CN112374896B - 一种高性能氮化铝陶瓷基板的浆料和制备方法 - Google Patents
一种高性能氮化铝陶瓷基板的浆料和制备方法 Download PDFInfo
- Publication number
- CN112374896B CN112374896B CN202011264231.5A CN202011264231A CN112374896B CN 112374896 B CN112374896 B CN 112374896B CN 202011264231 A CN202011264231 A CN 202011264231A CN 112374896 B CN112374896 B CN 112374896B
- Authority
- CN
- China
- Prior art keywords
- parts
- aluminum nitride
- slurry
- ceramic substrate
- nitride ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
- C04B2235/3869—Aluminium oxynitrides, e.g. AlON, sialon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明提供一种高性能氮化铝陶瓷基板的浆料和制备方法,该浆料由以下质量份组分组成:100份的氮化铝粉体、1‑8份的烧结助剂、0.1‑4份的赛隆颗粒、1‑6份的分散剂、38‑68份的溶剂、3‑12份的粘结剂和3‑10份的增塑剂;所述烧结助剂由以下质量份组分组成:0‑8份的Y2O3、0‑5份的Sm2O3、0‑1份的La2O3和0.05‑3份的金属铝粉;所述溶剂为无水乙醇、异丙醇、正丁醇中的一种或几种。赛隆颗粒弥散在浆料体系中,起到增韧作用;多元的烧结助剂有助于降低烧结温度,促进烧结致密;金属铝粉可与氧杂质反应,有效提高热导率,在氮气氛围下有利于氮化铝的生成,进一步促进烧结致密化。应用醇类等无毒、低毒、低成本溶剂代替苯类、酮类等有毒溶剂,解决氮化铝陶瓷制备对人和环境不友好的问题。
Description
技术领域
本发明涉及氮化铝陶瓷基板制备技术领域,尤其是指一种高性能氮化铝陶瓷基板的浆料和制备方法。
背景技术
随着大功率和超大规模集成电路的发展,集成电路和基板之间的散热要求越来越高,因此基板材料需要具有较高的热导率和电阻率。
氮化铝(A1N)是一种六方纤锌矿结构的共价键化合物,以热导率高、高温绝缘性和介电性能好、高温下材料强度大、热膨胀系数与半导体硅材料相匹配、无毒等一系列优点,成为了理想的电子封装散热材料以及组装超大规模集成电路的高性能陶瓷基板材料。
目前,氮化铝陶瓷基板的主要制备方法是流延成型,且绝大数为有机流延成型,因为氮化铝具有易水解性,在水基流延成型中各种变量难以把控,难以实现大规模、连续性生产。但有机流延成型采用的是具有一定毒性的有机溶剂(苯、甲苯、二甲苯、丙酮、丁酮等),易燃且对环境的污染较大,危害人体健康。此外,目前大部分有关于氮化铝流延成型的研究都注重于提升氮化铝陶瓷的热导率,而对于其力学性能的研究比较少;在改善氮化铝陶瓷力学性能的同时,却忽略了对氮化铝陶瓷热导率的影响。
发明内容
本发明所要解决的技术问题是:降低氮化铝陶瓷基板流延成型工艺的污染问题,解决目前氮化铝陶瓷基板基板偏软、加工困难的问题。
为了解决上述技术问题,本发明采用的技术方案为:
一种高性能氮化铝陶瓷基板的浆料,由以下质量份组分组成:100份的氮化铝粉体、1-8份的烧结助剂、0.1-4份的赛隆颗粒、1-6份的分散剂、38-68份的溶剂、3-12份的粘结剂和3-10份的增塑剂;所述烧结助剂由以下质量份组分组成:0-8份的Y2O3、0-5份的Sm2O3、0-1份的La2O3和0.05-3份的金属铝粉;所述溶剂为无水乙醇、异丙醇、正丁醇中的一种或几种。
进一步地,所述烧结助剂由以下质量份组分组成:1-6份的Y2O3、0-5份的Sm2O3、0-1份的La2O3和0.05-3份的金属铝粉。
进一步地,所述烧结助剂中Y2O3、Sm2O3和金属铝粉按照Y2O3:Sm2O3:金属铝粉=1:(0.1-0.5):(0.1-0.5)的比例混合;所述金属铝粉的粒径为2-3μm。
进一步地,所述溶剂由无水乙醇与正丁醇按照无水乙醇:正丁醇=1:1的比例混合形成,或由异丙醇与正丁醇按照异丙醇:正丁醇=1:1的比例混合形成。
进一步地,所述分散剂为磷酸三乙酯、蓖麻油、三油酸甘油酯中的一种或几种,所述粘结剂为聚乙烯醇缩丁醛,增塑剂为邻苯二甲酸丁苄酯。
一种高性能氮化铝陶瓷基板的制备方法,包括依次执行的以下步骤:
S1:配制权利要求1至5任一所述的高性能氮化铝陶瓷基板的浆料:按照所需质量份将氮化铝粉体、烧结助剂、分散剂和溶剂加入到球磨罐中,按照氮化铝粉体:赛隆陶瓷球=1:1-6的比例往球磨罐中加入赛隆陶瓷球,在球磨转速为250-500r/min的条件下,球磨6-20h后再加入粘结剂和增塑剂,继续球磨6-20h得到浆料;
S2:除泡:往浆料中加入0.1-2质量份的除泡剂,真空负压除泡10-50min后过滤得到流延浆料;
S3:流延成型:将流延浆料转至流延机上成型得到坯带,将坯带干燥后冲压、裁切形成坯体;
S4:坯体预处理:所述坯体层叠后,先经过等静压处理,然后依次进行真空排胶处理、空气排胶处理,最后得到待烧结坯体;
S5:将待烧结坯体置于流动氮气环境中,在1650-1850℃条件下烧结2-8h,得到氮化铝陶瓷基板。
进一步地,所述真空排胶处理的过程为:在真空排胶炉中,先从室温升温至200-250℃,保温0.5~2h,然后再升温至300-350℃,保温0.5~2h,最后升温至500~650℃,保温1~5h;所述空气排胶处理的过程为:在空气排胶炉中,升温至250-350℃,保温0.5~4h;所述真空排胶处理的升温速率为0.5~4℃/min,所述空气排胶处理的升温速率为0.5~4℃/min。
进一步地,将坯体从真空排胶炉中转至空气排胶炉前,先将坯体降温至室温。
进一步地,所述等静压处理为:在压力为90~200MPa、温度为25~100℃的条件下,等静压压制5~30min。
进一步地,所述浆料的粘度为7000-14500cps;所述赛隆陶瓷球中包含至少39wt%的α赛隆相;所述除泡剂由正丁醇、乙二醇按照质量比1:1的比例混合形成;流延成型时,刮刀高度为0.3~0.9mm,流延带速为1~5m/min。
本发明的有益效果在于:赛隆颗粒弥散在浆料体系中,起到增韧作用;多元的烧结助剂有助于降低烧结温度,促进烧结致密;金属铝粉可与氧杂质反应,有效提高热导率,在氮气氛围下有利于氮化铝的生成,进一步促进烧结致密化。应用醇类等无毒、低毒、低成本溶剂代替苯类、酮类等有毒溶剂,解决氮化铝陶瓷制备对人和环境不友好的问题。
具体实施方式
本发明最关键的构思在于:采用稀土金属、IIA族金属或ⅢA族金属及其氧化物、金属铝粉为烧结助剂,并以赛隆(SiAlON)陶瓷球作为球磨球,通过球磨的方式引入赛隆颗粒弥散增韧,制备出高热导率、高抗弯强度的氮化铝陶瓷基板,同时应用醇类等无毒、低毒、低成本溶剂代替苯类、酮类等有毒溶剂,解决氮化铝陶瓷制备对人和环境不友好的问题。通过等静压的方式对氮化铝流延素坯进行二次成型,促进烧结的致密化。
为了进一步论述本发明构思的可行性,根据本发明的技术内容、构造特征、所实现目的及效果的具体实施方式详予说明。
实施例1
一种高性能氮化铝陶瓷基板的浆料,由以下质量份组分组成:100份的氮化铝粉体、1-8份的烧结助剂、0.1-4份的赛隆颗粒、1-6份的分散剂、38-68份的溶剂、3-12份的粘结剂和3-10份的增塑剂;所述烧结助剂由以下质量份组分组成:0-8份的Y2O3、0-5份的Sm2O3、0-1份的La2O3和0.05-3份的金属铝粉;所述溶剂为无水乙醇、异丙醇、正丁醇中的一种或几种。
优选地,所述烧结助剂由以下质量份组分组成:1-6份的Y2O3、0-5份的Sm2O3、0-1份的La2O3和0.05-3份的金属铝粉。
更优选地,所述烧结助剂中Y2O3、Sm2O3和金属铝粉按照Y2O3:Sm2O3:金属铝粉=1:(0.1-0.5):(0.1-0.5)的比例混合;所述金属铝粉的粒径为2-3μm。
所述溶剂由无水乙醇与正丁醇按照无水乙醇:正丁醇=1:1的比例混合形成,或由异丙醇与正丁醇按照异丙醇:正丁醇=1:1的比例混合形成。
所述分散剂为磷酸三乙酯、蓖麻油、三油酸甘油酯中的一种或几种,所述粘结剂为聚乙烯醇缩丁醛,增塑剂为邻苯二甲酸丁苄酯。
赛隆颗粒弥散在浆料体系中,起到增韧作用,通过裂纹偏转、裂纹桥接以及残余应力等增韧机制,有效提高氮化铝陶瓷基板的力学性能;多元的烧结助剂有助于降低烧结温度,促进烧结致密;2-3μm的金属铝粉可与氧杂质反应,有效提高热导率,在氮气氛围下有利于氮化铝的生成,进一步促进烧结致密化。应用醇类等无毒、低毒、低成本溶剂代替苯类、酮类等有毒溶剂,解决氮化铝陶瓷制备对人和环境不友好的问题;此外,醇类溶剂的溶解特性好,挥发速率稳定,对坯体影响小。分散剂通过空间位阻作用使浆料中的粉体分散均匀。
实施例2
一种高性能氮化铝陶瓷基板的制备方法,包括依次执行的以下步骤:
S1:配制上述所述的高性能氮化铝陶瓷基板的浆料:按照所需质量份将氮化铝粉体、烧结助剂、分散剂和溶剂加入到球磨罐中,按照氮化铝粉体:赛隆陶瓷球=1:1-6的比例往球磨罐中加入赛隆陶瓷球,在球磨转速为250-500r/min的条件下,球磨6-20h后再加入粘结剂和增塑剂,继续球磨6-20h得到浆料。
S2:除泡:往浆料中加入0.1-2质量份的除泡剂,真空负压除泡10-50min后过滤得到流延浆料。
S3:流延成型:将流延浆料转至流延机上成型得到坯带,将坯带干燥后冲压、裁切形成坯体。
S4:坯体预处理:所述坯体层叠后,先经过等静压处理,然后依次进行真空排胶处理、空气排胶处理,最后得到待烧结坯体。
S5:将待烧结坯体置于流动氮气环境中,在1650-1850℃条件下烧结2-8h,得到氮化铝陶瓷基板。
实施例3
一种高性能氮化铝陶瓷基板的制备方法,包括依次执行的以下步骤:
S1:配制上述所述的高性能氮化铝陶瓷基板的浆料:按照所需质量份将氮化铝粉体、烧结助剂、分散剂和溶剂加入到球磨罐中,按照氮化铝粉体:赛隆陶瓷球=1:1-6的比例往球磨罐中加入赛隆陶瓷球,在球磨转速为250-500r/min的条件下,球磨6-20h后再加入粘结剂和增塑剂,继续球磨6-20h得到浆料,所述浆料的粘度控制在7000-14500cps即可。
所述赛隆陶瓷球中包含至少39wt%的α赛隆相。通过球磨方式引入的赛隆颗粒作为弥散增韧体系,有效提高氮化铝陶瓷的力学性能,并保持高热导率,该添加工艺简单、成本低。
S2:除泡:往浆料中加入0.1-2质量份的除泡剂,真空负压除泡10-50min后过滤得到流延浆料;所述除泡剂由正丁醇、乙二醇按照质量比1:1的比例混合形成;
S3:流延成型:将流延浆料转至流延机上,在刮刀高度为0.3~0.9mm、流延带速为1~5m/min条件下流延成型得到坯带,将坯带干燥后冲压、裁切形成坯体。
S4:坯体预处理:所述坯体层叠后,先在压力为90~200MPa、温度为25~100℃的条件下,等静压压制5~30min;然后进行真空排胶处理:在真空排胶炉中,先从室温升温至200-250℃,保温0.5~2h,然后再升温至300-350℃,保温0.5~2h,最后升温至500~650℃,保温1~5h,升温速率为0.5~4℃/min;将坯体降温至室温,然后转入空气排胶炉进行空气排胶处理:升温至250-350℃,保温0.5~4h,升温速率为0.5~4℃/min,最后得到待烧结坯体。
通过等静压处理使坯体致密度更高,有利于后续制备高性能的烧结体;采用两步排胶法,有效避免加入的金属铝粉被氧化,减少杂质氧的引入量,且分段式升温方式能更好的排除坯体剩余的有机物,有效避免坯体变形、开裂,提高氮化铝陶瓷基板的烧结质量。
S5:将待烧结坯体置于流动氮气环境中,在1650-1850℃条件下烧结2-8h,得到氮化铝陶瓷基板。
实施例2-3中,以赛隆陶瓷球作为球磨球,通过球磨的方式引入赛隆颗粒,在过滤时,将赛隆陶瓷球以及少量粒径较大颗粒除掉。由于球磨时间与球磨转速的不同,发现过滤后的赛隆陶瓷球有0.1-4质量份的损耗,故本发明中通过球磨的方式往浆料中引入0.1-4质量份的赛隆颗粒。所述赛隆陶瓷球中包含至少39wt%的α赛隆相,还包含β相Si3N4及少量YAG相。
为进一步论述本发明的有益效果,根据以下试验例、对比例以及相应的测试结果作进一步说明:
试验例1
一种高性能氮化铝陶瓷基板的制备方法,包括依次执行的以下步骤:
S1:配制浆料:以质量份计算,将100份的氮化铝粉体、1份的Y2O3、4份的Sm2O3、0.3份的2-3μm的金属铝粉、3份的磷酸三乙酯和44份的溶剂加入到球磨罐中,所述溶剂由异丙醇与正丁醇按照异丙醇:正丁醇=1:1的比例混合形成,往球磨罐中加入150份的赛隆陶瓷球,以350r/min的转速球磨6h后再加入5份的聚乙烯醇缩丁醛和5份的邻苯二甲酸丁苄酯,继续球磨6h得到浆料;
S2:除泡:往浆料中加入0.4质量份的除泡剂,真空-0.1MPa条件下除泡30min,过滤得到流延浆料;过滤后发现赛隆陶瓷球损耗0.3质量份;
S3:流延成型:将流延浆料转至流延机上,在刮刀高度为0.35mm、流延带速为1.2m/min条件下流延成型得到坯带,将坯带干燥后冲压、裁切形成50*50mm2的坯体;
S4:坯体预处理:所述坯体层叠后,先在压力为200MPa、温度为30℃的条件下,等静压压制5min,得到3*50*50mm3的坯体;然后进行真空排胶处理:在真空排胶炉中,先以0.5℃/min速率从室温升温至200℃,保温1h,然后继续以0.5℃/min速率升温至350℃,保温1h,最后以1℃/min速率升温至550℃,保温1h;将坯体降温至室温,然后转入空气排胶炉进行空气排胶处理:以1℃/min速率升温至320℃,保温3h,得到待烧结坯体;
S5:将待烧结坯体置于流动氮气环境中,在1850℃条件下烧结4h,得到氮化铝陶瓷基板。
对比例1
一种氮化铝陶瓷基板的制备方法,与试验例1的差别在于,球磨所采用的是氧化锆球,而非赛隆陶瓷球。
试验例2
一种高性能氮化铝陶瓷基板的制备方法,与试验例1的差别在于,所述烧结助剂由2.5份的Y2O3、2.5份的La2O3以及0.3份的金属粉组成。
对比例2
以市面上买到的氮化铝陶瓷基板作为对比例2。
对上述试验例1-2以及对比例1-2进行测试:利用阿基米德排水法测试样品的密度;利用三点弯曲试验测得样品的弯曲强度;利用闪光法测得样品的热导率。数据如表1所示:
表1不同氮化铝陶瓷基板的性能结果
试验例1 | 对比例1 | 试验例2 | 对比例2 | |
热导率,W/(mK) | 175 | 172 | 173 | 180 |
抗弯强度,MPa | 504 | 471 | 489 | 357 |
密度,g/cm<sup>3</sup> | 3.37 | 3.37 | 3.33 | 3.33 |
从表1中的数据可以看出,本发明制备的氮化铝陶瓷基板与市面所售氮化铝基板相比,热导率相差无几,而弯曲强度提升了将近30%,致密度高且均匀,解决了目前氮化铝陶瓷基板偏软、加工困难、环境污染较大等难问题。本发明制备的氮化铝陶瓷基板时,以赛隆陶瓷球作为球磨球,通过球磨的方式引入的赛隆颗粒作为弥散增韧体系,有效提高氮化铝陶瓷的力学性能,并保持高热导率。该添加赛隆颗粒的工艺简单、成本低。
综上所述,本发明提供的一种高性能氮化铝陶瓷基板的浆料和制备方法,具有以下效果:(1)利用多元烧结助剂,配合金属铝粉的加入,大幅度降低杂质氧的引入,降低烧结温度,促进烧结致密化,有利于提高氮化铝陶瓷的热导率和力学性能;(2)通过球磨方式引入的赛隆颗粒作为弥散增韧体系,有效提高氮化铝陶瓷的力学性能,并保持高热导率,该添加工艺简单、成本低;(3)选用醇类等无毒或低毒溶剂代替苯类、酮类等有毒溶剂,溶解特性好,挥发速率稳定,对坯体影响小;(3)通过等静压处理使坯体致密度更高,有利于后续制备高性能的烧结体;(4)采用两步排胶法(真空排胶和空气排胶),有效避免加入的金属铝粉被氧化,减少杂质氧的引入量,且分段式升温方式能更好的排除坯体剩余的有机物,有效避免坯体变形、开裂,提高氮化铝陶瓷基板的烧结质量。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (8)
1.一种高性能氮化铝陶瓷基板的浆料,其特征在于,由以下质量份组分组成:100份的氮化铝粉体、1-8份的烧结助剂、0.1-4份的赛隆颗粒、1-6份的分散剂、38-68份的溶剂、3-12份的粘结剂和3-10份的增塑剂;所述溶剂为无水乙醇、异丙醇、正丁醇中的一种或几种;
所述烧结助剂由以下质量份组分组成:1-6份的Y2O3、0-5份的Sm2O3、0-1份的La2O3和0.05-3份的金属铝粉;
所述烧结助剂中Y2O3、Sm2O3和金属铝粉按照Y2O3∶Sm2O3∶金属铝粉=1∶(0.1-0.5)∶(0.1-0.5)的比例混合;所述金属铝粉的粒径为2-3μm;
一种高性能氮化铝陶瓷基板的制备方法,包括依次执行的以下步骤:
S1:配制所述的高性能氮化铝陶瓷基板的浆料:按照所需质量份将氮化铝粉体、烧结助剂、分散剂和溶剂加入到球磨罐中,按照氮化铝粉体∶赛隆陶瓷球=1∶1-6的比例往球磨罐中加入赛隆陶瓷球,在球磨转速为250-500r/min的条件下,球磨6-20h后再加入粘结剂和增塑剂,继续球磨6-20h得到浆料;
S2:除泡:往浆料中加入0.1-2质量份的除泡剂,真空负压除泡10-50min后过滤得到流延浆料;
S3:流延成型:将流延浆料转至流延机上成型得到坯带,将坯带干燥后冲压、裁切形成坯体;
S4:坯体预处理:所述坯体层叠后,先经过等静压处理,然后依次进行真空排胶处理、空气排胶处理,最后得到待烧结坯体;
S5:将待烧结坯体置于流动氮气环境中,在1650-1850℃条件下烧结2-8h,得到氮化铝陶瓷基板。
2.如权利要求1所述的高性能氮化铝陶瓷基板的浆料,其特征在于,所述溶剂由无水乙醇与正丁醇按照无水乙醇∶正丁醇=1∶1的比例混合形成,或由异丙醇与正丁醇按照异丙醇∶正丁醇=1∶1的比例混合形成。
3.如权利要求2所述的高性能氮化铝陶瓷基板的浆料,其特征在于,所述分散剂为磷酸三乙酯、蓖麻油、三油酸甘油酯中的一种或几种,所述粘结剂为聚乙烯醇缩丁醛,增塑剂为邻苯二甲酸丁苄酯。
4.一种高性能氮化铝陶瓷基板的制备方法,其特征在于,包括依次执行的以下步骤:
S1:配制权利要求1至3任一所述的高性能氮化铝陶瓷基板的浆料:按照所需质量份将氮化铝粉体、烧结助剂、分散剂和溶剂加入到球磨罐中,按照氮化铝粉体:赛隆陶瓷球=1∶1-6的比例往球磨罐中加入赛隆陶瓷球,在球磨转速为250-500r/min的条件下,球磨6-20h后再加入粘结剂和增塑剂,继续球磨6-20h得到浆料;
S2:除泡:往浆料中加入0.1-2质量份的除泡剂,真空负压除泡10-50min后过滤得到流延浆料;
S3:流延成型:将流延浆料转至流延机上成型得到坯带,将坯带干燥后冲压、裁切形成坯体;
S4:坯体预处理:所述坯体层叠后,先经过等静压处理,然后依次进行真空排胶处理、空气排胶处理,最后得到待烧结坯体;
S5:将待烧结坯体置于流动氮气环境中,在1650-1850℃条件下烧结2-8h,得到氮化铝陶瓷基板。
5.如权利要求4所述的高性能氮化铝陶瓷基板的制备方法,其特征在于,所述真空排胶处理的过程为:在真空排胶炉中,先从室温升温至200-250℃,保温0.5~2h,然后再升温至300-350℃,保温0.5~2h,最后升温至500~650℃,保温1~5h;所述空气排胶处理的过程为:在空气排胶炉中,升温至250-350℃,保温0.5~4h;所述真空排胶处理的升温速率为0.5~4℃/min,所述空气排胶处理的升温速率为0.5~4℃/min。
6.如权利要求5所述的高性能氮化铝陶瓷基板的制备方法,其特征在于,将坯体从真空排胶炉中转至空气排胶炉前,先将坯体降温至室温。
7.如权利要求4至6任一所述的高性能氮化铝陶瓷基板的制备方法,其特征在于,所述等静压处理为:在压力为90~200MPa、温度为25~100℃的条件下,等静压压制5~30min。
8.如权利要求7所述的高性能氮化铝陶瓷基板的制备方法,其特征在于,所述浆料的粘度为7000-14500cps;所述赛隆陶瓷球中包含至少39wt%的α赛隆相;所述除泡剂由正丁醇、乙二醇按照质量比1∶1的比例混合形成;流延成型时,刮刀高度为0.3~0.9mm,流延带速为1~5m/min。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011264231.5A CN112374896B (zh) | 2020-11-12 | 2020-11-12 | 一种高性能氮化铝陶瓷基板的浆料和制备方法 |
PCT/CN2021/117499 WO2022100249A1 (zh) | 2020-11-12 | 2021-09-09 | 一种高性能氮化铝陶瓷基板的浆料和制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011264231.5A CN112374896B (zh) | 2020-11-12 | 2020-11-12 | 一种高性能氮化铝陶瓷基板的浆料和制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112374896A CN112374896A (zh) | 2021-02-19 |
CN112374896B true CN112374896B (zh) | 2022-05-27 |
Family
ID=74583531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011264231.5A Active CN112374896B (zh) | 2020-11-12 | 2020-11-12 | 一种高性能氮化铝陶瓷基板的浆料和制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112374896B (zh) |
WO (1) | WO2022100249A1 (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112374896B (zh) * | 2020-11-12 | 2022-05-27 | 广东工业大学 | 一种高性能氮化铝陶瓷基板的浆料和制备方法 |
CN112811910A (zh) * | 2021-03-26 | 2021-05-18 | 无锡海古德新技术有限公司 | 一种氮化铝基功能陶瓷材料及其制备方法 |
CN113121244B (zh) * | 2021-03-26 | 2022-07-29 | 福建华清电子材料科技有限公司 | 一种高强度氮化铝陶瓷基板及其制备方法 |
CN113773091B (zh) * | 2021-08-11 | 2023-10-24 | 臻金新材(深圳)有限公司 | 氮化铝陶瓷流延浆料、氮化铝陶瓷基板及制备方法 |
CN114315371A (zh) * | 2021-10-25 | 2022-04-12 | 郴州功田电子陶瓷技术有限公司 | 一种氮化铝陶瓷基板 |
CN114014669B (zh) * | 2021-12-16 | 2023-06-30 | 河北中瓷电子科技股份有限公司 | 一种抗拉伸氮化铝生瓷基片的制备方法 |
CN114436651A (zh) * | 2022-03-14 | 2022-05-06 | 湖北丹瑞新材料科技有限公司 | 一种ysz陶瓷芯片的制备方法及其应用 |
CN114573352B (zh) * | 2022-04-06 | 2023-04-11 | 郑州大学 | 一种赛隆-氮化硅生物陶瓷及其制备方法 |
CN114890712A (zh) * | 2022-05-19 | 2022-08-12 | 中国振华集团云科电子有限公司 | 一种高热稳定性覆铜板制备方法 |
CN115490528B (zh) * | 2022-10-31 | 2023-04-18 | 安徽瑞泰新材料科技有限公司 | 一种高强度耐火砖及其制备方法 |
CN116332653B (zh) * | 2022-12-19 | 2024-03-15 | 湖南聚能陶瓷材料有限公司 | 一种高性能氮化铝陶瓷材料及其制备方法 |
CN116903379A (zh) * | 2023-01-13 | 2023-10-20 | 深圳市禾望电气股份有限公司 | 一种复合氮化铝陶瓷基板的制备方法 |
CN116514534B (zh) * | 2023-04-21 | 2024-04-30 | 厦门海赛米克新材料科技有限公司 | 一种陶瓷封装用流延片及其制备方法 |
CN116396081A (zh) * | 2023-04-24 | 2023-07-07 | 广东工业大学 | 一种低温烧结制备高强度氮化铝陶瓷的方法 |
CN116768635B (zh) * | 2023-07-10 | 2023-11-28 | 兰溪泛翌精细陶瓷有限公司 | 一种改性氮化硅复合材料及其制备方法 |
CN117229077B (zh) * | 2023-11-10 | 2024-02-06 | 宜兴必方陶瓷科技有限公司 | 一种基于陶瓷微粉的高强度耐火材料及其制备方法 |
CN117756555B (zh) * | 2023-12-22 | 2024-09-03 | 江苏富乐华半导体科技股份有限公司 | 一种高可靠性氮化铝覆铝基板的制备方法 |
CN118459231A (zh) * | 2024-04-23 | 2024-08-09 | 株洲艾森达新材料科技有限公司 | 低能耗低voc氮化硅超薄基板的流延成型方法 |
CN118271097B (zh) * | 2024-05-29 | 2024-08-06 | 株洲艾森达新材料科技有限公司 | 一种芯片封装用氮化铝陶瓷的制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69427722T2 (de) * | 1993-05-21 | 2002-05-08 | Kabushiki Kaisha Toshiba, Kawasaki | Sinterkörper aus Aluminiumnitriol und Verfahren zu seiner Herstellung |
CA2171548A1 (en) * | 1993-07-12 | 1995-01-26 | Junhong Zhao | Aluminum nitride sintered body with high thermal conductivity and its preparation |
JP3100871B2 (ja) * | 1995-07-11 | 2000-10-23 | 株式会社東芝 | 窒化アルミニウム焼結体 |
JP2007254190A (ja) * | 2006-03-22 | 2007-10-04 | Ngk Insulators Ltd | 窒化アルミニウム焼結体、窒化アルミニウム焼結体の製造方法、及び部材 |
CN110436932B (zh) * | 2019-08-19 | 2021-09-07 | 福建华清电子材料科技有限公司 | 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法 |
CN112374896B (zh) * | 2020-11-12 | 2022-05-27 | 广东工业大学 | 一种高性能氮化铝陶瓷基板的浆料和制备方法 |
-
2020
- 2020-11-12 CN CN202011264231.5A patent/CN112374896B/zh active Active
-
2021
- 2021-09-09 WO PCT/CN2021/117499 patent/WO2022100249A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN112374896A (zh) | 2021-02-19 |
WO2022100249A1 (zh) | 2022-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112374896B (zh) | 一种高性能氮化铝陶瓷基板的浆料和制备方法 | |
CN111484335A (zh) | 氮化硅陶瓷浆料用烧结助剂复合添加剂、氮化硅陶瓷浆料及其制备方法和应用 | |
CN112159236B (zh) | 高导热氮化硅陶瓷基板及其制备方法 | |
CN112811912B (zh) | 一种高性能氮化硅陶瓷基片的批量化烧结方法 | |
CN111875386A (zh) | 一种氮化铝陶瓷基板及其制备方法 | |
CN114890797A (zh) | 一种氮化硅陶瓷基片的制备方法 | |
CN112830797A (zh) | 一种高热导、净尺寸氮化硅陶瓷基片的制备方法 | |
CN115849885B (zh) | 高纯高强度氧化铝陶瓷基板及其制备方法 | |
CN112142474A (zh) | 一种水基流延成型高导热氮化铝陶瓷基板的制备方法 | |
CN114538900A (zh) | 一种高纯超薄高强度氧化铝陶瓷基板及其制备方法和应用 | |
CN115028460A (zh) | 一种高导热氮化硅陶瓷基片的制备方法 | |
CN113773092A (zh) | 氮化硅陶瓷基板生坯及其制备方法、陶瓷基板 | |
CN111099897A (zh) | 一种碳化硅复合材料及其制备方法 | |
CN114656245B (zh) | 一种氧化铝基复合陶瓷基板及其制备方法 | |
CN113800918B (zh) | 一种痕量原位碳诱导的Si3N4导热陶瓷材料及制备方法 | |
CN114716251A (zh) | 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法 | |
CN113233903A (zh) | 一种氮化硅陶瓷基板及其制备方法 | |
KR101559243B1 (ko) | 세라믹 조성물, 세라믹 소결체 및 이의 제조방법 | |
CN1421418A (zh) | 高热导率氮化铝陶瓷 | |
CN112608155A (zh) | 一种金属和氮化硅陶瓷高温共烧复合基板的方法 | |
CN116903378B (zh) | 一种微波低温预处理制备高强度低晶格氧缺陷氮化铝陶瓷的方法 | |
CN116462515A (zh) | 一种氮化硅陶瓷基板及其制备方法 | |
CN112441838B (zh) | 一种表面晶粒定向生长的氮化硅陶瓷及其制备方法 | |
CN116396081A (zh) | 一种低温烧结制备高强度氮化铝陶瓷的方法 | |
CN115677353A (zh) | 一种氮化铝基导电陶瓷及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |