CN116813352A - 氮化铝陶瓷材料及其制备方法和应用 - Google Patents

氮化铝陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN116813352A
CN116813352A CN202310786544.4A CN202310786544A CN116813352A CN 116813352 A CN116813352 A CN 116813352A CN 202310786544 A CN202310786544 A CN 202310786544A CN 116813352 A CN116813352 A CN 116813352A
Authority
CN
China
Prior art keywords
aluminum nitride
powder
ceramic material
nitride ceramic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310786544.4A
Other languages
English (en)
Other versions
CN116813352B (zh
Inventor
黄群
杨金
刘圣
佘鹏程
尹联民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 48 Research Institute
Original Assignee
CETC 48 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 48 Research Institute filed Critical CETC 48 Research Institute
Priority to CN202310786544.4A priority Critical patent/CN116813352B/zh
Publication of CN116813352A publication Critical patent/CN116813352A/zh
Application granted granted Critical
Publication of CN116813352B publication Critical patent/CN116813352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种氮化铝陶瓷材料及其制备方法和应用,该制备方法包括以下步骤:将微米级氮化铝粉体、单层石墨烯和烧结助剂混合,球磨,制得混合粉末;将混合粉末与成型剂混合,模压成型,制得粉末胚体;对粉末胚体进行烧结,得到氮化铝陶瓷材料。本发明制得的氮化铝陶瓷材料的相对密度达到98.8%以上,体电阻率在109Ω·cm~1011Ω·cm,热导率超过200W m 1K‑1,具有成本低廉、缺陷结构少、热导率高和电阻率可调等优点,是一种性能优异的新型电介质层材料,可以用于制备性能优异的静电卡盘,使用价值高,应用前景好,有利于实现静电卡盘的广泛应用。

Description

氮化铝陶瓷材料及其制备方法和应用
技术领域
本发明属于半导体设备制造领域,涉及一种氮化铝陶瓷材料及其制备方法和应用,具体涉及一种用作静电卡盘陶瓷零部件的氮化铝陶瓷材料及其制备方法和该氮化铝陶瓷材料在制作静电卡盘中的应用。
背景技术
静电卡盘(ESC)是一种利用静电吸附力夹持晶片的装置,它可以通过表面的气体冷却通道和加热电极实现对晶片温度的精准控制,从而广泛的应用于半导体集成电路(IC)的各种制备工艺中,如物理气相沉积(PVD)、化学气相沉积(CVD)、等离子刻蚀(ETCH)和离子注入等工艺。按照其工作原理的不同静电卡盘可以分为库仑力型和J-R力型两种类型,相比较于库伦型静电卡盘,通常J-R型静电卡盘能够提供更大的吸附力。陶瓷电介质层作为静电卡盘的关键组成部分,其制造水平的高低在很大程度上决定了静电卡盘的性能的优劣。目前市场上的静电卡盘普遍是采用氧化铝或氮化铝陶瓷作为电介质层,相比较于氧化铝陶瓷,氮化铝陶瓷具有更高的热导率(理论热导率320W m-1K-1)、更高的抗弯强度(300MPa)以及与硅片跟接近的热膨胀系数,被认为是比氧化铝更好的静电卡盘电介质层材料,特别是在具备加热功能的高端静电卡盘领域。
对于J-R型静电卡盘,其工作原理要求电介质层材料既不属于导体材料也不属于绝缘体材料,而是具有一定导电能力的半导体材料(体电阻率在109~1011Ω·cm之间),因此需要向绝缘性的氮化铝陶瓷中掺入一定量的导电材料调阻剂如Ni、Ti和TiN等,将其电阻率调整到所需的范围。然而,这些导电材料的热导率通常远低于氮化铝,分布在陶瓷晶界处热导率较低的导电材料会严重影响热量在陶瓷晶粒之间的传递,造成氮化铝陶瓷热导率的显著降低。与此同时,氮化铝晶格中氧的存在也会导致材料中形成铝空位、反相畴界、堆垛层错和多形体等结构缺陷,这些缺陷不仅会造成氮化铝陶瓷力学性能的下降,也会导致其热导率急剧下降。基于上述缺陷,有研究人员提出以纳米氮化铝粉末和石墨烯颗粒为主要原料,经注射成型方法制备所需形状的氮化铝/石墨烯复合陶瓷,然而,该方法中制备的氮化铝/石墨烯复合陶瓷仍然存在以下缺陷:(1)以纳米氮化铝粉末为原料,其含有的晶界数量多,因而需要更多的石墨烯颗粒用于降低氮化铝中的氧含量,而复合材料中以石墨烯作为抑制相/第二相时,由于其含量过高,则难以有效提高复合材料的致密度,特别的,当复合材料的致密度偏低时,难以有效提高复合材料的热导率和力学性能,与此同时,复合材料中存在过多石墨烯时,也容易降低复合材料的电阻率,由此使得氮化铝/石墨烯复合陶瓷由半导体转为导体,因而无法适用于作为静电卡盘介质层材料对于电阻率的性能需求;(2)以纳米氮化铝粉末和石墨烯颗粒为原料,经注射成型方法制备的氮化铝/石墨烯复合陶瓷具有非常大的比表面积,材料更容易吸附空气中的氧,导致材料中的氧含量偏高,而且材料中粉末之间的孔隙丰富,分布在颗粒之间的大量石墨烯会造成氧化铝材料的晶粒生长受阻,此时复合材料的致密度仍然偏低,由此导致所制备的氮化铝/石墨烯复合陶瓷仍然存在热导率偏低且力学强度不足等缺陷,难以满足作为静电卡盘电介质层材料对于热导率和力学性能的要求;(3)采用注射成型的方法适合制备尺寸较小结构复杂的氮化铝陶瓷结构件,但其不适合制备尺寸较大、厚度薄对均匀性要求较高的静电卡盘电介质陶瓷片;(4)大量使用石墨烯颗粒,会导致制备成本显著提高,不利于大规模的工业化应用。因此,获得一种成本低廉、缺陷结构少、热导率高和电阻率可调的氮化铝陶瓷材料以及与之匹配的工艺简单、操作方便的制备方法,对于制备高性能的静电卡盘以及实现静电卡盘的广泛应用具有重要意义。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种成本低廉、缺陷结构少、热导率高和电阻率可调的氮化铝陶瓷材料及其制备方法和应用。
为解决上述技术问题,本发明采用的技术方案为:
一种氮化铝陶瓷材料的制备方法,包括以下步骤:
S1、将微米级氮化铝粉体、单层石墨烯和烧结助剂混合,球磨,得到混合粉末;
S2、将混合粉末与成型剂混合,模压成型,得到粉末胚体;
S3、将粉末胚体进行烧结,得到氮化铝陶瓷材料。
上述的制备方法,进一步改进的,步骤S1中,所述微米级氮化铝粉体的粒径分布范围为0.2μm~2μm;所述微米级氮化铝粉体中氧杂质的质量百分含量≤0.3%。
上述的制备方法,进一步改进的,步骤S1中,所述微米级氮化铝粉体的质量与原料总质量的比例>95%。
上述的制备方法,进一步改进的,步骤S1中,所述单层石墨烯的质量与原料总质量的比例<2%。
上述的制备方法,进一步改进的,步骤S1中,所述烧结助剂的质量与原料总质量的比例<3%;所述烧结助剂为氧化钪和氧化镁中的至少一种。
上述的制备方法,进一步改进的,步骤S1中,所述球磨过程中采用的研磨介质为易挥发有机物;所述易挥发有机物为乙醇、丙酮中的至少一种;所述球磨过程中控制球料比范围为3∶1~10∶1。
上述的制备方法,进一步改进的,步骤S2中,所述成型剂为聚乙烯醇;所述成型剂与混合粉末的质量比为1∶10~1∶5。
上述的制备方法,进一步改进的,步骤S3中,所述烧结为:先将粉末胚体以1℃/min~10℃/min的加热速率加热至400℃~600℃,保温12h~24h,然后转移至氮气气氛下以1℃/min~10℃/min的加热速率升温至500℃~800℃,保温100min~300min,再以5℃/min~20℃/min的加热速率加热至1700℃~1950℃,保温6h~12h。
作为一个总的技术构思,本发明还提供了一种氮化铝陶瓷材料,所述氮化铝陶瓷材料由上述的制备方法制得。
作为一个总的技术构思,本发明还提供了一种上述的氮化铝陶瓷材料作为电介质层在制备静电卡盘中的应用。
与现有技术相比,本发明的优点在于:
(1)针对现有氮化铝陶瓷或氮化铝/石墨烯复合陶瓷中热导率和电阻率不能同时满足要求、制备成本高等缺陷,本发明创造性的提出了一种氮化铝陶瓷材料的制备方法,以微米级氮化铝粉体为原料,具有比表面积小、晶界数量少等优点,这使得氮化铝表面氧化铝的含量更少,且氮化铝晶格中氧含量更低,因而可在单层石墨烯用量相对更少的前提下有效去除氮化铝中的氧,与此同时,与常规多层石墨烯材料不同,本发明中,以单层石墨烯为调节剂,其具有更加优异的柔韧度,因而可以使得石墨烯能够有效、均匀的包裹在微米级氮化铝粉体的表面,使得石墨烯与微米级氮化铝粉体的具有更好的界面结合,不仅有利于提高石墨烯对氮化铝表面和晶格中氧的去除效果,而且通过简单的模压成型,即可获得石墨烯均匀分布的高致密度粉末胚体,不仅有利于减少石墨烯的用量,降低制备成本,同时也有利于调控材料的电阻率和提升材料的导热性能,使材料的电阻率和热导率更容易满足实际应用的要求,另外,采用的单层石墨烯,在高温下与氧的亲和性更强,因而在煅烧过程中可实现石墨烯与氮化铝表面和晶格中氧的有效反应,不仅能使氮化铝表面和晶格中的氧转化成二氧化碳排除,从而彻底去除氮化铝中的氧元素,而且还能有效修复氮化铝中存在的结构缺陷,使得材料中缺陷结构显著减少,由此可以制备得到成本低廉、缺陷结构少、热导率高和电阻率可调的氮化铝陶瓷材料,是一种性能优异的新型电介质层材料,可以用于制备性能优异的静电卡盘,使用价值高,应用前景好,从而更有利于实现静电卡盘的广泛应用。
(2)本发明制备方法中,采用的微米级氮化铝粉体的粒径分布范围为0.2μm~2μm,有利于获得氧含量低、致密度高的氮化铝陶瓷,这是因为若氮化铝粉末的粒径小于0.2μm,则它容易吸附空气中的氧,造成材料氧含量升高,而当氮化铝粉末粒径大于2μm时,其在烧结过程中颗粒之间的传质效率下降,由此导致材料的烧结致密度下降。与此同时,为了减少高氧含量对氮化铝陶瓷导热性能的不利影响,本发明中还优化了微米级氮化铝粉体中氧杂质的质量百分含量≤0.3%,这是因为若氮化铝粉体中氧含量过高,则氧在氮化铝中容易形成结构缺陷,这些结构缺陷的存在会严重影响材料中热传导载体声子的传播,由此导致材料导热性能下降。另外,本发明中还优化了各种原料的用量,其中微米级氮化铝粉体的质量与原料总质量的比例>95%,单层石墨烯的质量与原料总质量的比例<2%,烧结助剂的质量与原料总质量的比例<3%,通过优化各种原料的用量更有利于获得热导率和电阻率能同时满足要求的氮化铝陶瓷材料,如优化烧结助剂的用量,可快速形成中间相,从而能够加快氮化铝材料在烧结过程中的传质过程,进而能够提升材料的烧结致密度,但过多烧结助剂容易在氮化铝材料中形成的第二相,从而会导致材料传热和力学性能下降,又如,通过优化单层石墨烯的用量,能够显著提升氮化铝材料的导热和导电性能,但是单层石墨烯用量过高时,会导致氮化铝材料的导电性显著提升,从而不符合静电卡盘的使用要求。
(3)本发明制备方法中,将粉末胚体以1℃/min~10℃/min的加热速率加热至400℃~600℃,保温12h~24h,在此低温条件下可以将陶瓷胚体中的成型剂分解,并从胚体中去除,从而能够避免高温烧结过程中成型剂分解产生额外的氧,由此可以防止氮化铝被氧化,而且这些排出成型剂也避免其在高温下产生气体挥发的过程而影响陶瓷的致密化程度。
附图说明
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
图1为本发明实施例1中制备的氮化铝陶瓷材料的XRD图谱。
图2为对比例1中制备的氮化铝陶瓷材料的XRD图谱。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
以下实施例中,若无特别说明,所采用的原料和仪器均为市售,所采用工艺为常规工艺,所采用设备为常规设备。
实施例
一种氮化铝陶瓷材料的制备方法,包括以下步骤:
S1、按照微米级氮化铝粉体的质量与原料总质量的比例>95%,单层石墨烯的质量与原料总质量的比例<2%,烧结助剂的质量与原料总质量的比例<3%,将粒径分布范围为0.2μm~2μm的微米级氮化铝粉体、单层石墨烯和烧结助剂置于球磨机中,加入研磨介质进行球磨,其中球磨过程中控制球料比范围为3∶1~10∶1,得到混合粉末。
S2、按照成型剂与混合粉末的质量比为1∶10~1∶5,将混合粉末与成型剂混合,放入模具中模压成型,得到所需形状的粉末胚体;
S3、将粉末胚体进行烧结,具体为:先将粉末胚体以1℃/min~10℃/min的加热速率加热至400℃~600℃,保温12h~24h,然后转移至氮气气氛下以1℃/min~10℃/min的加热速率升温至500℃~800℃,保温100min~300min,再以5℃/min~20℃/min的加热速率加热至1700℃~1950℃,保温6h~12h,得到氮化铝陶瓷材料。
本发明中,采用的微米级氮化铝粉体中氧杂质的质量百分含量≤0.3%,但不仅限于此。
本发明中,采用的所述烧结助剂为氧化钪和氧化镁中的至少一种,但不仅限于此。
本发明中,采用的研磨介质为易挥发有机物,其中易挥发有机物为乙醇、丙酮中的至少一种,但不仅限于此。
本发明中,采用的成型剂为聚乙烯醇,但不仅限于此。
本发明中还提供了一种氮化铝陶瓷材料,由上述的制备方法制得。
本发明中,还提供了一种上述的氮化铝陶瓷材料作为电介质层在制备静电卡盘中的应用。
实施例1
一种氮化铝陶瓷材料的制备方法,包括以下步骤:
(1)制备混合粉末:
按照微米级氮化铝粉体、单层石墨烯和烧结助剂的质量与原料总质量的比例依次为97.5%、1.5%、1%,将粒径分布范围为0.2μm~2μm、氧杂质的质量百分含量≤0.3%的微米级氮化铝粉体、单层石墨烯和烧结助剂粉末(该烧结助剂粉末由等质量的氧化钪(Sc2O3)和氧化镁(MgO)混合而得)加入到球磨机中,以无水乙醇为研磨介质,球磨24h,使得各种粉末混合均匀,其中球磨过程中的球料比(该球料比是指物料与研磨介质的质量之比)为5∶1,得到混合粉末。
(2)制备粉末胚体:
按照成型剂与混合粉末的质量比为1:6,向步骤(1)中制备的混合粉末中加入成型剂(聚乙烯醇),搅拌均匀,采用模压成型的方法将粉末压制成所需的坯体。
(3)制备氮化铝陶瓷材料:
将步骤(2)中制备的压制成型后的胚体置于真空炉中,以5℃/min的加热速率加热至500℃,保温24时,排尽坯体中的有机物成型剂,然后将坯体转移至充满氮气的常压烧结炉中,以5℃/min的加热速率加热至800℃,保温100min,再以10℃/min的加热速率加热至1850℃,保温8h,随炉冷却,得到氮化铝陶瓷材料。
经测试,本实施例中制备的氮化铝陶瓷材料的相对密度达到98.8%,体电阻率为1.9×1010Ω·cm,热导率超过200W m-1K-1
一种上述本实施例中制备的氮化铝陶瓷材料作为电介质层在制备静电卡盘中的应用,具体是以氮化铝陶瓷材料作为电介质层用于制备J-R型静电卡盘。
对比例1
一种氮化铝陶瓷材料的制备方法,包括以下步骤:
(1)制备混合粉末:
按照微米级氮化铝粉体和烧结助剂的质量与原料总质量的比例依次为99%、1%,将粒径分布范围为0.2μm~2μm、氧杂质的质量百分含量≤0.3%的微米级氮化铝粉体和烧结助剂粉末(该烧结助剂粉末由等质量的氧化钪(Sc2O3)和氧化镁(MgO)混合而得)加入到球磨机中,以无水乙醇为研磨介质,球磨24h,使得各种粉末混合均匀,其中球磨过程中的球料比(该球料比是指物料与研磨介质的质量之比)为5∶1,得到混合粉末。
(2)制备粉末胚体:
按照成型剂与混合粉末的质量比为1:6,向步骤(1)中制备的混合粉末中加入成型剂(聚乙烯醇),搅拌均匀,采用模压成型的方法将粉末压制成所需的坯体。
(3)制备氮化铝陶瓷材料:
将步骤(2)中制备的压制成型后的胚体置于真空炉中,以5℃/min的加热速率加热至500℃,保温24时,排尽坯体中的有机物成型剂,然后将坯体转移至充满氮气的常压烧结炉中,以5℃/min的加热速率加热至800℃,保温100min,再以10℃/min的加热速率加热至1850℃,保温8h,随炉冷却,得到氮化铝陶瓷材料。
经测试,对比例1中制备的氮化铝陶瓷材料的相对密度达到98.3%,体电阻率为6.2×1013Ω·cm,热导率超过130W m-1K-1
通过比较可知,通过添加少量的单层石墨烯,即可改善氮化铝陶瓷材料的电阻率和导热性能,然而,未添加单层石墨烯时,所制备的氮化铝陶瓷材料的体电阻率高于1011Ω·cm,且仍然存在热导率偏低的缺陷,这使得对比例1中制备的氮化铝陶瓷材料并不能用于制备J-R型静电卡盘。
图1为本发明实施例1中制备的氮化铝陶瓷材料的XRD图谱。
图2为对比例1中制备的氮化铝陶瓷材料的XRD图谱。
由图1和图2可知,未添加石墨烯时,所制备的氮化铝陶瓷材料(对比例1)的XRD图谱中出现了明显的含O杂质相AlNO相,而添加石墨烯后,实施例1中所制备的氮化铝陶瓷材料中含O杂质相的特征衍射峰消失了,得到纯氮化铝陶瓷相;相关的测试结果也表明添加少量的石墨烯能够显著改善氮化铝陶瓷材料的导热性能。
另外,本发明中还考察了不同类型氮化铝粉体、不同类型石墨烯以及不同用量单层石墨烯对氮化铝陶瓷材料性能的影响,结果如表1所示。
实施例2:微米级氮化铝粉体与原料总质量的比例为97%,单层石墨烯的质量与原料总质量的比例为1%,烧结助剂的质量与原料总质量的比例为2%,其他条件与实施例1相同。
对比例1:以纳米级氮化铝粉体为原料,代替实施例1中的微米级氮化铝粉体,其他条件相同。
对比例2:以石墨烯颗粒(多层石墨烯材料)为原料,代替实施例1中的单层石墨烯,其他条件相同。
对比例3:微米级氮化铝粉体与原料总质量的比例为94%,单层石墨烯的质量与原料总质量的比例为5%,烧结助剂的质量与原料总质量的比例为1%,其他条件与实施例1相同。
表1不同原料类型、不同原料用量下制得的氮化铝陶瓷材料的性能对比
上述结果表明,本发明制备的氮化铝陶瓷材料具有成本低廉、缺陷结构少、热导率高和电阻率可调等优点,是一种性能优异的新型电介质层材料,可以用于制备性能优异的静电卡盘,使用价值高,应用前景好,有利于实现静电卡盘的广泛应用。
以上实施例仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种氮化铝陶瓷材料的制备方法,其特征在于,包括以下步骤:
S1、将微米级氮化铝粉体、单层石墨烯和烧结助剂混合,球磨,得到混合粉末;
S2、将混合粉末与成型剂混合,模压成型,得到粉末胚体;
S3、将粉末胚体进行烧结,得到氮化铝陶瓷材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述微米级氮化铝粉体的粒径分布范围为0.2μm~2μm;所述微米级氮化铝粉体中氧杂质的质量百分含量≤0.3%。
3.根据权利要求2所述的制备方法,其特征在于,步骤S1中,所述微米级氮化铝粉体的质量与原料总质量的比例>95%。
4.根据权利要求1~3中任一项所述的制备方法,其特征在于,步骤S1中,所述单层石墨烯的质量与原料总质量的比例<2%。
5.根据权利要求1~3中任一项所述的制备方法,其特征在于,步骤S1中,所述烧结助剂的质量与原料总质量的比例<3%;所述烧结助剂为氧化钪和氧化镁中的至少一种。
6.根据权利要求1~3中任一项所述的制备方法,其特征在于,步骤S1中,所述球磨过程中采用的研磨介质为易挥发有机物;所述易挥发有机物为乙醇、丙酮中的至少一种;所述球磨过程中控制球料比范围为3∶1~10∶1。
7.根据权利要求1~3中任一项所述的制备方法,其特征在于,步骤S2中,所述成型剂为聚乙烯醇;所述成型剂与混合粉末的质量比为1∶10~1∶5。
8.根据权利要求1~3中任一项所述的制备方法,其特征在于,步骤S3中,所述烧结为:先将粉末胚体以1℃/min~10℃/min的加热速率加热至400℃~600℃,保温12h~24h,然后转移至氮气气氛下以1℃/min~10℃/min的加热速率升温至500℃~800℃,保温100min~300min,再以5℃/min~20℃/min的加热速率加热至1700℃~1950℃,保温6h~12h。
9.一种氮化铝陶瓷材料,其特征在于,所述氮化铝陶瓷材料由权利要求1~8中任一项所述的制备方法制得。
10.一种如权利要求9所述的氮化铝陶瓷材料作为电介质层在制备静电卡盘中的应用。
CN202310786544.4A 2023-06-29 2023-06-29 氮化铝陶瓷材料及其制备方法和应用 Active CN116813352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310786544.4A CN116813352B (zh) 2023-06-29 2023-06-29 氮化铝陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310786544.4A CN116813352B (zh) 2023-06-29 2023-06-29 氮化铝陶瓷材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116813352A true CN116813352A (zh) 2023-09-29
CN116813352B CN116813352B (zh) 2024-10-01

Family

ID=88116297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310786544.4A Active CN116813352B (zh) 2023-06-29 2023-06-29 氮化铝陶瓷材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116813352B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018981A1 (ko) * 2011-07-29 2013-02-07 한국과학기술원 그래핀/세라믹 나노복합분말 및 그의 제조방법
CN103553691A (zh) * 2013-11-01 2014-02-05 广东工业大学 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
US20140197353A1 (en) * 2011-07-29 2014-07-17 Korea Advanced Institute of Sceince and Technology Graphene/ceramic nanocomposite powder and a production method therefor
KR20170141340A (ko) * 2016-06-15 2017-12-26 한국세라믹기술원 정전척용 세라믹 소결체 및 그 제조방법
CN108706980A (zh) * 2018-06-27 2018-10-26 深圳市商德先进陶瓷股份有限公司 氮化铝陶瓷及其制备方法、静电卡盘和应用
CN109942296A (zh) * 2019-01-11 2019-06-28 南京工业大学 高导热绝缘石墨烯/氧化铝/铝复合材料及其制备方法
CN112028636A (zh) * 2020-08-26 2020-12-04 北京科技大学 一种高导热氮化铝/石墨烯复合陶瓷器件的制备方法
CN113461439A (zh) * 2020-03-30 2021-10-01 北京石墨烯研究院 一种石墨烯-陶瓷复合材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018981A1 (ko) * 2011-07-29 2013-02-07 한국과학기술원 그래핀/세라믹 나노복합분말 및 그의 제조방법
US20140197353A1 (en) * 2011-07-29 2014-07-17 Korea Advanced Institute of Sceince and Technology Graphene/ceramic nanocomposite powder and a production method therefor
CN103553691A (zh) * 2013-11-01 2014-02-05 广东工业大学 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
KR20170141340A (ko) * 2016-06-15 2017-12-26 한국세라믹기술원 정전척용 세라믹 소결체 및 그 제조방법
CN108706980A (zh) * 2018-06-27 2018-10-26 深圳市商德先进陶瓷股份有限公司 氮化铝陶瓷及其制备方法、静电卡盘和应用
CN109942296A (zh) * 2019-01-11 2019-06-28 南京工业大学 高导热绝缘石墨烯/氧化铝/铝复合材料及其制备方法
CN113461439A (zh) * 2020-03-30 2021-10-01 北京石墨烯研究院 一种石墨烯-陶瓷复合材料及其制备方法和应用
CN112028636A (zh) * 2020-08-26 2020-12-04 北京科技大学 一种高导热氮化铝/石墨烯复合陶瓷器件的制备方法

Also Published As

Publication number Publication date
CN116813352B (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
WO2022156635A1 (zh) 一种高性能氮化硅陶瓷基片的批量化烧结方法
JP6293949B2 (ja) 圧接構造用窒化珪素基板およびそれを用いた窒化珪素回路基板
US20100248935A1 (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
WO2022156637A1 (zh) 一种氮化硅陶瓷材料的制备方法
CN112939607B (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN114560706B (zh) 一种高热导氮化铝陶瓷基板的制备方法
CN112811909A (zh) 一种热压烧结制备高强度高热导率氮化铝的方法
WO2019188148A1 (ja) 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
CN111676456A (zh) 一种自组装Ba(Hf,Ti)O3:HfO2纳米复合无铅外延单层薄膜及其制备方法
CN109592983B (zh) 一种高热导液相烧结碳化硅陶瓷及其制备方法
KR101681184B1 (ko) 전기전도성 상압소결 탄화규소 소재 제조용 조성물, 탄화규소 소재 및 그 제조방법
CN116813352B (zh) 氮化铝陶瓷材料及其制备方法和应用
KR101355542B1 (ko) 세라믹 복합재료 및 그의 제조방법
CN113186528A (zh) 一种铂金薄膜及其制备方法和用途
CN113718330B (zh) 一种低介电常数高熵薄膜及其制备方法
CN111484333A (zh) 一种兼具高热导率和高强度的氮化铝陶瓷及其制备方法
CN115304383A (zh) 一种氮化铝基板及其制备方法与应用
CN106542828A (zh) 一种低温烧结高热导率的氮化铝陶瓷及其制备方法
CN111302806A (zh) 一种IC装备用静电卡盘AlN陶瓷及其制备方法
KR20100088479A (ko) 질화알루미늄 소재 및 그 제조방법
CN118164766B (zh) 一种氮化铝陶瓷烧结体及其制备方法和氮化铝陶瓷基板
JP7543234B2 (ja) アルミナセラミックス、及びアルミナセラミックスの製造方法
JP2587854B2 (ja) 熱伝導度が向上された窒化アルミニウム焼結体の製造方法
KR102536630B1 (ko) 중고온에서 높은 비저항을 갖는 정전척용 AlN-MgO계 소결체 및 이의 제조방법
JP4585129B2 (ja) 静電チャック

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant