CN114560706B - 一种高热导氮化铝陶瓷基板的制备方法 - Google Patents

一种高热导氮化铝陶瓷基板的制备方法 Download PDF

Info

Publication number
CN114560706B
CN114560706B CN202210253494.9A CN202210253494A CN114560706B CN 114560706 B CN114560706 B CN 114560706B CN 202210253494 A CN202210253494 A CN 202210253494A CN 114560706 B CN114560706 B CN 114560706B
Authority
CN
China
Prior art keywords
aluminum nitride
nitride powder
ceramic substrate
sintering
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210253494.9A
Other languages
English (en)
Other versions
CN114560706A (zh
Inventor
杨大胜
施纯锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Original Assignee
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD filed Critical FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority to CN202210253494.9A priority Critical patent/CN114560706B/zh
Publication of CN114560706A publication Critical patent/CN114560706A/zh
Application granted granted Critical
Publication of CN114560706B publication Critical patent/CN114560706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及陶瓷基板领域,提供一种高热导氮化铝陶瓷基板的制备方法,解决现有制备工艺获得的氮化铝陶瓷基板热导率不高且需要消耗大量能量的问题,包括以下制备步骤:(1)氮化铝粉体的原料的选择;(2)球磨处理;(3)脱氧处理;(4)二次分散处理;(5)流延成型:送入流延成型机进行流延成型,获得素坯;(6)排片压平处理;(7)排胶:(8)烧结;(9)冷却。

Description

一种高热导氮化铝陶瓷基板的制备方法
技术领域
本发明涉及陶瓷基板领域,尤其涉及一种高热导氮化铝陶瓷基板的制备方法。
背景技术
随着微电子封装产业的蓬勃发展,电子封装技术走向小型化、高密度、多功率和高可靠性的方向发展,电子封装材料也逐渐成为一个高技术含量、高经济效益的,具有重要地位的工业领域。目前常用的基板材料主要有塑料基板、金属基板、陶瓷基板和复合基板四大类。先进陶瓷材料制成的超薄复合基板更是具有优良的电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并且可以像PCB板一样能刻蚀出各种图形,具有很大的载流能力。陶瓷基板由于散热性能、载流能力、绝缘性、热膨胀系数等,都要大大优于普通的玻璃纤维PCB板材,从而被广泛应用于大功率电力电子模块、航空航天、军工电子等产品上。
目前市场上常用的是氧化铝和氮化铝两种常用的基片材料。其中,氧化铝基片纯度一般为96%以上,工艺简单,价格便宜,但是导热效果欠佳;氮化铝的最大特点是热膨胀系数(CTE)与半导体硅(Si)相当,且热导率高,一般是氧化铝的5~10倍。随着氮化铝工艺技术的发展以及市场对其需求不断上涨,氮化铝基板也越来越受市场的青睐,成为先进集成电路极佳的候选材料。另外它还非常适合于VLSL组件、微波真空管的封装壳体以及混合功率开关的封装等。可以预计在基片和高密度封装领域,氮化铝终将成为主流材料。
热导率是氮化铝的最主要性能,氮化铝理论热导率是320W/(m·k)。受晶格、气孔、缺陷、杂质、结构等影响,目前市场上常规的氮化铝基板一般热导率在170-190W/(m·k)。随着市场的进一步发展,对氮化铝基板提出更高的要求。开发热导率≥200W*((m·k)迫在眉睫。
中国专利号201911269335.2公开了一种高强度高热导氮化铝陶瓷基板及其制备方法,包括以下步骤:亚微米级高纯度氮化铝粉体、亚微米级氧化钇烧结助剂、粘结剂、溶剂和添加剂混合均匀;在中性或者还原气氛下脱脂,脱脂后陶瓷素坯的总杂质含量控制在4.6~8.1%之间;将脱脂后的陶瓷素坯于1800~1950℃烧结4~100h后,再于1750~1950℃热处理2-4h。本发明采用亚微米级的粉体配方结合杂质含量控制和细晶化两步烧结方法,使得制备的氮化铝基板的不仅热导率高而且抗折强度更优异,解决了现有技术中高导热氮化铝陶瓷基板抗折强度不佳的技术问题,但是其经历了长时间的两部烧结,需要消耗更多的能量,且晶粒尺寸长大到10μm,力学性能,即抗弯强度不高。
发明内容
因此,针对上述的问题,本发明提供一种高热导氮化铝陶瓷基板的制备方法,解决现有制备工艺获得的氮化铝陶瓷基板热导率不高且需要消耗大量能量的问题。
为实现上述目的,本发明采用了以下技术方案:一种高热导氮化铝陶瓷基板的制备方法,包括以下制备步骤:
(1)氮化铝粉体的原料的选择:选用粒径为0.3-1μm的氮化铝粉体与纳米级氮化铝粉体为主原料,所述粒径为0.3-1μm的氮化铝粉体与纳米级氮化铝粉体的用量比以重量百分比计=98.5-99.7:0.3-1.5;
(2)球磨处理:送入球磨机中进行球磨分散处理,所述球磨机中添加有含有机酸的无水乙醇,所述无水乙醇没过氮化铝粉体;
(3)脱氧处理:将步骤(2)球磨处理后的物料烘干,送入密封装置内进行抽真空除氧处理;
(4)二次分散处理:将经步骤(3)处理后的氮化铝粉体、低温烧结助剂、聚乙二醇、粘结剂及增塑剂送入含有无水乙醇的球磨机中再次分散处理;
(5)流延成型:送入流延成型机进行流延成型,获得素坯;
(6)排片压平处理;
(7)排胶:
(8)烧结:采用热压烧结结合放电等离子烧结的方式对排胶后的物料进行烧结处理:先将排胶后的物料送入放电等离子烧结炉中加热升温至1300-1350℃,保温30-50min;再调整炉内压力至25-80Mpa,然后将烧结温度升高至1700-1850℃,保温20-30min;
(9)冷却:将烧结后的烧结体以100-120℃/hr的冷却缓慢冷却至常温。
进一步的改进是:在球磨处理后还对氮化铝粉体进行表面改性处理,具体的表面改性处理方法为:将氧化铝粉体浸泡在四乙氧基硅烷溶液30-60min,再过滤、烘干。
进一步的改进是:步骤(2)的有机酸为棕榈酸或十三酸。
进一步的改进是:步骤(4)的低温烧结助剂为CaC2-TiN-ZrO2
进一步的改进是:步骤(4)的低温烧结助剂的用量为氮化铝粉体重的0.5-1.5wt%。
进一步的改进是:步骤(4)中聚乙二醇、粘结剂及增塑剂的用量为氮化铝粉体重的30-70wt%、2-5wt%、1-5wt%。
通过采用前述技术方案,本发明的有益效果为:
1、氮化铝的热传导是依靠晶格振动实现,在温度高的部分,晶体中结点上的微粒振动动能较大,而在低温部分,微粒振动动能较小,因微粒的振动互相联系,由动能大的部分向动能小的部分传递,从而实现热量的传导。根据量子理论,晶格振动的能量是量子化的,这种量子化的能量称为声子,固体介质热传导可以看作连续性的非谐振弹性波通过声子或热能与声子相互作用的量子来进行传播。晶格中的氧杂质会引起格波的散射,从而使声子平均自由程减少,平均自由程越小,热导率则越低,本发明通过对氮化铝粉体进行球磨、脱氧以及分散处理,烧结时选用特定的烧结助剂,使晶格中氧杂质的含量较少,从而使热导率得到提高。
2、在烧结过程中,添加低温烧结剂,能与氧化铝结合,有利于氧杂质的去除,净化氮化铝的晶格,且所添加的低温烧结剂能快速形成低温液相,产生的液相对氮化铝颗粒具有浸润性,有利于氮化铝晶粒的生长。
3、进一步的,所选用的低温烧结剂不与氮化铝发生反应,不会产生晶格缺陷,有利于多面体形态的氮化铝完整晶形的形成。
4、本发明采用热压烧结,与常压烧结相比,可显著加速制品的收缩,排除内部的气孔,缩短烧成时间,从而获得更好的材料力学性能,同时,可减少保温时间,降低烧结温度,更为节能环保。
5、选用含有有机酸的无水乙醇进行球磨处理,能够在氮化铝粉体表面形成一层保护物质,具有一定的抗水解作用。
6、烧结时采用热压烧结与放电等离子烧结结合,先在放电等离子烧结炉中以较快的速度升温,再在压力25-80Mpa,升高至1700-1850℃,保温20-30min,借助放电等离子烧结炉,先以较快的速度升温,当温度升至较高后保温时间较短,与传统的常压烧结相比,所需要消耗的能量更少,更为节能。
7、本发明的氮化铝粉体选用微米级和纳米级复配的方式,纳米氮化铝粉体的添加能在一定程度上促进微米氮化铝陶瓷的烧结致密和氮化铝颗粒的生长,另外,由于原料粉体粒径细小且均匀,能够防止烧结过程中的二次再结晶,有利于提高烧结性能。
具体实施方式
实施例一
一种高热导氮化铝陶瓷基板的制备方法,包括以下制备步骤:
(1)氮化铝粉体的原料的选择:选用粒径为0.3μm的氮化铝粉体与纳米级氮化铝粉体为主原料,所述粒径为0.3μm的氮化铝粉体与纳米级氮化铝粉体的用量比以重量百分比计=98.5:1.5;
(2)球磨处理:送入球磨机中进行球磨分散处理,所述球磨机中添加有含棕榈酸的无水乙醇,所述无水乙醇没过氮化铝粉体;
(3)脱氧处理:将步骤(2)球磨处理后的物料烘干,送入密封装置内进行抽真空除氧处理;
(4)二次分散处理:将经步骤(3)处理后的氮化铝粉体与CaC2-TiN-ZrO2、聚乙二醇、粘结剂及增塑剂送入含有无水乙醇的球磨机中再次分散处理;所述CaC2-TiN-ZrO2、聚乙二醇、粘结剂及增塑剂的用量为氮化铝粉体重的0.5wt%、70wt%、2wt%、1wt%,CaC2-TiN-ZrO2中CaC2:TiN:ZrO2的用量比为5:4:1;粘结剂为聚乙烯醇缩丁醛;增塑剂为领苯二甲酸二丁酯;
(5)流延成型:送入流延成型机进行流延成型,获得素坯;流延工艺为现有技术较为成熟的工艺,在此不赘述;
(6)排片压平处理:采用重物在素坯表面压平处理;
(7)排胶:在550℃排胶2h;
(8)烧结:采用热压烧结结合放电等离子烧结的方式对排胶后的物料进行烧结处理:先将排胶后的物料送入放电等离子烧结炉中加热升温至1300℃,保温30min;再调整炉内压力至25Mpa,然后将烧结温度升高至1850℃,保温30min;
(9)冷却:将烧结后的烧结体以100℃/hr的冷却缓慢冷却至常温,即得到高热导氮化铝陶瓷基板。
实施例二
与实施例一相比,本实施例只是部分参数做了调整,具体的为:氮化铝粉体粒径为0.5μm,且粒径为0.5μm的氮化铝粉体与纳米级氮化铝粉体的用量比以重量百分比计=99:1.0;排胶后的物料送入放电等离子烧结炉中加热升温至1320℃,保温40min;再调整炉内压力至60Mpa,然后将烧结温度升高至1800℃,保温25min;其他与实施例一的方案相同。
实施例三
与实施例一相比,本实施例只是部分参数做了调整,具体的为:氮化铝粉体粒径为1μm,且粒径为1μm的氮化铝粉体与纳米级氮化铝粉体的用量比以重量百分比计=99.7:0.3;排胶后的物料送入放电等离子烧结炉中加热升温至1350℃,保温30min;再调整炉内压力至80Mpa,然后将烧结温度升高至1850℃,保温30min;其他与实施例一的方案相同。
实施例四
一种高热导氮化铝陶瓷基板的制备方法,包括以下制备步骤:
(1)氮化铝粉体的原料的选择:选用粒径为0.3μm的氮化铝粉体与纳米级氮化铝粉体为主原料,所述粒径为0.3μm的氮化铝粉体与纳米级氮化铝粉体的用量比以重量百分比计=98.5:1.5;
(2)球磨处理:送入球磨机中进行球磨分散处理,所述球磨机中添加有含棕榈酸的无水乙醇,所述无水乙醇没过氮化铝粉体;
(3)表面改性处理,将氧化铝粉体浸泡在四乙氧基硅烷溶液30min,再过滤、烘干;
(4)脱氧处理:将步骤(3)处理后的物料烘干,送入密封装置内进行抽真空除氧处理;
(5)二次分散处理:将经步骤(3)处理后的氮化铝粉体与CaC2-TiN-ZrO2、聚乙二醇、粘结剂及增塑剂送入含有无水乙醇的球磨机中再次分散处理;所述CaC2-TiN-ZrO2、聚乙二醇、粘结剂及增塑剂的用量为氮化铝粉体重的0.5wt%、70wt%、2wt%、1wt%,CaC2-TiN-ZrO2中CaC2:TiN:ZrO2的用量比为5:4:1;粘结剂为聚乙烯醇缩丁醛;增塑剂为领苯二甲酸二丁酯;
(6)流延成型:送入流延成型机进行流延成型,获得素坯;
(7)排片压平处理;
(8)排胶:
(9)烧结:采用热压烧结结合放电等离子烧结的方式对排胶后的物料进行烧结处理:先将排胶后的物料送入放电等离子烧结炉中加热升温至1300℃,保温30min;再调整炉内压力至25Mpa,然后将烧结温度升高至1850℃,保温30min;
(10)冷却:将烧结后的烧结体以120℃/hr的冷却缓慢冷却至常温。
实施例五
与实施例四相比,本实施例只是部分参数做了调整,具体的为:氮化铝粉体粒径为0.5μm,且粒径为0.5μm的氮化铝粉体与纳米级氮化铝粉体的用量比以重量百分比计=99:1.0;排胶后的物料送入放电等离子烧结炉中加热升温至1320℃,保温40min;再调整炉内压力至60Mpa,然后将烧结温度升高至1800℃,保温25min;其他与实施例四的方案相同。
实施例六
与实施例四相比,本实施例只是部分参数做了调整,具体的为:氮化铝粉体粒径为1μm,且粒径为1μm的氮化铝粉体与纳米级氮化铝粉体的用量比以重量百分比计=99.7:0.3;排胶后的物料送入放电等离子烧结炉中加热升温至1350℃,保温30min;再调整炉内压力至80Mpa,然后将烧结温度升高至1850℃,保温30min;其他与实施例四的方案相同。
对比例一
一种高热导氮化铝陶瓷基板的制备方法,包括以下制备步骤:
(1)氮化铝粉体的原料的选择:选用粒径为0.3μm的氮化铝粉体为主原料;
(2)球磨处理:送入球磨机中进行球磨分散处理,所述球磨机中添加有含棕榈酸的无水乙醇,所述无水乙醇没过氮化铝粉体;
(3)脱氧处理:将步骤(2)球磨处理后的物料烘干,送入密封装置内进行抽真空除氧处理;
(4)二次分散处理:将经步骤(3)处理后的氮化铝粉体、CaC2-TiN-ZrO2、聚乙二醇、粘结剂及增塑剂送入含有无水乙醇的球磨机中再次分散处理;所述CaC2-TiN-ZrO2、聚乙二醇、粘结剂及增塑剂的用量为氮化铝粉体重的0.5wt%、70wt%、2wt%、1wt%,CaC2-TiN-ZrO2中CaC2:TiN:ZrO2的用量比为5:4:1;粘结剂为聚乙烯醇缩丁醛;增塑剂为领苯二甲酸二丁酯;
(5)流延成型:送入流延成型机进行流延成型,获得素坯;流延工艺为现有技术较为成熟的工艺,在此不赘述;
(6)排片压平处理:采用重物在素坯表面压平处理;
(7)排胶:在550℃排胶2h;
(8)烧结:采用常压烧结的方式进行烧结,烧结温度控制在1900℃;
(9)冷却:将烧结后的烧结体以100℃/hr的冷却缓慢冷却至常温,即得到高热导氮化铝陶瓷基板。
对比例二
一种高热导氮化铝陶瓷基板的制备方法,包括以下制备步骤:
(1)氮化铝粉体的原料的选择:选用粒径为0.3μm的氮化铝粉体为主原料;
(2)球磨处理:送入球磨机中进行球磨分散处理,所述球磨机中添加有含棕榈酸的无水乙醇,所述无水乙醇没过氮化铝粉体;
(3)表面改性处理,将氧化铝粉体浸泡在四乙氧基硅烷溶液30min,再过滤、烘干;
(4)脱氧处理:将步骤(3)处理后的物料烘干,送入密封装置内进行抽真空除氧处理;
(5)二次分散处理:将经步骤(3)处理后的氮化铝粉体与CaC2-TiN-ZrO2、聚乙二醇、粘结剂及增塑剂送入含有无水乙醇的球磨机中再次分散处理;所述CaC2-TiN-ZrO2、聚乙二醇、粘结剂及增塑剂的用量为氮化铝粉体重的0.5wt%、70wt%、2wt%、1wt%,CaC2-TiN-ZrO2中CaC2:TiN:ZrO2的用量比为5:4:1;粘结剂为聚乙烯醇缩丁醛;增塑剂为领苯二甲酸二丁酯;
(6)流延成型:送入流延成型机进行流延成型,获得素坯;
(7)排片压平处理;
(8)排胶:
(9)烧结:采用热压烧结结合放电等离子烧结的方式对排胶后的物料进行烧结处理:先将排胶后的物料送入放电等离子烧结炉中加热升温至1300℃,保温30min;再调整炉内压力至25Mpa,然后将烧结温度升高至1850℃,保温30min;
(10)冷却:将烧结后的烧结体以120℃/hr的冷却缓慢冷却至常温。
Figure BDA0003547609000000101
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (9)

1.一种高热导氮化铝陶瓷基板的制备方法,其特征在于,包括以下制备步骤:
(1)氮化铝粉体的原料的选择:选用粒径为0.3-1μm的氮化铝粉体与纳米级氮化铝粉体为主原料,所述粒径为0.3-1μm的氮化铝粉体与纳米级氮化铝粉体的用量比以重量百分比计=98.5-99.7:0.3-1.5;
(2)球磨处理:送入球磨机中进行球磨分散处理,所述球磨机中添加有含有机酸的无水乙醇,所述无水乙醇没过氮化铝粉体;
(3)脱氧处理:将步骤(2)球磨处理后的物料烘干,送入密封装置内进行抽真空除氧处理;
(4)二次分散处理:将经步骤(3)处理后的氮化铝粉体、低温烧结助剂、聚乙二醇、粘结剂及增塑剂送入含有无水乙醇的球磨机中再次分散处理;所述低温烧结助剂为CaC2-TiN-ZrO2;
(5)流延成型:送入流延成型机进行流延成型,获得素坯;
(6)排片压平处理;
(7)排胶:
(8)烧结:采用热压烧结结合放电等离子烧结的方式对排胶后的物料进行烧结处理:先将排胶后的物料送入放电等离子烧结炉中加热升温至1300-1350℃,保温30-50min;再调整炉内压力至25-80Mpa,然后将烧结温度升高至1700-1850℃ ,保温20-30min;
(9)冷却:将烧结后的烧结体以100-120℃/hr的冷却速度缓慢冷却至常温。
2.根据权利要求1所述的一种高热导氮化铝陶瓷基板的制备方法,其特征在于:在球磨处理后还对氮化铝粉体进行表面改性处理,具体的表面改性处理方法为:将氮化铝粉体浸泡在四乙氧基硅烷溶液30-60min,再过滤、烘干。
3.根据权利要求1所述的一种高热导氮化铝陶瓷基板的制备方法,其特征在于:步骤(2)的有机酸为棕榈酸或十三酸。
4.根据权利要求1所述的一种高热导氮化铝陶瓷基板的制备方法,其特征在于:步骤(4)的低温烧结助剂的用量为氮化铝粉体重的0.5-1.5wt%。
5.根据权利要求1所述的一种高热导氮化铝陶瓷基板的制备方法,其特征在于:步骤(4)中聚乙二醇、粘结剂及增塑剂的用量为氮化铝粉体重的30-70wt%、2-5wt%、1-5wt%。
6.根据权利要求1所述的一种高热导氮化铝陶瓷基板的制备方法,其特征在于:步骤(4)中聚乙二醇、粘结剂及增塑剂的用量为氮化铝粉体重的40wt%、3wt%、4wt%。
7.根据权利要求1所述的一种高热导氮化铝陶瓷基板的制备方法,其特征在于:步骤(4)的低温烧结助剂CaC2-TiN-ZrO2中CaC2:TiN:ZrO2的用量比为5:4:1。
8.根据权利要求1所述的一种高热导氮化铝陶瓷基板的制备方法,其特征在于:步骤(8)中炉内压力为50Mpa。
9.根据权利要求1所述的一种高热导氮化铝陶瓷基板的制备方法,其特征在于:步骤(9)中冷却速度为110℃/hr。
CN202210253494.9A 2022-03-15 2022-03-15 一种高热导氮化铝陶瓷基板的制备方法 Active CN114560706B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210253494.9A CN114560706B (zh) 2022-03-15 2022-03-15 一种高热导氮化铝陶瓷基板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210253494.9A CN114560706B (zh) 2022-03-15 2022-03-15 一种高热导氮化铝陶瓷基板的制备方法

Publications (2)

Publication Number Publication Date
CN114560706A CN114560706A (zh) 2022-05-31
CN114560706B true CN114560706B (zh) 2023-01-24

Family

ID=81719692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210253494.9A Active CN114560706B (zh) 2022-03-15 2022-03-15 一种高热导氮化铝陶瓷基板的制备方法

Country Status (1)

Country Link
CN (1) CN114560706B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894046A (zh) * 2022-11-30 2023-04-04 福建华清电子材料科技有限公司 一种注射成型制备氮化铝陶瓷的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295479A (ja) * 1987-05-27 1988-12-01 Hitachi Ltd 窒化アルミニウム焼結体およびその製造方法
JPH01188472A (ja) * 1988-01-22 1989-07-27 Nec Corp 窒化アルミニウム焼結体の製造方法
CN1081178C (zh) * 1998-07-08 2002-03-20 中国科学院上海硅酸盐研究所 高热导氮化铝陶瓷的制备方法
CN101570437B (zh) * 2009-04-30 2013-01-09 潮州三环(集团)股份有限公司 一种连续式低温烧结高导热率AlN陶瓷的方法及其产品
CN105693221B (zh) * 2016-01-15 2018-12-18 汕头大学 一种超薄高纯陶瓷片及其制备工艺
CN107399972A (zh) * 2016-05-20 2017-11-28 河北高富氮化硅材料有限公司 一种基于sps方法制备透明氮化铝陶瓷的方法
CN107857594A (zh) * 2017-11-29 2018-03-30 北京科技大学 一种氮化铝陶瓷异型件及其制备方法
CN108675795B (zh) * 2018-07-03 2020-11-20 北京科技大学 一种sps烧结制备高导热和高强度氮化铝陶瓷的方法
CN109354500A (zh) * 2018-11-30 2019-02-19 华南理工大学 一种抗水解的氮化铝粉末及其制备方法
CN112876260B (zh) * 2021-03-26 2022-12-06 福建华清电子材料科技有限公司 一种超薄氮化铝陶瓷基片的生产工艺
CN114149266A (zh) * 2021-11-29 2022-03-08 中国铝业股份有限公司 一种抗水解氮化铝粉末及其制备方法

Also Published As

Publication number Publication date
CN114560706A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2022156634A1 (zh) 一种覆铜板的氮化硅陶瓷基片的制备方法
US20240116821A1 (en) Preparation method of high-thermal-conductivity and net-size silicon nitride ceramic substrate
CN109836141B (zh) 一种高热导率低温共烧陶瓷材料及其制备方法
JP2018184333A (ja) 窒化珪素基板の製造方法、及び窒化珪素基板
CN112830788B (zh) 一种氮化硅陶瓷材料及其制备方法
CN113200747A (zh) 一种低温烧结的氮化铝陶瓷材料、氮化铝流延浆料及应用
CN114560706B (zh) 一种高热导氮化铝陶瓷基板的制备方法
CN113480319B (zh) 一种低介电常数碳化硅、高性能氮化硅陶瓷基板及其制备方法
CN112939607A (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN112811909A (zh) 一种热压烧结制备高强度高热导率氮化铝的方法
CN112028636A (zh) 一种高导热氮化铝/石墨烯复合陶瓷器件的制备方法
CN108516836A (zh) 一种氮化铝陶瓷基板的制备方法及封装材料
CN110736134A (zh) 一种高强度高导热氮化铝陶瓷基板及其制备方法
CN115259889B (zh) 一种多孔碳化硅陶瓷及其制备方法和应用、铝碳化硅复合材料
CN114716251A (zh) 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
CN110734290A (zh) 一种氮化硅陶瓷材料及其制备方法
CN115304383A (zh) 一种氮化铝基板及其制备方法与应用
CN113773091A (zh) 氮化铝陶瓷流延浆料、氮化铝陶瓷基板及制备方法
CN111620697A (zh) 一种基于热压烧结法制备的氮化硅基片材料
CN111302806A (zh) 一种IC装备用静电卡盘AlN陶瓷及其制备方法
CN111574213A (zh) 一种低介电常数ltcc材料及其制备方法
CN116813352A (zh) 氮化铝陶瓷材料及其制备方法和应用
JP3450400B2 (ja) 窒化アルミニウム焼結体および窒化アルミニウム多層回路基板
JPH0450171A (ja) AlN焼結体の製造方法
CN115784752A (zh) 一种制备高导热氮化硅陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant