CN114716251A - 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法 - Google Patents

一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法 Download PDF

Info

Publication number
CN114716251A
CN114716251A CN202210562483.9A CN202210562483A CN114716251A CN 114716251 A CN114716251 A CN 114716251A CN 202210562483 A CN202210562483 A CN 202210562483A CN 114716251 A CN114716251 A CN 114716251A
Authority
CN
China
Prior art keywords
ball milling
ceramic substrate
thermal
nanosheet
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210562483.9A
Other languages
English (en)
Inventor
吴超
霍可心
黄相杰
陆佳敏
马骏驰
卢宇泽
陈语
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Publication of CN114716251A publication Critical patent/CN114716251A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,步骤如下:S1、对氮化硼粉体、聚乙二醇、蔗糖、无水乙醇进行一次球磨;将球磨后的浆料置于冷热冲击箱中循环若干次,随后进行二次球磨;在二次球磨后的浆料中加入氮化铝粉、氧化钇粉、聚乙烯醇缩丁醛、无水乙醇,进行三次球磨后得到流延浆料;S2、使用S1得到的流延浆料制备复相陶瓷素片;S3、对S2得到的复相陶瓷素片进行高温烧结,得到陶瓷基板。本发明制备的AlN陶瓷基板结构紧密,相对密度均大于99%,热导率均大于175W/(m·K),抗弯强度均高于370MPa,断裂韧性高于5.0MPa·m1/2,且微观组织结构良好,完全达到了商用高导热基板的要求,断裂韧性更是远高于市售的氮化铝基板。

Description

一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
技术领域
本发明涉及纳米强韧化陶瓷基片材料领域,具体涉及一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法。
背景技术
大多数陶瓷材料是离子键或共价键极强的材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高,凭借其优异的综合性能,陶瓷材料正逐步成为电子封装中常用的基片材料。长期以来,绝大多数大功率混合集成电路的基板材料一直沿用Al2O3和BeO陶瓷,但Al2O3基板的热导率低,热膨胀系数和Si不太匹配;BeO虽然具有优良的综合性能,但其较高的生产成本和剧毒的缺点限制了它的应用推广。
氮化铝(AlN)作为一种综合性能优良新型的先进陶瓷材料,其理论热导率高达320W/(m·K),工业上实际制备的多晶氮化铝的热导率也可达100~250W/(m),该数值是传统基片材料氧化铝热导率的5倍~10倍。与其它几种陶瓷材料相较,氮化铝陶瓷综合性能优良,非常适用于半导体基片和结构封装材料,在电子工业中的应用潜力非常巨大。
氮化铝陶瓷基板具有优异的导热和绝缘特性,但力学性能较差,弯曲强度为350MPa左右,断裂韧性为3MPa·m1/2左右,这使氮化铝基板的可加工性较差,且在应对冷热交换频繁的环境时的可靠性较低,成为限制其应用的重要因素。因此,急需一种强韧化高导热AlN陶瓷基板。
发明内容
本发明采用机械球磨法和冷热冲击法联用剥离氮化硼纳米片,通过流延、排胶和烧结等工艺得到陶瓷基板。BN纳米片的添加旨在不影响氮化铝基板导热性能的基础上,通过片状纳米颗粒的钉扎和裂纹偏转效应,大幅提高陶瓷基板对断裂能的消耗,从而改善氮化铝陶瓷的力学性能,扩大氮化铝陶瓷基板的应用领域。
本发明针对现有技术中的不足,提供一种BN纳米片强韧化高导热AlN陶瓷基板。
为实现上述目的,本发明采用以下技术方案:
一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,步骤如下:
S1、对氮化硼粉体、聚乙二醇、蔗糖、无水乙醇进行一次球磨;将球磨后的浆料置于冷热冲击箱中循环若干次,随后进行二次球磨;在二次球磨后的浆料中加入氮化铝粉、氧化钇粉、聚乙烯醇缩丁醛、无水乙醇,进行三次球磨后得到流延浆料;
S2、使用S1得到的流延浆料制备复相陶瓷素片;
S3、对S2得到的复相陶瓷素片进行高温烧结,得到陶瓷基板。
为优化上述技术方案,采取的具体措施还包括:
进一步地,步骤S1中,氮化硼粉体平均粒径为1μm,聚乙二醇聚合度为4000,氮化铝粉平均粒径为1μm,氧化钇粉平均粒径为800nm,聚乙烯醇缩丁醛聚合度为2000。
进一步地,步骤S1中,第一次球磨中,氮化硼粉体、聚乙二醇、蔗糖、无水乙醇的质量比为1:0.1:0.1:20;第三次球磨中,氮化铝粉、氧化钇粉、聚乙烯醇缩丁醛、无水乙醇的质量比为1:0.04:3:20。
进一步地,步骤S1中,流延浆料中氮化硼的含量为0~3wt%。
进一步地,步骤S1中,一次球磨的转速为300r/min,球磨时间为18h。
进一步地,步骤S1中,一次球磨后的浆料在冲击箱中循环8次,冲击温度为-40~300℃,可以保证BN粉体在后期球磨中顺利通过剪切作用形成BN纳米片。
进一步地,步骤S1中,二次球磨的转速为300r/min,球磨时间为8h。
进一步地,步骤S1中,三次球磨的转速为200r/min,球磨时间为6h。
进一步地,步骤S3中,高温烧结的具体步骤如下:于氮气气氛0.2MPa、1750~1850℃条件下烧结6~8h;升温条件为:小于1400℃,10℃/分钟;1400-1600℃,3℃/分钟;大于1600℃,1℃/分钟。
一种通过上述方法制备得到的BN纳米片强韧化高导热AlN陶瓷基板,该陶瓷基板的相对密度为98.5-99.7%,抗弯强度为235.1~422.3MPa,断裂韧性为4.36-5.71MPa·m1 /2,热导率为140.7~186.1W/(m·K)。
本发明的有益效果是:
(1)本发明选取氮化硼作为粉体原料,通过机械球磨进行层间剥离获得BN纳米片,相较于直接使用纳米氮化硼,显著降低了制备纳米氮化硼的原料成本;使用一步球磨法可以使得小分子蔗糖顺利地进入BN粉体的层间,协助进行剪切作用,降低BN纳米片生成的难度,优化BN纳米片在AlN基体中的分散情况,减少其大面积团聚的发生;此外,蔗糖在步骤S3的高温烧结的过程中形成的无定型碳会与AlN颗粒发生还原反应,降低氧元素的含量进而提高陶瓷基板的热导率,起到了协同反应的作用;
(2)本发明利用层间剥离法引入的BN纳米片拥有较高的导热率、宽带隙、优异的抗氧化性能,并且与氮化铝陶瓷有良好的相容性;氮化硼是等电子体,拥有与石墨类似的层片状结构,片状结构可以改善氮化铝陶瓷基板的热导率,并促进氮化铝陶瓷的致密化进而改善其力学性能,此外,片状结构在断裂时还可以使裂纹扩展方向发生偏转,延长裂纹长度,显著提高陶瓷材料对外部载荷的耐受能力;
(3)本发明通过对原料制备和烧结工艺进行控制,掌握BN纳米片的组织形貌和分散情况,以及其在氮化铝基体中的分布情况,进而对复相陶瓷的显微组织结构实现调控;制备的AlN陶瓷基板结构紧密,相对密度均大于99%,热导率均大于175W/(m·K),抗弯强度均高于370MPa,断裂韧性高于5.0MPa·m1/2,且微观组织结构良好,完全达到了商用高导热基板的要求,断裂韧性更是远高于市售的氮化铝基板。
附图说明
图1为本发明BN纳米片强韧化高导热AlN陶瓷基板的制备工艺流程;
图2为实施例1中BN纳米片强韧化高导热AlN陶瓷的低倍SEM图;
图3为实施例1中BN纳米片强韧化高导热AlN陶瓷的高倍SEM图;
图4是对比例1中未添加BN纳米片AlN陶瓷基板的SEM图。
具体实施方式
实施例1
一种BN纳米片强韧化高导热AlN陶瓷基板,通过以下方式制备(图1):
S1、对氮化硼粉体(平均粒径1μm)、聚乙二醇(聚合度4000)、蔗糖、无水乙醇进行一次球磨,一次球磨的转速为300r/min,球磨时间为18h,氮化硼粉体、聚乙二醇、蔗糖、无水乙醇的质量比为1:0.1:0.1:20;一次球磨后的浆料在冲击箱中循环8次,冲击温度为-40~300℃,随后进行二次球磨,二次球磨的转速为300r/min,球磨时间为8h;在二次球磨后的浆料中加入氮化铝粉(平均粒径1μm)、氧化钇粉(平均粒径800nm)、聚乙烯醇缩丁醛(聚合度2000)、无水乙醇,氮化铝粉、氧化钇粉、聚乙烯醇缩丁醛、无水乙醇的质量比为1:0.04:3:20,进行三次球磨,三次球磨的转速为200r/min,球磨时间为6h;对三次球磨后的浆料进行过筛除泡,得到流延浆料,流延浆料中氮化硼的含量为2wt%;
S2、使用流延工艺处理S1得到的流延浆料,得到复相陶瓷胶片,之后进入脱脂炉内进行排胶后得到复相陶瓷的素片;
S3、陶瓷素片于氮气气氛0.2MPa、1850℃条件下烧结6h;升温条件为:小于1400℃,10℃/分钟;1400-1600℃,3℃/分钟;大于1600℃,1℃/分钟。烧结后得到陶瓷基板。
该BN纳米片强韧化高导热AlN陶瓷基板的性能如下:相对密度99.7%,抗弯强度422.3MPa,断裂韧性5.71MPa·m1/2,热导率186.1W/(m·K)。图2和图3为BN纳米片强韧化高导热AlN陶瓷基板的断口SEM图,基板组织结构致密,在高倍放大图片中有许多片状纳米BN,其钉扎效应、裂纹偏转和裂纹延长会改善陶瓷基板对应力的耐受能力,改善基板材料的力学性能。
实施例2
一种BN纳米片强韧化高导热AlN陶瓷基板,通过以下方式制备(图1):
S1、对氮化硼粉体(平均粒径1μm)、聚乙二醇(聚合度4000)、蔗糖、无水乙醇进行一次球磨,一次球磨的转速为300r/min,球磨时间为18h,氮化硼粉体、聚乙二醇、蔗糖、无水乙醇的质量比为1:0.1:0.1:20;一次球磨后的浆料在冲击箱中循环8次,冲击温度为-40~300℃,随后进行二次球磨,二次球磨的转速为300r/min,球磨时间为8h;在二次球磨后的浆料中加入氮化铝粉(平均粒径1μm)、氧化钇粉(平均粒径800nm)、聚乙烯醇缩丁醛(聚合度2000)、无水乙醇,氮化铝粉、氧化钇粉、聚乙烯醇缩丁醛、无水乙醇的质量比为1:0.04:3:20,进行三次球磨,三次球磨的转速为200r/min,球磨时间为6h;对三次球磨后的浆料进行过筛除泡,得到流延浆料,流延浆料中氮化硼的含量为3wt%;
S2、使用流延工艺处理S1得到的流延浆料,得到复相陶瓷胶片,之后进入脱脂炉内进行排胶后得到复相陶瓷的素片;
S3、陶瓷素片于氮气气氛0.2MPa、1800℃条件下烧结8h;升温条件为:小于1400℃,10℃/分钟;1400-1600℃,3℃/分钟;大于1600℃,1℃/分钟。烧结后得到陶瓷基板。
该BN纳米片强韧化高导热AlN陶瓷基板的性能如下:相对密度99.3%,抗弯强度376.78MPa,断裂韧性5.71MPa·m1/2,热导率176.9W/(m·K)。
对比例1
该对比例制备的AlN陶瓷基板未添加BN纳米片,具体步骤如下:
S1、将氮化铝粉(平均粒径1μm)、氧化钇粉(平均粒径800nm)、聚乙烯醇缩丁醛(聚合度2000)和无水乙醇按照1:0.04:3:20质量比进行混合球磨,球磨转速为200r/min,球磨时间为12h,球磨后浆料进行过筛除泡后得到流延浆料;
S2、使用流延工艺处理S1得到的流延浆料,得到复相陶瓷胶片,之后进入脱脂炉内进行排胶后得到复相陶瓷的素片;
S3、陶瓷素片于氮气气氛0.2MPa、1850℃条件下烧结8h;升温条件为:小于1400℃,10℃/分钟;1400-1600℃,3℃/分钟;大于1600℃,1℃/分钟。烧结后得到陶瓷基板。
该AlN陶瓷基板的性能如下:相对密度98.2%,抗弯强度321.42MPa,断裂韧性2.76MPa·m1/2,热导率168.2W/(m·K),形貌如图4所示。
实施例1、2中所得的BN纳米片强韧化高导热AlN陶瓷基板的相对密度均大于99%,热导率均大于175W/(m·K),抗弯强度均高于370MPa,断裂韧性高于5.0MPa·m1/2,且微观组织结构良好,完全达到了商用高导热基板的要求,断裂韧性更是远高于市售的氮化铝基板,改善了氮化铝陶瓷基板的可加工性和可靠性,因此本发明提供的BN纳米片强韧化高导热AlN陶瓷基板的制备方法具有实际应用价值。相比较实施例1中的陶瓷基板的各项性能,未添加BN纳米片作为强韧化手段的纯氮化铝基板的力学性能和热学性能均较低,断裂韧性更是几乎为实施例1中的一半。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (10)

1.一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,步骤如下:
S1、对氮化硼粉体、聚乙二醇、蔗糖、无水乙醇进行一次球磨;将球磨后的浆料置于冷热冲击箱中循环若干次,随后进行二次球磨;在二次球磨后的浆料中加入氮化铝粉、氧化钇粉、聚乙烯醇缩丁醛、无水乙醇,进行三次球磨后得到流延浆料;
S2、使用S1得到的流延浆料制备复相陶瓷素片;
S3、对S2得到的复相陶瓷素片进行高温烧结,得到陶瓷基板。
2.根据权利要求1所述的一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,
步骤S1中,氮化硼粉体平均粒径为1μm,聚乙二醇聚合度为4000,氮化铝粉平均粒径为1μm,氧化钇粉平均粒径为800nm,聚乙烯醇缩丁醛聚合度为2000。
3.根据权利要求1所述的一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,
步骤S1中,第一次球磨中,氮化硼粉体、聚乙二醇、蔗糖、无水乙醇的质量比为1:0.1:0.1:20;第三次球磨中,氮化铝粉、氧化钇粉、聚乙烯醇缩丁醛、无水乙醇的质量比为1:0.04:3:20。
4.根据权利要求1所述的一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,
步骤S1中,流延浆料中氮化硼的含量为0~3wt%。
5.根据权利要求1所述的一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,
步骤S1中,一次球磨的转速为300r/min,球磨时间为18h。
6.根据权利要求1所述的一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,
步骤S1中,一次球磨后的浆料在冲击箱中循环8次,冲击温度为-40~300℃。
7.根据权利要求1所述的一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,
步骤S1中,二次球磨的转速为300r/min,球磨时间为8h。
8.根据权利要求1所述的一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,
步骤S1中,三次球磨的转速为200r/min,球磨时间为6h。
9.根据权利要求1所述的一种BN纳米片强韧化高导热AlN陶瓷基板的制备方法,其特征在于,
步骤S3中,高温烧结的具体步骤如下:于氮气气氛0.2MPa、1750~1850℃条件下烧结6~8h;升温条件为:小于1400℃,10℃/分钟;1400-1600℃,3℃/分钟;大于1600℃,1℃/分钟。
10.一种如权利要求1-9任一项制备方法得到的BN纳米片强韧化高导热AlN陶瓷基板。
CN202210562483.9A 2021-05-24 2022-05-23 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法 Pending CN114716251A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021105646316 2021-05-24
CN202110564631.6A CN113213944A (zh) 2021-05-24 2021-05-24 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法

Publications (1)

Publication Number Publication Date
CN114716251A true CN114716251A (zh) 2022-07-08

Family

ID=77097926

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110564631.6A Pending CN113213944A (zh) 2021-05-24 2021-05-24 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
CN202210562483.9A Pending CN114716251A (zh) 2021-05-24 2022-05-23 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110564631.6A Pending CN113213944A (zh) 2021-05-24 2021-05-24 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法

Country Status (1)

Country Link
CN (2) CN113213944A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213944A (zh) * 2021-05-24 2021-08-06 南京工程学院 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213944A (zh) * 2021-05-24 2021-08-06 南京工程学院 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333114A (zh) * 2008-07-31 2008-12-31 潮州三环(集团)股份有限公司 一种高导热率氮化铝陶瓷基片的制作方法
CN103553691B (zh) * 2013-11-01 2015-08-26 广东工业大学 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
CN103819196B (zh) * 2013-12-30 2016-01-06 莱鼎电子材料科技有限公司 一种改性氮化铝陶瓷基片及其生产方法
CN104045349B (zh) * 2014-07-01 2015-10-21 济南大学 一种纳米氧化铝增强氮氧化铝陶瓷及其制备方法
CN104402053B (zh) * 2014-11-04 2016-05-18 中国科学院大学 一种类石墨烯二维纳米片的制备方法
CN105367075A (zh) * 2015-10-27 2016-03-02 合肥龙多电子科技有限公司 一种纳米氮化硼增强的高导热氮化铝-碳化硅复合电路板基板材料及其制备方法
CN106187206A (zh) * 2016-07-20 2016-12-07 合肥毅创钣金科技有限公司 一种掺杂氮化硼纳米管的大功率led散热用氮化铝陶瓷基板
CN107188568A (zh) * 2017-07-11 2017-09-22 中国人民大学 一种氮化铝陶瓷基板及其制备方法
CN108002374B (zh) * 2017-12-14 2021-03-19 合肥工业大学 一种超薄二维层状材料纳米片及其制备方法
CN108516836A (zh) * 2018-03-27 2018-09-11 董小琳 一种氮化铝陶瓷基板的制备方法及封装材料
CN108516837A (zh) * 2018-04-24 2018-09-11 常州思宇知识产权运营有限公司 一种微波衰减陶瓷及其制备方法
CN108610512B (zh) * 2018-04-28 2020-04-21 武汉理工大学 一种纤维素/层状氮化硼高介电纳米复合膜及其制备方法
CN112142474A (zh) * 2020-09-28 2020-12-29 西华大学 一种水基流延成型高导热氮化铝陶瓷基板的制备方法
CN112744796B (zh) * 2021-01-08 2023-06-13 江苏大学 一种氮化硼纳米片制备装置及工艺方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213944A (zh) * 2021-05-24 2021-08-06 南京工程学院 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法

Also Published As

Publication number Publication date
CN113213944A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN112159236B (zh) 高导热氮化硅陶瓷基板及其制备方法
CN112939607B (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN111875386A (zh) 一种氮化铝陶瓷基板及其制备方法
CN111196728A (zh) 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN113307631B (zh) 一种无压烧结制备高综合性能氮化硅陶瓷的方法
CN115028461A (zh) 一种硅粉流延成型制备高导热氮化硅陶瓷基片的方法
CN112142474A (zh) 一种水基流延成型高导热氮化铝陶瓷基板的制备方法
CN114716251A (zh) 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
CN113213894A (zh) 一种高纯氧化铝陶瓷基板及其制备工艺
CN112745126A (zh) 一种Si3N4晶须增韧的高导热AlN陶瓷基板和制备方法
CN116751036A (zh) 一种预应力氧化铝陶瓷复合材料及其制备方法
CN115028460A (zh) 一种高导热氮化硅陶瓷基片的制备方法
CN110736134A (zh) 一种高强度高导热氮化铝陶瓷基板及其制备方法
CN111302809A (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN114560706B (zh) 一种高热导氮化铝陶瓷基板的制备方法
CN115259889B (zh) 一种多孔碳化硅陶瓷及其制备方法和应用、铝碳化硅复合材料
CN106431419A (zh) 一种大功率微电子器件用高导热氮化铝陶瓷基板的制备方法
CN114702306B (zh) 一种95氧化铝陶瓷基片的制备方法及其产品
CN115304383A (zh) 一种氮化铝基板及其制备方法与应用
CN112608155A (zh) 一种金属和氮化硅陶瓷高温共烧复合基板的方法
CN111620697A (zh) 一种基于热压烧结法制备的氮化硅基片材料
CN111253150B (zh) 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法
CN117602955A (zh) 一种碳纳米管改性高导热氮化铝陶瓷基板及其制备方法
CN118164766A (zh) 一种氮化铝陶瓷烧结体及其制备方法和氮化铝陶瓷基板
CN109734453B (zh) 一种航天防热用氮化硼-锶长石陶瓷基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220708