CN112142474A - 一种水基流延成型高导热氮化铝陶瓷基板的制备方法 - Google Patents

一种水基流延成型高导热氮化铝陶瓷基板的制备方法 Download PDF

Info

Publication number
CN112142474A
CN112142474A CN202011036525.2A CN202011036525A CN112142474A CN 112142474 A CN112142474 A CN 112142474A CN 202011036525 A CN202011036525 A CN 202011036525A CN 112142474 A CN112142474 A CN 112142474A
Authority
CN
China
Prior art keywords
aluminum nitride
tape casting
water
ceramic substrate
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011036525.2A
Other languages
English (en)
Inventor
李春宏
黄佳
康晓丽
崔旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CN202011036525.2A priority Critical patent/CN112142474A/zh
Publication of CN112142474A publication Critical patent/CN112142474A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种水基流延成型高导热氮化铝陶瓷基板的制备方法(1)采用氧化铝磷酸二氢铝对氮化铝粉体进行表面改性;(2)称取改性后的氮化铝粉体、分散剂、增塑剂、粘结剂并混合均匀;(3)真空除泡;(4)生坯的制备,采用流延成型与冷等静压成型相结合工艺;(5)排胶,在180℃~460℃下保温2~3h;(6)氮气气氛下1600℃~1750℃烧结4~6h。本发明采用的溶剂为水,安全、绿色、环保,浆料的稳定性好,制得的陶瓷基板热导率高;工艺简单,且生产成本较低,可用于高功率密度电路、IGBT等领域。

Description

一种水基流延成型高导热氮化铝陶瓷基板的制备方法
技术领域
本发明公开了一种水基流延成型高导热氮化铝陶瓷基板的制备方法,属于流延成型工艺技术领域。
背景技术
氮化铝(AlN)陶瓷具有高的热导率(接近碳化硅和氧化铍,是氧化铝的5-10倍)、低的介电常数和介质损耗、良好的电绝缘特性以及与硅、砷化镓相匹配的热膨胀系数,是近年来电子工业中一种十分热门的材料。与氧化铍陶瓷相比,氮化铝陶瓷不具有毒性,且生产成本较低,是高功率密度电路、IGBT领域理想的封装材料。
目前,氮化铝陶瓷片主要采用流延成型方法制备,其生产成本低,生产效率高,流延成型主要分为传统非水基流延成型和水基流延成型,由于氮化铝粉体遇水易水解,严重阻碍了其水基流延成型的发展。但非水基流延成型工艺较水基流延成型,成本更高,且挥发的有机物会造成环境污染。此外,大部分有机物都易燃,使用过程中还会存在安全隐患。因此,采用水基流延代替非水基流延是一个不错的选择,水基流延最大的特点是采用水做溶剂,避免使用有毒的有机溶剂,但由于水溶剂的表面张力大,对粉体的浸润性差,容易产生气泡。另外,排胶过程中坯体也容易开裂。专利《一种水性流延浆料及其制备方法》(公布号CN107353030A),提供了一种水性流延浆料包括水、混合粉体、海藻酸钠、分散剂和水性环氧树脂,制备得到的流延浆料的溶剂为水,安全环保,无气泡,流延后流延膜具有良好的强度和韧性。但其氮化铝陶瓷基片导热系数不理想。
发明内容
本发明主要解决的问题是提供一种水基流延成型高导热氮化铝陶瓷基板的制备方法,本发明提供的氮化铝陶瓷基板是通过水基流延成型法制备的,减少了有机溶剂的使用,安全、绿色、环保。同时,本发明工艺简单,且生产成本较低,制得的浆料稳定性好,陶瓷基板热导率高(180W/m˙K~223W/m˙K)。
为解决上述技术问题,本发明采用的技术方案是:
一种水基流延成型高导热氮化铝陶瓷基板的制备方法,包括以下步骤:
1)氮化铝粉体表面改性:称取原料氮化铝、氧化铝、磷酸二氢铝,球磨12h,得到改性氮化铝粉体;
2)配料:称取改性后的氮化铝粉体、烧结助剂、分散剂、增塑剂、粘结剂,球磨12h~20h,得到流延浆料;
3)真空除泡:向所述流延浆料中加入消泡剂进行真空除泡;
4)生坯的制备:采用流延成型与冷等静压成型相结合工艺获得陶瓷生坯;
5)排胶:将得到的陶瓷生坯200℃~450℃下保温2~3h;
6)烧结:将排胶后的陶瓷生坯在氮气气氛下于1600℃~1750℃烧结4~6h。
其中,步骤1)中氧化铝的质量分数为2wt%,磷酸二氢铝的质量分数为4wt%,研磨介质为无水乙醇,磨球为氧化铝,原料粉体:无水乙醇:磨球质量比=1:1:4。
所述的氮化铝粉体,氮化铝粉体纯度为95%~99%,粒径为0.8μm~1.2μm,Fe杂质含量小于80ppm,O含量低于1.2%。
步骤2)中烧结助剂为氧化钇、氧化镝、碳酸锂中的一种或几种,分散剂为柠檬酸胺,增塑剂为丙三醇,粘结剂为聚乙烯醇。步骤2)中各物料按照质量份数比为:改性后的氮化铝粉体60份~70份,分散剂0.5份~3.5份,增塑剂6份~12份,粘结剂3份~6份,烧结助剂1份~10份。
步骤3)消泡剂为正丁醇,真空除泡条件为:真空度为-0.04~-0.1MPa,搅拌桨转速20r/min,真空除泡时间为10~20min,粘度在2000~6000cps。
步骤4)控制流延机刮刀高度为0.3~5mm,流延速度为100~500mm/min,得到0.2~1mm的坯体,然后在等静压机经压力50~120Mpa,保压5~10min。
步骤5)排胶工艺为200℃之前升温速率为1℃/min;200℃~450℃为0.3℃/min;450℃保温1h;450℃~600℃为1℃/min。最后在600℃处保温3h。
与现有技术相比,本发明具有以下优点:
1)本发明采用水基流延法制备,此方法制备工艺简单,采用水代替有机溶剂,安全、绿色,环保;
2)本发明采用三氧化二铝和磷酸二氢铝对氮化铝粉体进行表面改性,通过在氮化铝粉体表面形成一层薄膜,阻止氮化铝的水解,得到的氮化铝粉体分散性好,抗水解性能优;
3)本发明采用丙三醇作为流延浆料的增塑剂,可使流延浆料有良好的润湿性,得到的流延浆料气泡少,稳定性好,并且没有裂纹。
4)本发明制备的氮化铝陶瓷基片热导率高180W/m˙K~223W/m˙K。
具体实施方式
结合实施例说明本发明的具体技术方案。
实施例1
一种水基流延成型高导热氮化铝陶瓷基板的制备方法,该制备方法包括如下步骤:
1)氮化铝粉体表面改性:按比例称取氮化铝、2wt%氧化铝、4wt%磷酸二氢铝,加入无水乙醇进行球磨,粉体:无水乙醇:氧化铝磨球=1:1:4,球磨12h,干燥后得到改性氮化铝粉体;
2)配料:称取改性后的氮化铝粉体(固含量为60wt%)、氧化钇(5wt%)、柠檬酸胺(2wt%)、丙三醇(8wt%)、聚乙烯醇(4wt%),加入去离子水中,球磨12h~20h,得到流延浆料;
3)真空除泡:向上述流延浆料中加入消泡剂正丁醇,设置真空度为-0.1MPa,搅拌桨转速为20r/min,真空除泡时间15min,粘度2000~6000cps;
4)生坯的制备:将除泡后的浆料经流延机流延得到0.2~1mm的生坯坯体,流延过程中控制流延机刮刀高度为2mm,流延速度为300mm/min。再将得到的坯体用等静压机进行压制,提高陶瓷坯体的密度,压为100Mpa,保压时间为10min;
5)排胶:将得到的陶瓷生坯体首先以1℃/min的升温速率升至200℃;再以0.3℃/min的升温速率升温至450℃并保温1h;然后以1℃/min的升温速率至600℃,最后在600℃处保温3h;
6)烧结:将排胶后的陶瓷生坯在氮气气氛下于1700℃烧结6h,得到氮化铝陶瓷基片。
通过此工艺制得的流延浆料粘度为46.5mPa.s,制得的氮化铝陶瓷基片热导率为198W/m˙K。
实施例2
一种水基流延成型高导热氮化铝陶瓷基板的制备方法,该制备方法包括如下步骤:
1)氮化铝粉体表面改性:按比例称取氮化铝、2wt%氧化铝、4wt%磷酸二氢铝,加入无水乙醇进行球磨,粉体:无水乙醇:氧化铝磨球=1:1:4,球磨12h,干燥后得到改性氮化铝粉体;
2)配料:称取改性后的氮化铝粉体(固含量为65wt%)、氧化钇(5wt%)、柠檬酸胺(2wt%)、丙三醇(8wt%)、聚乙烯醇(4wt%),加入去离子水中,球磨12h~20h,得到流延浆料;
3)真空除泡:向上述流延浆料中加入消泡剂正丁醇,设置真空度为-0.1MPa,搅拌桨转速为20r/min,真空除泡时间15min,粘度2000~6000cps;
4)生坯的制备:将除泡后的浆料经流延机流延得到0.2~1mm的生坯坯体,流延过程中控制流延机刮刀高度为2mm,流延速度为300mm/min。再将得到的坯体用等静压机进行压制,提高陶瓷坯体的密度,压为100Mpa,保压时间为10min;
5)排胶:将得到的陶瓷生坯体首先以1℃/min的升温速率升至200℃;再以0.3℃/min的升温速率升温至450℃并保温1h;然后以1℃/min的升温速率至600℃,最后在600℃处保温3h;
6)烧结:将排胶后的陶瓷生坯在氮气气氛下于1700℃烧结6h,得到氮化铝陶瓷基片。
通过此工艺制得的流延浆料粘度为92.8mPa.s,制得的氮化铝陶瓷基片热导率为221W/m˙K。
实施例3
一种水基流延成型高导热氮化铝陶瓷基板的制备方法,该制备方法包括如下步骤:
1)氮化铝粉体表面改性:按比例称取氮化铝、2wt%氧化铝、4wt%磷酸二氢铝,加入无水乙醇进行球磨,粉体:无水乙醇:氧化铝磨球=1:1:4,球磨12h,干燥后得到改性氮化铝粉体;
2)配料:称取改性后的氮化铝粉体(固含量为70wt%)、氧化钇(5wt%)、柠檬酸胺(2wt%)、丙三醇(8wt%)、聚乙烯醇(4wt%),加入去离子水中,球磨12h~20h,得到流延浆料;
3)真空除泡:向上述流延浆料中加入消泡剂正丁醇,设置真空度为-0.1MPa,搅拌桨转速为20r/min,真空除泡时间15min,粘度2000~6000cps;
4)生坯的制备:将除泡后的浆料经流延机流延得到0.2~1mm的生坯坯体,流延过程中控制流延机刮刀高度为2mm,流延速度为300mm/min。再将得到的坯体用等静压机进行压制,提高陶瓷坯体的密度,压为100Mpa,保压时间为10min;
5)排胶:将得到的陶瓷生坯体首先以1℃/min的升温速率升至200℃;再以0.3℃/min的升温速率升温至450℃并保温1h;然后以1℃/min的升温速率至600℃,最后在600℃处保温3h;
6)烧结:将排胶后的陶瓷生坯在氮气气氛下于1700℃烧结6h,得到氮化铝陶瓷基片。
通过此工艺制得的流延浆料粘度为349.6mPa.s,制得的氮化铝陶瓷基片热导率为184W/m˙K。

Claims (9)

1.一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于,包括以下步骤:
1)氮化铝粉体表面改性:称取原料氮化铝、氧化铝、磷酸二氢铝,球磨12h,得到改性氮化铝粉体;
2)配料:称取改性后的氮化铝粉体、烧结助剂、分散剂、增塑剂、粘结剂,球磨12h~20h,得到流延浆料;
3)真空除泡:向所述流延浆料中加入消泡剂进行真空除泡;
4)生坯的制备:采用流延成型与冷等静压成型相结合工艺获得陶瓷生坯;
5)排胶:将得到的陶瓷生坯200℃~450℃下保温2~3h;
6)烧结:将排胶后的陶瓷生坯在氮气气氛下于1600℃~1750℃烧结4~6h。
2.根据权利要求1所述的一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于:所述步骤1)中氧化铝的质量分数为2wt%,磷酸二氢铝的质量分数为4wt%,研磨介质为无水乙醇,磨球为氧化铝,原料粉体:无水乙醇:磨球的质量比1:1:4。
3.根据权利要求2所述的一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于:所述步骤1)所述的氮化铝粉体,氮化铝粉体纯度为95%~99%,粒径为0.8μm~1.2μm,Fe杂质含量小于80ppm,O含量低于1.2%。
4.根据权利要求1所述的一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于:所述步骤2)中烧结助剂为氧化钇、氧化镝、碳酸锂中的一种或几种,分散剂为柠檬酸胺,增塑剂为丙三醇,粘结剂为聚乙烯醇。
5.根据权利要求1所述的一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于:所述步骤2)中各物料按照质量份数比为:改性后的氮化铝粉体60份~70份,分散剂0.5份~3.5份,增塑剂6份~12份,粘结剂3份~6份,烧结助剂1份~10份。
6.根据权利要求1所述的一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于:所述步骤3)消泡剂为正丁醇,真空除泡条件为:真空度为-0.04~-0.1MPa,搅拌桨转速20r/min,真空除泡时间为10~20min,粘度在2000~6000cps。
7.根据权利要求1所述的一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于:所述步骤4)流延成型中,流延机刮刀高度为0.3~5mm,流延速度为100~500mm/min。
8.根据权利要求7所述的一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于:所述步骤4)冷等静压成型的等静压压力为50~120Mpa,保压时间为5~10min。
9.根据权利要求1所述的一种水基流延成型高导热氮化铝陶瓷基板的制备方法,其特征在于:所述步骤5)排胶工艺为200℃之前升温速率为1℃/min;200℃~450℃为0.3℃/min;450℃保温1h;450℃~600℃为1℃/min。最后在600℃处保温3h。
CN202011036525.2A 2020-09-28 2020-09-28 一种水基流延成型高导热氮化铝陶瓷基板的制备方法 Pending CN112142474A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011036525.2A CN112142474A (zh) 2020-09-28 2020-09-28 一种水基流延成型高导热氮化铝陶瓷基板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011036525.2A CN112142474A (zh) 2020-09-28 2020-09-28 一种水基流延成型高导热氮化铝陶瓷基板的制备方法

Publications (1)

Publication Number Publication Date
CN112142474A true CN112142474A (zh) 2020-12-29

Family

ID=73894188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011036525.2A Pending CN112142474A (zh) 2020-09-28 2020-09-28 一种水基流延成型高导热氮化铝陶瓷基板的制备方法

Country Status (1)

Country Link
CN (1) CN112142474A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213944A (zh) * 2021-05-24 2021-08-06 南京工程学院 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
CN113563103A (zh) * 2021-07-01 2021-10-29 盐城工学院 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法
CN115368142A (zh) * 2022-07-28 2022-11-22 杭州大和江东新材料科技有限公司 一种低介电损耗氮化铝陶瓷材料及其制备方法
CN115745622A (zh) * 2022-11-30 2023-03-07 福建华清电子材料科技有限公司 一种打印机加热条用氮化铝陶瓷的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203809A (ja) * 1997-01-17 1998-08-04 Mitsui Chem Inc 流動性が改良された窒化アルミニウム粉末
JPH10324510A (ja) * 1997-03-25 1998-12-08 Mitsui Chem Inc 窒化アルミニウム粉末及びその製造方法
US20100173768A1 (en) * 2009-01-08 2010-07-08 Battelle Energy Alliance, Llc Method of forming aluminum oxynitride material and bodies formed by such methods
CN104649677A (zh) * 2013-11-18 2015-05-27 北京大学 一种凝胶流延制备氮化铝陶瓷基片的方法
CN106938935A (zh) * 2017-04-26 2017-07-11 南通博泰美术图案设计有限公司 改性氮化铝陶瓷基片及其生产方法
CN107188568A (zh) * 2017-07-11 2017-09-22 中国人民大学 一种氮化铝陶瓷基板及其制备方法
CN107311124A (zh) * 2017-07-13 2017-11-03 天津纳德科技有限公司 一种制备具有高温耐水性氮化铝粉体的方法
CN111697229A (zh) * 2019-03-14 2020-09-22 浙江浙能中科储能科技有限公司 一种水系电池中具有无机修饰层的复合锌负极及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203809A (ja) * 1997-01-17 1998-08-04 Mitsui Chem Inc 流動性が改良された窒化アルミニウム粉末
JPH10324510A (ja) * 1997-03-25 1998-12-08 Mitsui Chem Inc 窒化アルミニウム粉末及びその製造方法
US20100173768A1 (en) * 2009-01-08 2010-07-08 Battelle Energy Alliance, Llc Method of forming aluminum oxynitride material and bodies formed by such methods
CN104649677A (zh) * 2013-11-18 2015-05-27 北京大学 一种凝胶流延制备氮化铝陶瓷基片的方法
CN106938935A (zh) * 2017-04-26 2017-07-11 南通博泰美术图案设计有限公司 改性氮化铝陶瓷基片及其生产方法
CN107188568A (zh) * 2017-07-11 2017-09-22 中国人民大学 一种氮化铝陶瓷基板及其制备方法
CN107311124A (zh) * 2017-07-13 2017-11-03 天津纳德科技有限公司 一种制备具有高温耐水性氮化铝粉体的方法
CN111697229A (zh) * 2019-03-14 2020-09-22 浙江浙能中科储能科技有限公司 一种水系电池中具有无机修饰层的复合锌负极及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHICHAO LIU等: "Preparation of Aluminum Nitride Ceramics by Aqueous Tape Casting", 《MATERIALS AND MANUFACTURING PROCESSES》 *
张朝晖: "《放电等离子烧结技术及其在钛基复合材料制备中的应用》", 30 March 2018, 国防工业出版社 *
钟雪: "AlN陶瓷的水基流延成型及放电等离子烧结制备", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213944A (zh) * 2021-05-24 2021-08-06 南京工程学院 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
CN113563103A (zh) * 2021-07-01 2021-10-29 盐城工学院 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法
CN115368142A (zh) * 2022-07-28 2022-11-22 杭州大和江东新材料科技有限公司 一种低介电损耗氮化铝陶瓷材料及其制备方法
CN115368142B (zh) * 2022-07-28 2023-07-14 杭州大和江东新材料科技有限公司 一种低介电损耗氮化铝陶瓷材料及其制备方法
CN115745622A (zh) * 2022-11-30 2023-03-07 福建华清电子材料科技有限公司 一种打印机加热条用氮化铝陶瓷的制备方法
CN115745622B (zh) * 2022-11-30 2023-08-22 福建华清电子材料科技有限公司 一种打印机加热条用氮化铝陶瓷的制备方法

Similar Documents

Publication Publication Date Title
CN112142474A (zh) 一种水基流延成型高导热氮化铝陶瓷基板的制备方法
CN112374896B (zh) 一种高性能氮化铝陶瓷基板的浆料和制备方法
CN113200747B (zh) 一种低温烧结的氮化铝陶瓷材料、氮化铝流延浆料及应用
US20240116821A1 (en) Preparation method of high-thermal-conductivity and net-size silicon nitride ceramic substrate
CN112939607B (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN111484335A (zh) 氮化硅陶瓷浆料用烧结助剂复合添加剂、氮化硅陶瓷浆料及其制备方法和应用
CN115028460B (zh) 一种高导热氮化硅陶瓷基片的制备方法
CN115028461A (zh) 一种硅粉流延成型制备高导热氮化硅陶瓷基片的方法
CN114890797A (zh) 一种氮化硅陶瓷基片的制备方法
CN113185303A (zh) 一种包覆氮化铝粉体的制备方法及制得的氮化铝陶瓷基板
CN115849885B (zh) 高纯高强度氧化铝陶瓷基板及其制备方法
CN113105252A (zh) 一种制备氮化硅陶瓷的烧结助剂及其应用、氮化硅陶瓷的制备方法
CN113213894A (zh) 一种高纯氧化铝陶瓷基板及其制备工艺
CN115259889B (zh) 一种多孔碳化硅陶瓷及其制备方法和应用、铝碳化硅复合材料
CN117185825A (zh) 一种氮化硅陶瓷基板及其制备方法和应用
CN113773091B (zh) 氮化铝陶瓷流延浆料、氮化铝陶瓷基板及制备方法
CN114716251A (zh) 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
CN114751754A (zh) 一种氮化硅陶瓷基板素坯的制备方法
CN110937902A (zh) 一种氮化铝陶瓷基片的制备方法
CN118164766B (zh) 一种氮化铝陶瓷烧结体及其制备方法和氮化铝陶瓷基板
CN109761617B (zh) F-Ca-Lu掺杂氮化铝复相陶瓷生坯及其制备工艺
CN112707733A (zh) 一种高温抗氧化石墨坩埚
CN115710129B (zh) 一种氮化硅陶瓷的制备方法
CN116986912A (zh) 一种高导热性先进陶瓷功能材料的制备系统
CN116768634B (zh) AlON粉体的抗水化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201229