CN110436932B - 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法 - Google Patents

一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法 Download PDF

Info

Publication number
CN110436932B
CN110436932B CN201910764405.5A CN201910764405A CN110436932B CN 110436932 B CN110436932 B CN 110436932B CN 201910764405 A CN201910764405 A CN 201910764405A CN 110436932 B CN110436932 B CN 110436932B
Authority
CN
China
Prior art keywords
parts
aluminum nitride
nitride ceramic
ceramic substrate
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910764405.5A
Other languages
English (en)
Other versions
CN110436932A (zh
Inventor
杨大胜
施纯锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Original Assignee
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD filed Critical FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority to CN201910764405.5A priority Critical patent/CN110436932B/zh
Publication of CN110436932A publication Critical patent/CN110436932A/zh
Application granted granted Critical
Publication of CN110436932B publication Critical patent/CN110436932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及氮化铝陶瓷基板的制备技术领域,提供一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法,解决现有技术氮化铝陶瓷断裂韧性不足,难以满足氮化铝陶瓷应用领域对材料性能高要求的问题。所述氮化铝陶瓷由以下原料组份制成:氮化铝粉体75~90份、烧结助剂3~6份、碳化铪2~4份、氧化锆3~5份、氧化铝0.5~1份、聚酰亚胺5~10份、邻苯二甲酸二(2‑乙基己)酯1~3份、消泡剂4~8份。本发明采用复合增韧的方式对氮化铝陶瓷基板进行改性,陶瓷基板的断裂韧性要明显优于单一增韧改性所制备出的氮化铝陶瓷基板。

Description

一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
技术领域
本发明涉及氮化铝陶瓷基板的制备技术领域,尤其涉及一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法。
背景技术
氮化铝(A1N)是一种六方纤锌矿结构的共价键化合物,具有热导率高、高温绝缘性和介电性能好、高温下材料强度大、热膨胀系数低并且与半导体硅材料相匹配、无毒等优点,是一种理想的电子封装散热材料,能高效的逸散大型元件如大规模集成电路的热量,可作为组装超大规模集成电路的高性能陶瓷基板材料。
但是氮化铝陶瓷的力学性能较差,其较低的抗弯强度和断裂韧性极大地限制了其应用范围。因此改善其韧性、提高其抗弯强度一直是氮化铝陶瓷研究的重要方向。为了提高陶瓷的力学性能,特别是断裂韧性,有多种解决途径,主要包括颗粒弥散增韧、晶须或纤维增韧、相变增韧等。申请号201310531348.9公开了一种主要用于高功率LED照明封装的颗粒弥散增韧氮化铝陶瓷基板及其制备方法,其中陶瓷基板含有如下重量百分数的各组分:80%-95%的AlN粉体;2%-8%的烧结助剂;3%-12%的增韧相;其中烧结助剂为稀土金属氧化物、弱碱氧化物、稀土氟化物或弱碱氟化物中的任意一种或任意几种的复合,增韧相为钼、钨、铌、碳化钼、碳化钨、碳化铌中的一种或任意几种的复合。通过裂纹偏转弯曲、裂纹桥接以及残余应力的增韧机制,有效提高AlN基板的断裂韧性。该申请采用单一的增韧机制改善了氮化铝陶瓷的断裂韧性,虽取得了一定的效果,但增韧效果不显著。
发明内容
因此,针对以上内容,本发明提供一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法,解决现有技术氮化铝陶瓷断裂韧性不足,难以满足氮化铝陶瓷应用领域对材料性能高要求的问题。
为达到上述目的,本发明是通过以下技术方案实现的:一种颗粒弥散增韧氮化铝陶瓷基板,其特征在于:按重量份数计,所述氮化铝陶瓷由以下原料组份制成:氮化铝粉体75~90份、烧结助剂3~6份、碳化铪2~4份、氧化锆3~5份、氧化铝0.5~1份、聚酰亚胺5~10份、邻苯二甲酸二(2-乙基己)酯1~3份、消泡剂4~8份。
进一步的改进是:所述烧结助剂为YCl3、LaCl3、GdCl3、TbCl3、YbCl3、LuCl3中的一种或多种。
一种颗粒弥散增韧氮化铝陶瓷基板的制备,包括以下步骤:
(1)球磨:按重量份数计称取氮化铝粉体75~90份、烧结助剂3~6份、碳化铪2~4份、氧化锆3~5份、氧化铝0.5~1份于球磨机中,并加入异丙醇50~70份进行球磨粉碎,球磨时间为10~18h,得到混合浆料;
(2)流延浆料的配制:在步骤(1)得到的混合浆料中加入聚乙烯醇缩丁醛5~10份、邻苯二甲酸二(2-乙基己)酯1~3份、消泡剂4~8份,混合搅拌40~60min,得到粘度合适的流延浆料;
(3)流延成型:将步骤(2)得到的流延浆料在流延机上成型得到坯带,然后进行干燥得到坯膜,坯带再经过冲压形成坯体;
(4)等静压处理:将步骤(3)的坯体叠在一起后进行等静压处理,在压力90~120MPa、温度300~400℃的条件下,等静压压制20~40min;
(5)排胶:将等静压处理过的坯体送入排胶炉中,进行排胶处理;
(6)烧结:将排胶处理后的坯体高温烧结得到氮化铝陶瓷基板。
进一步的改进是:所述步骤(5)采用分段升温方式,先升温至200~300℃,保温1~2h,然后升温至500~650℃,保温3~5h,升温速率2~4℃/min。
进一步的改进是:所述步骤(6)烧结温度为1750~1850℃,烧结时间为3~6h。
通过采用前述技术方案,本发明的有益效果是:
所谓弥散颗粒是指在陶瓷基质相中引入呈“不连续”弥散状分布的颗粒,本申请以碳化铪作为弥散颗粒,在材料断裂时促使裂纹发生偏转和分叉,消耗断裂能,从而提高氮化铝陶瓷的韧性。颗粒弥散增韧有一定的局限性,且增韧效果不显著。ZrO2能够通过四方相转变成单斜相产生体积效应和形状效应,从而吸收大量的能量,并且在裂纹尖端周围产生非弹性变形的区域,使陶瓷材料的韧性得以提高来达到陶瓷增韧的效果。但ZrO2会与AlN反应生成ZrN、氮氧化锆等物质,使ZrO2含量减少而达不到预期的增韧效果,而且ZrN、氮氧化锆易氧化会产生体积膨胀使材料开裂,本申请引入氧化铝能够有效抑制ZrN、氮氧化锆的生成,确保ZrO2的增韧效果。对氮化铝陶瓷进行ZrO2相变增韧,可使材料的强度和韧性得到明显的提高,还能够促进使得裂纹扩展过程中陶瓷基质相与弥散颗粒碳化铪桥联、裂纹偏转和分叉等得到明显增强,两种增韧方式协同作用共同提高了氮化铝陶瓷材料的断裂韧性。陶瓷坯体在烧结前先进行排胶处理,将坯体内含有的聚酰亚胺、邻苯二甲酸二(2-乙基己)酯以及消泡剂排除干净,避免烧结时坯体内有机物熔融、分解、挥发,从而导致坯体变形、开裂,影响烧结质量。因此排胶是烧结前尤为关键的一步,排胶时升温过快,聚酰亚胺、邻苯二甲酸二(2-乙基己)酯以及消泡剂排不彻底,容易产生气泡,造成陶瓷基板的气孔率偏高,同时烧结时容易开裂。本发明采用分段式升温方式,并控制好升温速率,能够更好地排除干净坯体内的有机物,为后续的烧结定型打下良好的基础。
具体实施方式
以下将结合具体实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。
若未特别指明,实施例中所采用的技术手段为本领域技术人员所熟知的常规手段,所采用的试剂和产品也均为可商业获得的。所用试剂的来源、商品名以及有必要列出其组成成分者,均在首次出现时标明。
实施例一
一种颗粒弥散增韧氮化铝陶瓷基板,按重量份数计,所述氮化铝陶瓷由以下原料组份制成:氮化铝粉体75份、氯化钇2份、氯化镧1份、碳化铪2份、氧化锆3份、氧化铝0.5份、聚酰亚胺5份、邻苯二甲酸二(2-乙基己)酯1份、消泡剂4份。
颗粒弥散增韧氮化铝陶瓷基板的制备步骤如下:
(1)球磨:按重量份数计称取氮化铝粉体75份、氯化钇2份、氯化镧1份、碳化铪2份、氧化锆3份、氧化铝0.5份于球磨机中,并加入异丙醇50进行球磨粉碎,球磨时间为10h,得到混合浆料;
(2)流延浆料的配制:在步骤(1)得到的混合浆料中加入聚酰亚胺5份、邻苯二甲酸二(2-乙基己)酯1份、消泡剂4份,混合搅拌40min,得到粘度合适的流延浆料;
(3)流延成型:将步骤(2)得到的流延浆料在流延机上成型得到坯带,然后进行干燥得到坯膜,坯带再经过冲压形成坯体;
(4)等静压处理:将步骤(3)的坯体叠在一起后进行等静压处理,在压力90MPa、温度300℃的条件下,等静压压制40min;
(5)排胶:将等静压处理过的坯体送入排胶炉中,进行排胶处理;采用分段升温方式,先升温至200℃,保温2h,然后升温至500℃,保温5h,升温速率2℃/min;
(6)烧结:将排胶处理后的坯体高温烧结得到氮化铝陶瓷基板,烧结温度1750℃,烧结时间为6h。
实施例二
一种颗粒弥散增韧氮化铝陶瓷基板,按重量份数计,所述氮化铝陶瓷由以下原料组份制成:氮化铝粉体80份、三氯化钆2份、三氯化铽2份、碳化铪3份、氧化锆4份、氧化铝0.8份、聚酰亚胺7份、邻苯二甲酸二(2-乙基己)酯2份、消泡剂6份。
颗粒弥散增韧氮化铝陶瓷基板的制备步骤如下:
(1)球磨:按重量份数计称取氮化铝粉体80份、三氯化钆2份、三氯化铽2份、碳化铪3份、氧化锆4份、氧化铝0.8份于球磨机中,并加入异丙醇60份进行球磨粉碎,球磨时间为14h,得到混合浆料;
(2)流延浆料的配制:在步骤(1)得到的混合浆料中加入聚酰亚胺7份、邻苯二甲酸二(2-乙基己)酯2份、消泡剂6份,混合搅拌50min,得到粘度合适的流延浆料;
(3)流延成型:将步骤(2)得到的流延浆料在流延机上成型得到坯带,然后进行干燥得到坯膜,坯带再经过冲压形成坯体;
(4)等静压处理:将步骤(3)的坯体叠在一起后进行等静压处理,在压力105MPa、温度350℃的条件下,等静压压制30min;
(5)排胶:将等静压处理过的坯体送入排胶炉中,进行排胶处理;采用分段升温方式,先升温至250℃,保温1.5h,然后升温至600℃,保温4h,升温速率3℃/min。
(6)烧结:将排胶处理后的坯体高温烧结得到氮化铝陶瓷基板,烧结温度1800℃,烧结时间为4.5h。
实施例三
一种颗粒弥散增韧氮化铝陶瓷基板,按重量份数计,所述氮化铝陶瓷由以下原料组份制成:氮化铝粉体90份、三氯化镱4份、三氯化镥2份、碳化铪4份、氧化锆5份、氧化铝1份、聚酰亚胺10份、邻苯二甲酸二(2-乙基己)酯3份、消泡剂8份。
颗粒弥散增韧氮化铝陶瓷基板的制备步骤如下:
(1)球磨:按重量份数计称取氮化铝粉体90份、三氯化镱4份、三氯化镥2份、碳化铪4份、氧化锆5份、氧化铝1份于球磨机中,并加入异丙醇70份进行球磨粉碎,球磨时间为18h,得到混合浆料;
(2)流延浆料的配制:在步骤(1)得到的混合浆料中加入聚酰亚胺10份、邻苯二甲酸二(2-乙基己)酯3份、消泡剂8份,混合搅拌60min,得到粘度合适的流延浆料;
(3)流延成型:将步骤(2)得到的流延浆料在流延机上成型得到坯带,然后进行干燥得到坯膜,坯带再经过冲压形成坯体;
(4)等静压处理:将步骤(3)的坯体叠在一起后进行等静压处理,在压力120MPa、温度400℃的条件下,等静压压制20min;
(5)排胶:将等静压处理过的坯体送入排胶炉中,进行排胶处理;采用分段升温方式,先升温至300℃,保温1h,然后升温至650℃,保温3h,升温速率4℃/min。
(6)烧结:将排胶处理后的坯体高温烧结得到氮化铝陶瓷基板,烧结温度1850℃,烧结时间为3h。
对比例一
一种颗粒弥散增韧氮化铝陶瓷基板,按重量份数计,所述氮化铝陶瓷由以下原料组份制成:氮化铝粉体75份、氯化钇2份、氯化镧1份、碳化铪2份、氧化锆0份、氧化铝0份、聚酰亚胺5份、邻苯二甲酸二(2-乙基己)酯1份、消泡剂4份。其他条件与实施例一相同。
对比例二
一种颗粒弥散增韧氮化铝陶瓷基板,按重量份数计,所述氮化铝陶瓷由以下原料组份制成:氮化铝粉体75份、氯化钇2份、氯化镧1份、碳化铪0份、氧化锆3份、氧化铝0.5份、聚酰亚胺5份、邻苯二甲酸二(2-乙基己)酯1份、消泡剂4份。其他条件与实施例一相同。
以市面上买到的氮化铝陶瓷基板作为对照组。
对实施例一至实施例三所得到的氮化铝陶瓷基板的热导率、断裂韧性及弯曲强度进行性能检测,测试结果如表1所示。具体测试方法:抗弯强度根据GB/T 6569-2006精细陶瓷弯曲强度试验方法测得。断裂韧性根据GB/T 23806-2009精细陶瓷断裂韧性试验方法单边预裂纹梁(SEPB)法测得。热导率根据GB/T 5990-2006耐火材料导热系数试验方法(热线法)测得。
表1氮化铝陶瓷基板的性能测试结果
Figure BDA0002171471280000071
由表1的测试结果可知,本发明经过增韧改性制备出的氮化铝陶瓷基板与对照组相比,不仅断裂韧性有显著提高,弯曲强度方面的性能也有一定程度的增加。碳化铪与氧化锆(氧化铝辅助)是两种不同的增韧机理,两种增韧方式协同作用共同提高了氮化铝陶瓷材料的断裂韧性,实施例一与两个对比例进行对比分析可知,采取单一增韧改性的效果远远不及复合增韧改性。将实施例一、对比例的热导率数据进行对比可知,单纯使用颗粒弥散增韧,热导率较低的碳化铪弥散分布于氮化铝基体中,热导率有所降低;而采用碳化铪与氧化锆复合增韧改性的方式,对热导率的影响不大。
以上所记载,仅为利用本创作技术内容的实施例,任何熟悉本项技艺者运用本创作所做的修饰、变化,皆属本创作主张的专利范围,而不限于实施例所揭示者。

Claims (5)

1.一种颗粒弥散增韧氮化铝陶瓷基板,其特征在于:按重量份数计,所述氮化铝陶瓷由以下原料组份制成:氮化铝粉体75~90份、烧结助剂3~6份、碳化铪2~4份、氧化锆3~5份、氧化铝0.5~1份、聚酰亚胺5~10份、邻苯二甲酸二(2-乙基己)酯1~3份、消泡剂4~8份。
2.根据权利要求1所述的一种颗粒弥散增韧氮化铝陶瓷基板,其特征在于:所述烧结助剂为YCl3、LaCl3、GdCl3、TbCl3、YbCl3、LuCl3中的一种或多种。
3.根据权利要求1-2任一权利要求所述的颗粒弥散增韧氮化铝陶瓷基板的制备方法,其特征在于:制备步骤如下:
(1)球磨:按重量份数计称取氮化铝粉体75~90份、烧结助剂3~6份、碳化铪2~4份、氧化锆3~5份、氧化铝0.5~1份于球磨机中,并加入异丙醇50~70份进行球磨粉碎,球磨时间为10~18h,得到混合浆料;
(2)流延浆料的配制:在步骤(1)得到的混合浆料中加入聚酰亚胺5~10份、邻苯二甲酸二(2-乙基己)酯1~3份、消泡剂4~8份,混合搅拌40~60min,得到粘度合适的流延浆料;
(3)流延成型:将步骤(2)得到的流延浆料在流延机上成型得到坯带,然后进行干燥得到坯膜,坯带再经过冲压形成坯体;
(4)等静压处理:将步骤(3)的坯体叠在一起后进行等静压处理,在压力90~120MPa、温度300~400℃的条件下,等静压压制20~40min;
(5)排胶:将等静压处理过的坯体送入排胶炉中,进行排胶处理;
(6)烧结:将排胶处理后的坯体高温烧结得到氮化铝陶瓷基板。
4.根据权利要求3所述的颗粒弥散增韧氮化铝陶瓷基板的制备方法,其特征在于:所述步骤(5)采用分段升温方式,先升温至200~300℃,保温1~2h,然后升温至500~650℃,保温3~5h,升温速率2~4℃/min。
5.根据权利要求3所述的颗粒弥散增韧氮化铝陶瓷基板的制备方法,其特征在于:所述步骤(6)烧结温度为1750~1850℃,烧结时间为3~6h。
CN201910764405.5A 2019-08-19 2019-08-19 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法 Active CN110436932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910764405.5A CN110436932B (zh) 2019-08-19 2019-08-19 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910764405.5A CN110436932B (zh) 2019-08-19 2019-08-19 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法

Publications (2)

Publication Number Publication Date
CN110436932A CN110436932A (zh) 2019-11-12
CN110436932B true CN110436932B (zh) 2021-09-07

Family

ID=68436345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910764405.5A Active CN110436932B (zh) 2019-08-19 2019-08-19 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法

Country Status (1)

Country Link
CN (1) CN110436932B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875386B (zh) * 2020-08-07 2022-10-18 福建臻璟新材料科技有限公司 一种氮化铝陶瓷基板及其制备方法
CN112374896B (zh) * 2020-11-12 2022-05-27 广东工业大学 一种高性能氮化铝陶瓷基板的浆料和制备方法
CN112792339A (zh) * 2020-12-23 2021-05-14 东莞市新饰界材料科技有限公司 钨合金薄片的制备方法
CN112898028B (zh) * 2021-02-21 2022-06-07 福建华清电子材料科技有限公司 一种采用石墨炉烧结的氮化铝陶瓷基板的制备方法
CN114315371A (zh) * 2021-10-25 2022-04-12 郴州功田电子陶瓷技术有限公司 一种氮化铝陶瓷基板
CN115745622B (zh) * 2022-11-30 2023-08-22 福建华清电子材料科技有限公司 一种打印机加热条用氮化铝陶瓷的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221078A (ja) * 2008-03-18 2009-10-01 Furukawa Co Ltd Iii族窒化物半導体基板形成用基板およびその製造方法
CN103553691A (zh) * 2013-11-01 2014-02-05 广东工业大学 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
CN106699189A (zh) * 2016-11-25 2017-05-24 河北利福光电技术有限公司 一种氮化铝陶瓷基板用氮化铝粉体及其制备方法
CN107188568A (zh) * 2017-07-11 2017-09-22 中国人民大学 一种氮化铝陶瓷基板及其制备方法
CN107935600A (zh) * 2017-12-08 2018-04-20 南充三环电子有限公司 陶瓷组合物、陶瓷组合物的制备方法和应用及陶瓷基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221078A (ja) * 2008-03-18 2009-10-01 Furukawa Co Ltd Iii族窒化物半導体基板形成用基板およびその製造方法
CN103553691A (zh) * 2013-11-01 2014-02-05 广东工业大学 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
CN106699189A (zh) * 2016-11-25 2017-05-24 河北利福光电技术有限公司 一种氮化铝陶瓷基板用氮化铝粉体及其制备方法
CN107188568A (zh) * 2017-07-11 2017-09-22 中国人民大学 一种氮化铝陶瓷基板及其制备方法
CN107935600A (zh) * 2017-12-08 2018-04-20 南充三环电子有限公司 陶瓷组合物、陶瓷组合物的制备方法和应用及陶瓷基板

Also Published As

Publication number Publication date
CN110436932A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN110436932B (zh) 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN112939582B (zh) 一种掺杂氧化锆的氧化铝陶瓷及其制备方法
CN105884376B (zh) 一种硅粉流延制备氮化硅陶瓷基板的方法
CN112939607B (zh) 一种高热导率氮化铝陶瓷及其制备方法
GB2506287B (en) Tungsten Carbide Composite Containing Alumina Grains and Silicon Nitride Whiskers and the Preparation Method Thereof
US20240116821A1 (en) Preparation method of high-thermal-conductivity and net-size silicon nitride ceramic substrate
CN110483060B (zh) 一种高热导率氮化硅陶瓷及其制备方法
CN108409336A (zh) 氮化硅陶瓷及其制备方法
CN111875386A (zh) 一种氮化铝陶瓷基板及其制备方法
CN115849885B (zh) 高纯高强度氧化铝陶瓷基板及其制备方法
CN112939581A (zh) 一种氧化锆增韧氧化铝刀具及其制备方法
CN116751036B (zh) 一种预应力氧化铝陶瓷复合材料及其制备方法
CN110540429A (zh) 一种氮化铝烧结体及应用
CN110330316B (zh) 一种裂纹自愈合陶瓷刀具材料及其制备方法
CN112979282B (zh) 一种氧化铝陶瓷烧结体及其制备方法和应用
CN117185825A (zh) 一种氮化硅陶瓷基板及其制备方法和应用
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN115259889A (zh) 一种多孔碳化硅陶瓷及其制备方法和应用、铝碳化硅复合材料
CN118164766B (zh) 一种氮化铝陶瓷烧结体及其制备方法和氮化铝陶瓷基板
CN113773091A (zh) 氮化铝陶瓷流延浆料、氮化铝陶瓷基板及制备方法
CN113045295A (zh) 一种高强度陶瓷型材及其制备方法
CN111592342A (zh) 一种氧化铝陶瓷粉料、氧化铝陶瓷及其制备方法
CN112707733A (zh) 一种高温抗氧化石墨坩埚
CN116217254B (zh) 一种纤维增强型ltcc基板及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant