CN116514534B - 一种陶瓷封装用流延片及其制备方法 - Google Patents

一种陶瓷封装用流延片及其制备方法 Download PDF

Info

Publication number
CN116514534B
CN116514534B CN202310435191.3A CN202310435191A CN116514534B CN 116514534 B CN116514534 B CN 116514534B CN 202310435191 A CN202310435191 A CN 202310435191A CN 116514534 B CN116514534 B CN 116514534B
Authority
CN
China
Prior art keywords
powder
ceramic
casting sheet
casting
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310435191.3A
Other languages
English (en)
Other versions
CN116514534A (zh
Inventor
黄奇凡
张财盛
罗明达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Haisai Mike New Material Technology Co ltd
Original Assignee
Xiamen Haisai Mike New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Haisai Mike New Material Technology Co ltd filed Critical Xiamen Haisai Mike New Material Technology Co ltd
Priority to CN202310435191.3A priority Critical patent/CN116514534B/zh
Publication of CN116514534A publication Critical patent/CN116514534A/zh
Application granted granted Critical
Publication of CN116514534B publication Critical patent/CN116514534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种陶瓷封装用流延片及其制备方法,流延片组成包括Al2O3粉体90~95wt%,SiO2粉体2~6wt%,CaO粉体0.3~1wt%,MgO粉体0.5~1.5wt%,Cr2O3粉体0.5~1.5wt%,MoO3粉体0.7~2wt%,分散剂占陶瓷粉体总重量的0.6~1.5wt%,粘结剂占陶瓷粉体总重量的6~10wt%,溶剂占陶瓷粉体总重量的20~30wt%,SiO2粉体和CaO粉体按照质量比为6~15配制。本发明通过对Al2O3粉体进行气流解碎处理,使得制得的流延片具有较大的孔径和孔容,烧结过程中,高温分解的有机物更容易从流延片的孔缝中溢出,烧结后碳残留少且介电损耗低,烧结后的产品信号传输损耗满足高频器件电子陶瓷封装需求。

Description

一种陶瓷封装用流延片及其制备方法
技术领域
本发明涉及电子材料技术领域,具体涉及一种陶瓷封装用流延片及其制备方法。
背景技术
近年来,随着电子设备朝小型化、多功能化、高频率和高功率化方向发展,对封装技术也提出了更高的要求。陶瓷材料具有优异的强度、绝缘特性被广泛应用于光通信器件、电力电子功率器件和功率激光器等封装外壳材料。
陶瓷封装外壳是利用流延成型工艺将陶瓷浆料制备成具有柔韧性的流延片,然后在流延片上进行打孔、印刷图案、叠层、烧结、电镀、钎焊和镀金等工序制备得到。由于在流延片上印刷的浆料是钨浆或钼浆,因此在烧结时需要在氮氢混合气体中进行。目前,量产上使用最多的流延片粘结剂材料是聚乙烯醇缩丁醛,该粘结剂在氮氢混合气体中烧结时碳残留较多,导致陶瓷材料介电损耗增大,难以在高频器件中使用。对此,专利公告号为CN112374899B一种流延浆料及其应用,提出聚碳酸酯为流延片粘结剂,目的在于解决降低陶瓷烧结后碳残留问题,然而适用于流延成型的聚碳酸酯粘结剂价格太贵,导致材料成本太高,并不适用于工业大批量生产。因此,制备出一种适用于批量化生产,且在氮氢气氛下烧结碳残留量少且介电损耗低的流延片是本行业急需解决的关键问题之一。
发明内容
针对现有流延片在氮氢混合气氛烧结碳残留多且介电损耗大,无法满足高频率陶瓷封装外壳需求的问题,本发明的提供一种陶瓷流延片制备方法。
为达到上述发明目的,本发明实施例采用了如下的技术方案:
一种陶瓷封装用流延片,包括以下质量百分比的组分:
Al2O3粉体90~95wt%,SiO2粉体2~6wt%,CaO粉体0.3~1wt%,MgO粉体0.5~1.5wt%,Cr2O3粉体0.5~1.5wt%,MoO3粉体0.7~2wt%,少量的分散剂、粘结剂及一定量的溶剂,所述分散剂占陶瓷粉体总重量的0.6~1.5wt%,所述粘结剂占陶瓷粉体总重量的6~10wt%,所述溶剂占陶瓷粉体总重量的20~30wt%,其中所述SiO2粉体和所述CaO粉体按照质量比为6~15配制。
优选地,所述Al2O3粉体,纯度为大于99.9%的Al2O3,原晶粒径为1~3μm,压实密度为:2.15~2.3g/cm3,且钠含量小于0.05%。
优选地,所述Al2O3粉体,晶粒形貌为片状或多边形。
优选地,所述SiO2粉体,纯度为大于99.9%的SiO2,粒径为2~4μm。
优选地,所述CaO粉体,纯度为大于99.5%,粒径为2~4μm。
优选地,所述MgO粉体,纯度为大于99.8%,粒径为2~4μm。
优选地,所述Cr2O3粉体,纯度为大于99.9%,粒径为2~4μm。
优选地,所述MoO3粉体,纯度为大于99.9%,粒径为2~4μm。
优选地,所述溶剂为甲苯、二甲苯、乙酸乙酯、乙酸丁酯、丙酮中的一种或两种。
优选地,所述分散剂为含有支链官能团为-OH、-COOH中的一种或两种的丙烯酸树脂。
优选地,所述分散剂为含有支链官能团-COOH的丙烯酸树脂,所述分散剂的酸价10~15mgKOH/g,所述分散剂的分子量为50000~200000。
优选地,所述粘结剂为含有甲基丙烯酸甲酯链段,且含有支链官能团为-OH、-COOH中的一种或两种的丙烯酸树脂。
优选地,所述粘结剂为含有支链官能团-COOH的丙烯酸树脂,所述粘结剂酸价0.1~5mgKOH/g,所述粘结剂分子量为200000~500000,所述粘结剂的玻璃化转变温度为-10~15℃。
一种陶瓷封装用流延片的制备方法,具体制备步骤如下:
S1:使用气流磨,在气压压力0.3~0.8Mpa下,对Al2O3粉体进行气流解碎处理,得到经气流解碎后,粒径D50为1~3μmAl2O3粉;
S2:按照配比,将气流解碎后的Al2O3粉体、SiO2粉体、CaO粉体、MgO粉体、Cr2O3粉体、MoO3粉体、溶剂和分散剂放入球磨机中进行分散,球磨机转速:10~30rpm,球磨时间:6~12h,得到分散后的混合浆料A;
S3:按照配比,将粘结剂添加到混合浆料A中进行球磨混合,球磨转速:10~30rpm,球磨时间:12~24h,得到陶瓷浆料B;
S4:使用流延成型机,将陶瓷浆料B流延成厚度150~300μm厚的流延片。
与现有技术相比,本发明具有以下技术效果:
本发明所述Al2O3粉体在使用前经过气流磨解碎处理,能更好的避免Al2O3粉末在长时间球磨过程中发生粉碎,导致Al2O3粉压实密度变大。
本发明所述Al2O3粉体晶粒形貌:片状、多边形,不规则的晶粒形貌能降低Al2O3粉在流延片中的填充度,提高流延片孔隙率,丙烯酸树脂粘结剂酸价为0.1~5mgKOH/g,能有效控制流延片气孔孔径,为有机物在高温热分解产生的有机蒸气提供更多的溢出通道。
本发明所述的分散剂为丙烯酸树脂,一方面,由于丙烯酸树脂支链官能团带-COOH结构,能更好的与陶瓷粉体进行结合,提高分散性。另一方面,由于丙烯酸树脂具有优异热分解性,能更好的降低流延片在氮氢混合气体中烧结的碳残留。进一步的,由于粘结剂和分散剂均为丙烯酸树脂,因此在加入粘结剂后,吸附在陶瓷粉体表面的分散剂不会被粘结剂置换,流延浆料更加稳定。
本发明所述丙烯酸树脂粘结剂,优选为含甲基丙烯酸甲酯链段的丙烯酸树脂,所制的流延片在氮氢气氛中烧结后碳残留少。
本发明所述丙烯酸树脂粘结剂的玻璃化转变温度为-10~15℃,因此不需要添加增塑剂就能得到柔韧性好的流延片,进一步降低流延片有机物含量。
本发明陶瓷封装用流延片配比中SiO2粉体和CaO粉体按照质量比为6~15配置,并且含有0.7~2.0wt%的MoO3,从而可避免Al2O3陶瓷在较低温度下形成玻璃相,并且MoO3在氮氢气氛下被还原成钼,并释放出水,能进一步促进流延片中残留碳燃烧。
附图说明
图1为本发明流延片表面气孔形貌。
图2为对比例工艺流延片表面气孔形貌。
具体实施方式
下面进一步结合实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,示例中具体的质量、反应时间和温度、工艺参数等也仅是合适范围中的一个示例,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。
实施例1
Al2O3粉体90wt%,SiO2粉体6.0wt%,CaO粉体0.4wt%,MgO粉体1.2wt%,Cr2O3粉体0.6wt%,MoO3粉体1.8wt%,其中,所述分散剂占陶瓷粉体总重量的0.8wt%,所述粘结剂占陶瓷粉体总重量的6wt%,所述溶剂为甲苯,甲苯占陶瓷粉体总重量的20wt%,其中所述SiO2粉体和所述CaO粉体质量比为15.0;其中,分散剂为酸价为12mgKOH/g,分子量为50000~200000的丙烯酸树脂,粘结剂为酸价为0.5mgKOH/g、分子量为200000~500000、玻璃化转变温度为-10~15℃的丙烯酸树脂。
按照上述粉体配比,陶瓷流延片制备,通过以下步骤进行:
S1:使用气流磨,在气压压力0.5Mpa下,对Al2O3粉体进行气流解碎处理,得到经气流解碎后,粒径D50为1~3μmAl2O3粉;
S2:按照配比,将气流解碎后的Al2O3粉体、SiO2粉体、CaO粉体、MgO粉体、Cr2O3粉体、MoO3粉体、溶剂和分散剂放入球磨机中进行分散,球磨机转速30rpm,球磨时间12h,得到分散后的混合浆料A;
S3:按照配比,将粘结剂添加到混合浆料A中进行球磨混合,球磨转速:30rpm,球磨时间:24h,得到陶瓷浆料B;
S4:使用流延成型机,将陶瓷浆料B流延成厚度200μm厚的流延片。
通过上述方法制备得到的流延片,流延片表面形貌通过日本日立株式会社型号为TM-4000plus电镜扫描测定,测定条件条件:测试电压:15kv,放大倍数:500x,得到图1中所示的流延片表面气孔形貌。
流延片孔径和孔容通过美国麦克仪器公司型号为AutoPore IV 9500压汞仪进行测试。
流延片烧结碳残留量通过日本HORIBA公司型号为EMIA-320红外碳硫分析仪进行测试。
流延片烧结后的介电损耗通过Agilent 4294A阻抗分析仪,在1MHz频率下测试。
流延片压实密度测试方法:将流延片放置在马弗炉中,在空气气氛,600℃下进行排胶,称取3g排胶后的流延片并放置在压片机中,在100Mpa的压力下进行加压,然后测试样品的厚度和直径,并使用ρ=m/(πr2h)计算粉末的压实密度。
实施例1各项性能检测结果如表2所示。
实施例2
Al2O3粉体92wt%,SiO2粉体5.0wt%,CaO粉体0.4wt%,MgO粉体0.8wt%,Cr2O3粉体0.6wt%,MoO3粉体1.2wt%,其中,所述分散剂占陶瓷粉体总重量的1.0wt%,所述粘结剂占陶瓷粉体总重量的8wt%,所述溶剂为二甲苯,二甲苯占陶瓷粉体总重量的25wt%,其中所述SiO2粉体和所述CaO粉体质量比为12.5;其中,分散剂为酸价为13mgKOH/g,分子量为50000~200000的丙烯酸树脂,粘结剂为酸价为2.0mgKOH/g、分子量为200000~500000、玻璃化转变温度为-10~15℃的丙烯酸树脂。
按照上述粉体配比,同实施例1制备方法制备得到本实施例的流延片。
各项性能表征同实施例1,实施例2各项性能检测结果如表2所示。
实施例3
Al2O3粉体95wt%,SiO2粉体2.5wt%,CaO粉体0.3wt%,MgO粉体0.5wt%,Cr2O3粉体0.9wt%,MoO3粉体0.8wt%,其中,所述分散剂占陶瓷粉体总重量的1.2wt%,所述粘结剂占陶瓷粉体总重量的10wt%,所述溶剂为乙酸丁酯,乙酸丁酯占陶瓷粉体总重量的30wt%,其中所述SiO2粉体和所述CaO粉体质量比为8.3;其中,分散剂为酸价为15mgKOH/g,分子量为50000~200000的丙烯酸树脂,粘结剂为酸价为3.0mgKOH/g、分子量为200000~500000、玻璃化转变温度为-10~15℃的丙烯酸树脂。
按照上述粉体配比,同实施例1制备方法制备得到本实施例的流延片。
各项性能表征同实施例1,实施例3各项性能检测结果如表2所示。
对比例1
Al2O3粉体90wt%,SiO2粉体6.0wt%,CaO粉体1.2wt%,MgO粉体1.3wt%,Cr2O3粉体1.2wt%,MoO3粉体0.3wt%,其中,所述分散剂占陶瓷粉体总重量的0.8wt%,所述粘结剂占陶瓷粉体总重量的8wt%,所述溶剂为甲苯,甲苯占陶瓷粉体总重量的25wt%,其中所述SiO2粉体和所述CaO粉体质量比为5.0;其中,分散剂为酸价为20mgKOH/g,分子量为50000~200000的丙烯酸树脂,粘结剂为酸价为8.0mgKOH/g、分子量为200000~500000、玻璃化转变温度为-10~15℃的丙烯酸树脂。
按照上述粉体配比,对比例1的流延片按照以下步骤制得:
S1:按照配比,将Al2O3粉体、SiO2粉体、CaO粉体、MgO粉体、Cr2O3粉体、MoO3粉体、溶剂和分散剂放入球磨机中进行分散,球磨机转速:30rpm,球磨时间:24h,得到分散后的混合浆料C;
S2:按照配比,粘结剂添加到混合浆料C中进行球磨混合,球磨转速:30rpm,球磨时间:12h,得到陶瓷浆料D;
S3:使用流延成型机,将陶瓷浆料D流延成厚度200μm厚的流延片。
通过上述方法制备得到的流延片,流延片表面形貌通过日本日立株式会社型号为TM-4000plus电镜扫描测定,测定条件条件:测试电压:15kv,放大倍数:500x,得到图2中所示对比工艺流延片表面气孔形貌。
各项性能表征同实施例1,对比例1各项性能检测结果如表2所示。
对比例2
Al2O3粉体92wt%,SiO2粉体6.0wt%,CaO粉体0.3wt%,MgO粉体0.8wt%,Cr2O3粉体0.6wt%,MoO3粉体0.3wt%,其中,所述分散剂占陶瓷粉体总重量的1.0wt%,所述粘结剂占陶瓷粉体总重量的8wt%,所述溶剂为乙酸丁酯,乙酸丁酯占陶瓷粉体总重量的25wt%,其中所述SiO2粉体和所述CaO粉体质量比为20.0;其中,分散剂为酸价为7mgKOH/g,分子量为50000~200000的丙烯酸树脂,粘结剂为酸价为10.0mgKOH/g、分子量为200000~500000、玻璃化转变温度为-10~15℃的丙烯酸树脂。
按照上述粉体配比,对比例2的流延片制备同对比例1。
各项性能表征同实施例1,对比例2各项性能检测结果如表2所示。
实施例1~实施例3及对比例1、对比例2的粉体配比、分散剂、溶剂和粘结剂的具体实施配比按照表1实施。
表1各实施例配比表
表2陶瓷封装用流延片的各项性能检测
由表2可知,实施例1~实施例3为本发明的陶瓷封装用流延片,相比于传统工艺的陶瓷封装用流延片,本发明的流延片孔径和孔容均要大于传统工艺的陶瓷封装用流延片,表明,在本发明工艺中,通过对Al2O3粉体进行气流解碎处理,能更好的避免Al2O3粉末在长时间球磨过程中发生粉碎,导致Al2O3粉压实密度变大,而且,本发明中采用的Al2O3粉体晶粒形貌片状、多边形,不规则的晶粒形貌在本发明工艺的处理过程中能够得到保持,降低Al2O3粉在流延片中的填充度,提高流延片孔隙率,因而具有较大的孔径和孔容,使流延片在烧结的过程中,高温分解的粘结剂、分散剂和溶剂等有机物更容易从流延片的孔缝中溢出流延片内部,烧结后残碳量少,且烧结后的产品的介电损耗小于10×10-4(高频器件电子陶瓷材料要求介电损耗小于10×10-4),因此,烧结后的产品信号传输损耗满足高频器件电子陶瓷封装需求。
实施例1~实施例3中,分散剂均采用了丙烯酸树脂,尤其是含有支链官能团-COOH的丙烯酸树脂,分散剂的酸价10~15mgKOH/g,能够更好地与陶瓷粉体进行结合,提高了陶瓷粉体的分散性,流延片在烧结的过程中,丙烯酸树脂的优异热分解性,丙烯酸树脂分解以水汽和CO2的形式分解出该树脂中的碳含量,并且从流延片内部的孔隙中逸出,分散性好,比较有利于在各处均匀分解,丙烯酸树脂分解出水汽和CO2及时的从流延片内部的孔隙中逸出,避免分解过中由于逸出不及时而在流延片内部累积,因此,流延片在氮氢气氛中烧结后碳残留少。
基于同样的理由,粘结剂也采用含有甲基丙烯酸甲酯链段的丙烯酸树脂,也有利于降低烧结后残碳残留,而且,在加入粘结剂后,吸附在陶瓷粉体表面的分散剂不会被粘结剂置换,流延浆料更加稳定。
实施例1~实施例3中,丙烯酸树脂粘结剂的玻璃化转变温度为-10~15℃,因此不需要添加增塑剂就能得到柔韧性好的流延片,这就减少了流延片中有机物的含量,因此,在后续的烧结过中,避免了流延浆料由于添加增塑剂而额外增加的碳残留。
本发明中,最重大的创新点在于陶瓷封装用流延片配比中SiO2粉体和CaO粉体按照质量比为6~15配置,并且含有0.7~2.0wt%的MoO3,从而可避免Al2O3陶瓷在较低温度下形成玻璃相,在陶瓷烧结的过程中,由于从低温到高温升温烧结过程中,Al2O3陶瓷与SiO2粉体和CaO粉体烧结形成类似于玻璃相的晶体物质,玻璃相的晶体物质造成的结果是孔径和孔容小,高温分解的粘结剂、分散剂和溶剂等有机物不易通过流延片上的孔隙逸出,造成了碳残留高,并且MoO3在氮氢气氛下被还原成钼,并释放出水,能进一步促进流延片中残留碳燃烧。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种陶瓷封装用流延片,其特征在于,包括以下质量百分比的组分:
Al2O3粉体 90~95wt%,SiO2粉体2~6wt%,CaO粉体0.3~1wt%,MgO粉体0.5~1.5wt%,Cr2O3粉体0.5~1.5wt%,MoO3粉体0.7~2wt%,少量的分散剂、粘结剂及一定量的溶剂;
所述分散剂占陶瓷粉体总重量的0.6~1.5wt%,所述粘结剂占陶瓷粉体总重量的6~10wt%,所述溶剂占陶瓷粉体总重量的20~30wt%,其中所述SiO2粉体和所述CaO粉体按照质量比为6~15配制;
所述分散剂为含有支链官能团-COOH的丙烯酸树脂,所述分散剂的酸价10~15mgKOH/g,所述分散剂的分子量为50000~200000;
所述粘结剂为含有甲基丙烯酸甲酯链段,且含有支链官能团为-COOH的丙烯酸树脂,所述粘结剂酸价0.1~5mgKOH/g,所述粘结剂分子量为200000~500000,所述粘结剂的玻璃化转变温度为-10~15℃;
所述溶剂为甲苯、二甲苯、乙酸乙酯、乙酸丁酯、丙酮中的一种或两种。
2.根据权利要求1所述一种陶瓷封装用流延片,其特征在于:所述Al2O3粉体,纯度为大于99.9%的Al2O3,原晶粒径为1~3μm,压实密度为:2.15~2.3g/cm3,且钠含量小于0.05%,所述Al2O3粉体,晶粒形貌为片状或多边形。
3.根据权利要求1所述一种陶瓷封装用流延片,其特征在于:所述SiO2粉体,纯度为大于99.9%的SiO2,粒径为2~4μm。
4.根据权利要求1所述的一种陶瓷封装用流延片,其特征在于:所述CaO粉体,纯度为大于99.5%,粒径为2~4μm。
5.根据权利要求1所述的一种陶瓷封装用流延片,其特征在于:所述MgO粉体,纯度为大于99.8%,粒径为2~4μm。
6.根据权利要求1所述的一种陶瓷封装用流延片,其特征在于:所述Cr2O3粉体,纯度为大于99.9%,粒径为2~4μm。
7.根据权利要求1所述的一种陶瓷封装用流延片,其特征在于:所述MoO3粉体,纯度为大于99.9%,粒径为2~4μm。
8.根据权利要求1-7中任一项所述的一种陶瓷封装用流延片的制备方法,其特征在于,具体制备步骤如下:
S1:使用气流磨,在气压压力0.3~0.8Mpa下,对Al2O3粉体进行气流解碎处理,得到经气流解碎后,粒径D50为1~3μmAl2O3粉;
S2:按照配比,将气流解碎后的Al2O3粉体、SiO2粉体、CaO粉体、MgO粉体、Cr2O3粉体、MoO3粉体、溶剂和分散剂放入球磨机中进行分散,球磨机转速:10~30rpm,球磨时间:6~12h,得到分散后的混合浆料A;
S3:按照配比,将粘结剂添加到混合浆料A中进行球磨混合,球磨转速:10~30rpm,球磨时间:12~24h,得到陶瓷浆料B;
S4:使用流延成型机,将陶瓷浆料B流延成厚度150~300μm厚的流延片。
CN202310435191.3A 2023-04-21 2023-04-21 一种陶瓷封装用流延片及其制备方法 Active CN116514534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310435191.3A CN116514534B (zh) 2023-04-21 2023-04-21 一种陶瓷封装用流延片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310435191.3A CN116514534B (zh) 2023-04-21 2023-04-21 一种陶瓷封装用流延片及其制备方法

Publications (2)

Publication Number Publication Date
CN116514534A CN116514534A (zh) 2023-08-01
CN116514534B true CN116514534B (zh) 2024-04-30

Family

ID=87398788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310435191.3A Active CN116514534B (zh) 2023-04-21 2023-04-21 一种陶瓷封装用流延片及其制备方法

Country Status (1)

Country Link
CN (1) CN116514534B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247548A (ja) * 1990-02-23 1991-11-05 Nippon Shokubai Co Ltd セラミックグリーンシートの製造方法
JPH1112043A (ja) * 1997-06-19 1999-01-19 Chichibu Onoda Cement Corp セラミックス粉末の成形方法
CN1390807A (zh) * 2002-07-17 2003-01-15 清华大学 乳胶体系水基流延法制备陶瓷薄片材料的方法
JP2005219963A (ja) * 2004-02-05 2005-08-18 Murata Mfg Co Ltd セラミックスラリー、セラミックスラリーの製造方法、及びセラミックグリーンシート、並びに積層セラミック電子部品の製造方法
CN103183500A (zh) * 2011-12-27 2013-07-03 比亚迪股份有限公司 一种氧化铝陶瓷基板及其制备方法
JP2016190903A (ja) * 2015-03-30 2016-11-10 日本カーバイド工業株式会社 粘着剤組成物及び粘着フィルム
CN106830948A (zh) * 2016-11-14 2017-06-13 中国科学院上海硅酸盐研究所 基于聚碳酸亚丙酯粘结剂的陶瓷流延浆料及其制备方法和应用
WO2022100249A1 (zh) * 2020-11-12 2022-05-19 广东工业大学 一种高性能氮化铝陶瓷基板的浆料和制备方法
CN114702926A (zh) * 2022-04-08 2022-07-05 巨石集团有限公司 一种粉末粘结剂及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247548A (ja) * 1990-02-23 1991-11-05 Nippon Shokubai Co Ltd セラミックグリーンシートの製造方法
JPH1112043A (ja) * 1997-06-19 1999-01-19 Chichibu Onoda Cement Corp セラミックス粉末の成形方法
CN1390807A (zh) * 2002-07-17 2003-01-15 清华大学 乳胶体系水基流延法制备陶瓷薄片材料的方法
JP2005219963A (ja) * 2004-02-05 2005-08-18 Murata Mfg Co Ltd セラミックスラリー、セラミックスラリーの製造方法、及びセラミックグリーンシート、並びに積層セラミック電子部品の製造方法
CN103183500A (zh) * 2011-12-27 2013-07-03 比亚迪股份有限公司 一种氧化铝陶瓷基板及其制备方法
JP2016190903A (ja) * 2015-03-30 2016-11-10 日本カーバイド工業株式会社 粘着剤組成物及び粘着フィルム
CN106830948A (zh) * 2016-11-14 2017-06-13 中国科学院上海硅酸盐研究所 基于聚碳酸亚丙酯粘结剂的陶瓷流延浆料及其制备方法和应用
WO2022100249A1 (zh) * 2020-11-12 2022-05-19 广东工业大学 一种高性能氮化铝陶瓷基板的浆料和制备方法
CN114702926A (zh) * 2022-04-08 2022-07-05 巨石集团有限公司 一种粉末粘结剂及其制备方法和应用

Also Published As

Publication number Publication date
CN116514534A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
EP3915963A1 (en) Silicon nitride, ceramic slurry and preparation method
CN103553691B (zh) 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
CN112289482B (zh) 一种5g陶瓷介质滤波器用高q值银浆
CN110790568A (zh) 一种低介ltcc生瓷带及其制备方法和用途
CN106810214B (zh) 一种电子封装用低成本高强氧化铝陶瓷基片的制备方法
CN106830948A (zh) 基于聚碳酸亚丙酯粘结剂的陶瓷流延浆料及其制备方法和应用
EP2520349A1 (en) Filter used for filtering molten metal and preparation method thereof
JP2011149080A (ja) ニッケル粉末およびその製造方法
CN112289483B (zh) 一种大功率电路用钨浆料
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN115448742B (zh) 氧化铝防静电陶瓷及其制备方法
CN102584233A (zh) 一种中高介电常数低温共烧陶瓷材料及其制备方法
CN109704797A (zh) 一种短切碳纤维增强Cf/SiC复合材料的制备方法
CN116514534B (zh) 一种陶瓷封装用流延片及其制备方法
CN117049864A (zh) 低温共烧陶瓷生瓷带、制备方法、陶瓷、陶瓷电路和应用
CN100447929C (zh) 稀土氧化物次级发射材料及其制备方法
WO2020138949A2 (ko) 구형 은 분말 및 이의 제조방법
CN107382343B (zh) 一种AlON-BN复相陶瓷材料及其制备方法、应用
CN110862257A (zh) 一种石墨陶瓷合闸电阻及其制备方法
CN113436783B (zh) 一种流延后烧结呈透明的ltcc介质浆料的制备方法
CN115231955A (zh) 微波真空器件用氧化铝陶瓷金属化方法
CN111548128B (zh) 一种低温共烧陶瓷及其制备方法
JP5942791B2 (ja) ニッケル粉末の製造方法
CN113788676A (zh) 一种低温共烧改性NiTa2O6基微波介质陶瓷材料及其制备方法
CN112079631A (zh) 一种近零温度系数低介ltcc材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant