的至少一种。
  3. 根据权利要求1所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述铜板的厚度为0.2mm~1.0mm。
  4. 根据权利要求1所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述脱粘的参数包括:N 2气氛的压力为0.1~0.2MPa;处理温度为500~800℃;处理时间为1~3小时。
  5. 根据权利要求1所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述焊料箔片的制备过程包括:
    (1)将银粉、铜粉、钛粉、有机溶剂和粘结剂在保护气氛中混合,得到混合浆料;
    (2)将所得浆料在保护气氛中进行流延成型和干燥,得到焊料箔片。
  6. 根据权利要求5所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述银粉的平均粒径为5~20μm,含氧量不大于0.05%;所述铜粉的平均粒径为5~20μm,含氧量不大于0.05%;所述钛粉的平均粒径为1~5μm,含氧量不大于0.2%;所述保护气氛为氮气气氛。
  7. 根据权利要求5所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,采用温度递 增的流动热N 2气氛对流延膜素坯进行干燥,所述N 2气氛的温度范围为40~85℃,气氛压力为0.1~0.2MPa。
  8. 根据权利要求5所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮气气氛的温度阶段为2段,前段气氛温度范围为40~65℃,后段气氛温度范围为60~85℃,且前段气氛温度<后段气氛温度。
  9. 根据权利要求1-8中任一项所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮化硅陶瓷基片的制备方法包括:
    (1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y 2O 3粉体和MgO粉体作为烧结助剂,再加入有机溶剂和粘结剂,在保护气氛混合,得到混合浆料;
    (2)将所得混合浆料在保护气氛中经过流延成型,得到素坯;
    (3)将所得素坯置于还原性气氛中、在500~800℃进行预处理,得到坯体;
    (4)将所得坯体置于氮气气氛中,气氛压力为0.5~10MPa,先在1600~1800℃低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化硅陶瓷基片。
  10. 根据权利要求9所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮化硅陶瓷基片的制备方法中所用的保护气氛为惰性气氛或氮气气氛、所用的还原性气氛为氢气含量不高于5vol%的氢气/氮气混合气氛。
  11. 根据权利要求1-8中任一项所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述的氮化硅陶瓷基片的制备方法包括:
    (1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y 2O 3粉体和MgO粉体作为烧结助剂,在保护气氛中,经混合和成型,得到素坯;
    (2)将所得素坯置于还原性气氛中、在500~800℃进行预处理,得到坯体;
    (3)将所得坯体置于氮气气氛中,气氛压力为0.5~10MPa,先在1600~1800℃低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化硅陶瓷基片。
  12. 根据权利要求11所述的覆铜板的氮化硅陶瓷基片的制备方法,其特征在于,所述氮化硅陶瓷基片的制备方法中所用的保护气氛为惰性气氛或氮气气氛、所用的还原性气氛为氢气含量不高于5vol%的氢气/氮气混合气氛。
PCT/CN2022/072347 2021-01-20 2022-01-17 一种覆铜板的氮化硅陶瓷基片的制备方法 WO2022156634A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023543222A JP2024506483A (ja) 2021-01-20 2022-01-17 銅板付きの窒化ケイ素セラミック基板の作製方法
EP22742113.8A EP4282848A1 (en) 2021-01-20 2022-01-17 Preparation method for copper plate-covered silicon nitride ceramic substrate
US18/261,078 US20240067577A1 (en) 2021-01-20 2022-01-17 Preparation method for copper plate-covered silicon nitride ceramic substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110075100.0 2021-01-20
CN202110075100.0A CN112811922B (zh) 2021-01-20 2021-01-20 一种覆铜板的氮化硅陶瓷基片及其制备方法

Publications (1)

Publication Number Publication Date
WO2022156634A1 true WO2022156634A1 (zh) 2022-07-28

Family

ID=75858679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072347 WO2022156634A1 (zh) 2021-01-20 2022-01-17 一种覆铜板的氮化硅陶瓷基片的制备方法

Country Status (5)

Country Link
US (1) US20240067577A1 (zh)
EP (1) EP4282848A1 (zh)
JP (1) JP2024506483A (zh)
CN (1) CN112811922B (zh)
WO (1) WO2022156634A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112830788B (zh) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 一种氮化硅陶瓷材料及其制备方法
CN112811922B (zh) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 一种覆铜板的氮化硅陶瓷基片及其制备方法
CN114478043B (zh) * 2022-01-12 2023-05-09 中国科学院上海硅酸盐研究所 一种基于液相烧结的碳化硅陶瓷的连接方法
CN114394838B (zh) * 2022-02-09 2023-02-14 江苏耀鸿电子有限公司 一种高击穿强度的高频覆铜基板及其制备方法
CN116283336A (zh) * 2023-03-24 2023-06-23 中国科学院上海硅酸盐研究所 一种锆钛酸铅陶瓷与金属的连接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293641A (ja) * 2001-03-29 2002-10-09 Hitachi Metals Ltd 窒化ケイ素質焼結体
CN1597614A (zh) * 2004-05-17 2005-03-23 清华大学 高热导率、高强度氮化硅陶瓷制造方法
CN104409425A (zh) * 2014-11-13 2015-03-11 河北中瓷电子科技有限公司 高导热氮化硅陶瓷覆铜板及其制备方法
EP3156366A1 (en) * 2014-06-16 2017-04-19 UBE Industries, Ltd. Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
CN108383532A (zh) * 2018-05-28 2018-08-10 江苏东浦精细陶瓷科技股份有限公司 一种致密化氮化硅陶瓷材料及其制备方法
CN108585881A (zh) * 2018-06-14 2018-09-28 哈尔滨工业大学 一种高热导率氮化硅陶瓷及其制备方法
CN112811922A (zh) * 2021-01-20 2021-05-18 中国科学院上海硅酸盐研究所 一种覆铜板的氮化硅陶瓷基片及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400175B (zh) * 2018-11-15 2020-07-31 中国科学院上海硅酸盐研究所 一种高导热氮化硅陶瓷基片材料的制备方法
CN111253162B (zh) * 2019-02-22 2022-04-05 浙江多面体新材料有限公司 一种制备高强高韧高热导率氮化硅陶瓷的方法
CN111403347B (zh) * 2020-03-03 2022-02-25 江苏富乐华半导体科技股份有限公司 一种高可靠性氮化硅覆铜陶瓷基板的铜瓷界面结构及其制备方法
CN112159237B (zh) * 2020-09-28 2021-10-01 中国科学院上海硅酸盐研究所 一种高导热氮化硅陶瓷材料及其制备方法
CN112142476B (zh) * 2020-09-28 2021-10-01 中国科学院上海硅酸盐研究所 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293641A (ja) * 2001-03-29 2002-10-09 Hitachi Metals Ltd 窒化ケイ素質焼結体
CN1597614A (zh) * 2004-05-17 2005-03-23 清华大学 高热导率、高强度氮化硅陶瓷制造方法
EP3156366A1 (en) * 2014-06-16 2017-04-19 UBE Industries, Ltd. Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
CN104409425A (zh) * 2014-11-13 2015-03-11 河北中瓷电子科技有限公司 高导热氮化硅陶瓷覆铜板及其制备方法
CN108383532A (zh) * 2018-05-28 2018-08-10 江苏东浦精细陶瓷科技股份有限公司 一种致密化氮化硅陶瓷材料及其制备方法
CN108585881A (zh) * 2018-06-14 2018-09-28 哈尔滨工业大学 一种高热导率氮化硅陶瓷及其制备方法
CN112811922A (zh) * 2021-01-20 2021-05-18 中国科学院上海硅酸盐研究所 一种覆铜板的氮化硅陶瓷基片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUAN, YUSEN. ET AL.: "Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 40, no. 2, 5 October 2019 (2019-10-05), XP085886445, ISSN: 0955-2219, DOI: 10.1016/j.jeurceramsoc.2019.10.003 *

Also Published As

Publication number Publication date
CN112811922B (zh) 2021-11-02
US20240067577A1 (en) 2024-02-29
JP2024506483A (ja) 2024-02-14
CN112811922A (zh) 2021-05-18
EP4282848A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2022156634A1 (zh) 一种覆铜板的氮化硅陶瓷基片的制备方法
JP7219810B2 (ja) 窒化珪素基板、窒化珪素-金属複合体、窒化珪素回路基板、及び、半導体パッケージ
US5998000A (en) Silicon nitride circuit board
JP5673106B2 (ja) 窒化珪素基板の製造方法、窒化珪素基板、窒化珪素回路基板および半導体モジュール
WO2022156635A1 (zh) 一种高性能氮化硅陶瓷基片的批量化烧结方法
JP3115238B2 (ja) 窒化けい素回路基板
US11964919B2 (en) Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength
WO2022156637A1 (zh) 一种氮化硅陶瓷材料的制备方法
JP3629783B2 (ja) 回路基板
JP2002201075A (ja) 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板並びにその製造方法
CN113213972B (zh) 一种氮化铝覆铝陶瓷衬板的制备方法
JPH1093211A (ja) 窒化けい素回路基板
CN115028461A (zh) 一种硅粉流延成型制备高导热氮化硅陶瓷基片的方法
JP2698780B2 (ja) 窒化けい素回路基板
JP3193305B2 (ja) 複合回路基板
JP2939444B2 (ja) 多層窒化けい素回路基板
CN114560706B (zh) 一种高热导氮化铝陶瓷基板的制备方法
JPH11154719A (ja) 窒化珪素回路基板、半導体装置及び窒化珪素回路基板の製造方法
JP5073135B2 (ja) 窒化アルミニウム焼結体、その製造方法及び用途
CN116835990B (zh) 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用
JPH09121004A (ja) 複合セラミックス基板
JPH11135906A (ja) 基板およびその製造方法
JP4328414B2 (ja) 基板の製造方法
JP2023050453A (ja) セラミックス基板、セラミックス回路基板およびセラミックス基板の製造方法
JP3879654B2 (ja) パワーモジュール用基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18261078

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023543222

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742113

Country of ref document: EP

Effective date: 20230821