CN114478022A - 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法 - Google Patents

一种高可靠性氮化铝覆铜陶瓷基板及其制备方法 Download PDF

Info

Publication number
CN114478022A
CN114478022A CN202111659024.4A CN202111659024A CN114478022A CN 114478022 A CN114478022 A CN 114478022A CN 202111659024 A CN202111659024 A CN 202111659024A CN 114478022 A CN114478022 A CN 114478022A
Authority
CN
China
Prior art keywords
aluminum nitride
powder
ceramic substrate
copper
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111659024.4A
Other languages
English (en)
Other versions
CN114478022B (zh
Inventor
俞晓东
刘晓辉
杨恺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Weispeer Semiconductor Technology Co ltd
Original Assignee
Nantong Weispeer Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Weispeer Semiconductor Technology Co ltd filed Critical Nantong Weispeer Semiconductor Technology Co ltd
Priority to CN202111659024.4A priority Critical patent/CN114478022B/zh
Publication of CN114478022A publication Critical patent/CN114478022A/zh
Application granted granted Critical
Publication of CN114478022B publication Critical patent/CN114478022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高可靠性氮化铝覆铜陶瓷基板及其制备方法,为实现各个单相材料的优势互补,本申请以氮化铝粉末、氮化硅粉末、烧结助剂为主料,烧结制备复合氮化铝陶瓷基板,其满足高强度、高导热、低损耗等要求,综合性能优异,实用性较好。本发明工艺设计合理,方案操作简单,陶瓷浆料层和焊料层的存在能够有效改善A1N与金属Cu之间的界面润湿性,使氮化铝与铜片之间紧密结合,使得覆铜基板具有高剥离强度及高可靠性优点,可适用于半导体制冷器、功率半导体模块的制备,特别是大规模、超大规模集成电路及大功率LED,具有较高的实用性。

Description

一种高可靠性氮化铝覆铜陶瓷基板及其制备方法
技术领域
本发明涉及覆铜板技术领域,具体为一种高可靠性氮化铝覆铜陶瓷基板及其制备方法。
背景技术
氮化铝(AlN)陶瓷具有优异的导热性能,其热导率可达150W/m·K~200W/m·K,约为Al2O3的10倍,且热膨胀系数与硅接近,是取代Al2O3陶瓷的理想的基板材料之一。但是由于A1N与金属Cu之间的界面润湿性差,现有的DBC法制备氮化铝覆铜基板时,会产生大量气泡,存在于铜与氮化铝的界面处,导致基板剥离强度和导热性能大幅下降,良品率低。
基于该情况,本申请公开了一种高可靠性氮化铝覆铜陶瓷基板及其制备方法,以解决该技术问题。
发明内容
本发明的目的在于提供一种高可靠性氮化铝覆铜陶瓷基板及其制备方法,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:
一种高可靠性氮化铝覆铜陶瓷基板的制备方法,包括以下步骤:
(1)取氮化铝粉末、氮化硅粉末、烧结助剂混合均匀,以无水乙醇为球磨介质,球磨10~15h,旋转蒸发20~30min,110~120℃下保温干燥4~5h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,得到氮化铝陶瓷基板;
(2)取钛粉、碳化钛粉、铝粉、石墨烯、铜粉和无水乙醇,混合均匀后球磨6~8h,得到陶瓷浆料;将陶瓷浆料涂覆至氮化铝陶瓷基板两侧表面,50~55℃下干燥7~8h,再在氮气环境下热压烧结,得到预处理陶瓷基体;所述陶瓷浆料的涂覆图形、焊料的涂覆图形与后续的铜箔线路化图形保持一致。
(3)在预处理陶瓷基板两侧表面的陶瓷浆料上涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散10~20min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为10~12min,清洗后烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,得到成品。
较优化的方案,步骤(1)中,所述氮化铝粉末进行预处理,具体步骤为:取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1~1.5h,取出后去离子水滤洗,70~80℃下真空干燥1~2h。
较优化的方案,步骤(1)中, 气压烧结的工艺参数为:压力为5MPa,烧结温度为1700~1750℃,保温时间为0.5~1h,升温速率为8~10℃/min。
较优化的方案,步骤(1)中,各组分原料包括:25~30wt%氮化铝粉末、5~6wt%烧结助剂,其余为氮化硅粉末;所述烧结助剂包括氮化硅镁粉体、氧化钇、氟化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1。
较优化的方案,步骤(2)中,所述钛粉、碳化钛粉、铝粉、石墨烯、铜粉的质量比为2:4:2:1:1。
较优化的方案,所述陶瓷浆料的涂覆厚度为5~50µm,所述焊料涂覆厚度为5~50µm;所述氮化铝陶瓷厚度为0.25mm~2.0mm,所述铜箔厚度为0.1mm~1.0mm。
较优化的方案,步骤(2)中,热压烧结工艺参数为:烧结温度为1400~1450℃,保温时间为40~50min,压力为25MPa。
较优化的方案,所述焊料各组分包括:Ag50~90wt%、Cu10~40wt%,余量为活性元素,所述活性元素为Ti、Zr、Hf、Cr、V、Si、Al中的一种或几种。
较优化的方案,步骤(3)中,真空钎焊时温度为900~1000℃,钎焊时间为50~60min,真空度为5×10-3Pa。
较优化的方案,根据以上任一项所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法制备的覆铜陶瓷基板。
与现有技术相比,本发明所达到的有益效果是:
本发明公开了一种高可靠性氮化铝覆铜陶瓷基板及其制备方法,现如今氮化铝陶瓷基板、氮化硅陶瓷基板均是覆铜板制备时较为常用的基材之一,但单纯的陶瓷材质总会存在其缺陷之处,如成本高,或者强度低(常规的氮化铝陶瓷),因此,为实现各个单相材料的优势互补,本申请以氮化铝粉末、氮化硅粉末、烧结助剂为主料,烧结制备复合氮化铝陶瓷基板,其满足高强度、高导热、低损耗等要求,综合性能优异,实用性较好。
同时,在本方案中,烧结助剂选择为氮化硅镁粉体、氧化钇、氟化钇,且所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1,该选择原因在于:氮化硅镁和氟化钇相互复配,能够减低陶瓷基板中氧含量,并且提高其热导率,但在烧结过程中,其液相较少黏度大,不利于陶瓷结构的整体致密化,从而影响陶瓷基板的强度;因此本申请以氮化硅镁粉体、氧化钇、氟化钇复配,在保证致密化的同时降低氧含量,以保证复合氮化铝陶瓷的高热导率、高强度。
本方案制备得到复合氮化铝陶瓷基板后,在其表面涂覆陶瓷浆料,且所述陶瓷浆料的涂覆图形、焊料的涂覆图形与后续的铜箔线路化图形保持一致;该陶瓷浆料的涂覆目的在于提高焊料与复合陶瓷基板之间的结合性能;在陶瓷浆料上涂覆焊料层,能够有效改善A1N陶瓷基板与金属Cu之间的界面润湿性,使氮化铝与铜片之间紧密结合,具有高剥离强度及高可靠性优点。
在陶瓷浆料中,本申请引入了钛粉、碳化钛粉、铝粉、石墨烯、铜粉和无水乙醇,一方面,本申请中后续焊料组分为银、铜、活性元素Ti、Zr、Hf、Cr、V、Si、Al等,而钛粉、铜粉的引入能够提高陶瓷基板与焊料中间的润湿性,从而提高二者之间的结合性能;另一方面,石墨烯的引入能够提高整个覆铜陶瓷基板的抗热震性能和强度,且其导热效果也得以提升。
本发明公开了一种高可靠性氮化铝覆铜陶瓷基板及其制备方法,工艺设计合理,方案操作简单,陶瓷浆料层和焊料层的存在能够有效改善A1N与金属Cu之间的界面润湿性,使氮化铝与铜片之间紧密结合,使得覆铜基板具有高剥离强度及高可靠性优点,可适用于半导体制冷器、功率半导体模块的制备,特别是大规模、超大规模集成电路及大功率LED,具有较高的实用性。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种高可靠性氮化铝覆铜陶瓷基板的制备方法,包括以下步骤:
(1)取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1h,取出后去离子水滤洗,70℃下真空干燥2h,干燥后取30wt%氮化铝粉末、64wt%氮化硅粉末、6wt%烧结助剂混合均匀,以无水乙醇为球磨介质,球磨10h,旋转蒸发20min,110℃下保温干燥5h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,压力为5MPa,烧结温度为17000℃,保温时间为1h,升温速率为10℃/min;得到氮化铝陶瓷基板;
烧结助剂包括氮化硅镁粉体、氧化钇、氟化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1。
(2)取钛粉、碳化钛粉、铝粉、石墨烯、铜粉和无水乙醇,混合均匀后球磨6~8h,得到陶瓷浆料;将陶瓷浆料涂覆至氮化铝陶瓷基板两侧表面,50℃下干燥8h,再在氮气环境下热压烧结,烧结温度为1400℃,保温时间为50min,压力为25MPa,得到预处理陶瓷基体;钛粉、碳化钛粉、铝粉、石墨烯、铜粉的质量比为2:4:2:1:1;所述陶瓷浆料的涂覆厚度为10µm。
(3)在预处理陶瓷基板两侧表面的陶瓷浆料上涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散10min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为10min,清洗后烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,真空钎焊时温度为900℃,钎焊时间为60min,真空度为5×10-3Pa;得到成品。
所述焊料各组分包括:50wt%Ag、30wt%Cu,余量为活性元素,所述活性元素为15wt%Ti、5wt%Al。所述焊料涂覆厚度为20µm;所述氮化铝陶瓷厚度为2.0mm,所述铜箔厚度为1.0mm。
实施例2:
一种高可靠性氮化铝覆铜陶瓷基板的制备方法,包括以下步骤:
(1)取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1.2h,取出后去离子水滤洗,75℃下真空干燥1.5h,干燥后取30wt%氮化铝粉末、64wt%氮化硅粉末、6wt%烧结助剂混合均匀,以无水乙醇为球磨介质,球磨12h,旋转蒸发25min,115℃下保温干燥4.5h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,压力为5MPa,烧结温度为1725℃,保温时间为0.8h,升温速率为10℃/min;得到氮化铝陶瓷基板;
烧结助剂包括氮化硅镁粉体、氧化钇、氟化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1。
(2)取钛粉、碳化钛粉、铝粉、石墨烯、铜粉和无水乙醇,混合均匀后球磨7h,得到陶瓷浆料;将陶瓷浆料涂覆至氮化铝陶瓷基板两侧表面,52℃下干燥7.5h,再在氮气环境下热压烧结,烧结温度为1425℃,保温时间为45min,压力为25MPa,得到预处理陶瓷基体;钛粉、碳化钛粉、铝粉、石墨烯、铜粉的质量比为2:4:2:1:1;所述陶瓷浆料的涂覆厚度为10µm。
(3)在预处理陶瓷基板两侧表面的陶瓷浆料上涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散15min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为10min,清洗后烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,真空钎焊时温度为900℃,钎焊时间为60min,真空度为5×10-3Pa;得到成品。
所述焊料各组分包括:50wt%Ag、30wt%Cu,余量为活性元素,所述活性元素为15wt%Ti、5wt%Al。所述焊料涂覆厚度为20µm;所述氮化铝陶瓷厚度为2.0mm,所述铜箔厚度为1.0mm。
实施例3:
一种高可靠性氮化铝覆铜陶瓷基板的制备方法,包括以下步骤:
(1)取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1.5h,取出后去离子水滤洗,80℃下真空干燥1h,干燥后取30wt%氮化铝粉末、64wt%氮化硅粉末、6wt%烧结助剂混合均匀,以无水乙醇为球磨介质,球磨10~15h,旋转蒸发30min,120℃下保温干燥4h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,压力为5MPa,烧结温度为1750℃,保温时间为0.5h,升温速率为10℃/min;得到氮化铝陶瓷基板;
烧结助剂包括氮化硅镁粉体、氧化钇、氟化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1。
(2)取钛粉、碳化钛粉、铝粉、石墨烯、铜粉和无水乙醇,混合均匀后球磨6~8h,得到陶瓷浆料;将陶瓷浆料涂覆至氮化铝陶瓷基板两侧表面,55℃下干燥7h,再在氮气环境下热压烧结,烧结温度为1450℃,保温时间为40min,压力为25MPa,得到预处理陶瓷基体;钛粉、碳化钛粉、铝粉、石墨烯、铜粉的质量比为2:4:2:1:1;所述陶瓷浆料的涂覆厚度为10µm。
(3)在预处理陶瓷基板两侧表面的陶瓷浆料上涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散20min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为12min,清洗后烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,真空钎焊时温度为900℃,钎焊时间为60min,真空度为5×10-3Pa;得到成品。
所述焊料各组分包括:50wt%Ag、30wt%Cu,余量为活性元素,所述活性元素为15wt%Ti、5wt%Al。所述焊料涂覆厚度为20µm;所述氮化铝陶瓷厚度为2.0mm,所述铜箔厚度为1.0mm。
对比例1:对比例1在实施例2的基础上进行改进,对比例1中并未进行陶瓷浆料涂覆,其余组分和工艺与实施例2一致。
一种高可靠性氮化铝覆铜陶瓷基板的制备方法,包括以下步骤:
(1)取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1.2h,取出后去离子水滤洗,75℃下真空干燥1.5h,干燥后取30wt%氮化铝粉末、64wt%氮化硅粉末、6wt%烧结助剂混合均匀,以无水乙醇为球磨介质,球磨12h,旋转蒸发25min,115℃下保温干燥4.5h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,压力为5MPa,烧结温度为1725℃,保温时间为0.8h,升温速率为10℃/min;得到氮化铝陶瓷基板;
烧结助剂包括氮化硅镁粉体、氧化钇、氟化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1。
(2)在预处理陶瓷基板两侧表面涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散15min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为10min,清洗后烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,真空钎焊时温度为900℃,钎焊时间为60min,真空度为5×10-3Pa;得到成品。
所述焊料各组分包括:50wt%Ag、30wt%Cu,余量为活性元素,所述活性元素为15wt%Ti、5wt%Al。所述焊料涂覆厚度为20µm;所述氮化铝陶瓷厚度为2.0mm,所述铜箔厚度为1.0mm。
对比例2:对比例2在实施例2的基础上进行改进,对比例2中并未引入铜粉,其余组分和工艺与实施例2一致。
一种高可靠性氮化铝覆铜陶瓷基板的制备方法,包括以下步骤:
(1)取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1.2h,取出后去离子水滤洗,75℃下真空干燥1.5h,干燥后取30wt%氮化铝粉末、64wt%氮化硅粉末、6wt%烧结助剂混合均匀,以无水乙醇为球磨介质,球磨12h,旋转蒸发25min,115℃下保温干燥4.5h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,压力为5MPa,烧结温度为1725℃,保温时间为0.8h,升温速率为10℃/min;得到氮化铝陶瓷基板;
烧结助剂包括氮化硅镁粉体、氧化钇、氟化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1。
(2)取钛粉、碳化钛粉、铝粉、石墨烯和无水乙醇,混合均匀后球磨7h,得到陶瓷浆料;将陶瓷浆料涂覆至氮化铝陶瓷基板两侧表面,52℃下干燥7.5h,再在氮气环境下热压烧结,烧结温度为1425℃,保温时间为45min,压力为25MPa,得到预处理陶瓷基体;钛粉、碳化钛粉、铝粉、石墨烯的质量比为2:4:2:1;所述陶瓷浆料的涂覆厚度为10µm。
(3)在预处理陶瓷基板两侧表面的陶瓷浆料上涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散15min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为10min,清洗后烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,真空钎焊时温度为900℃,钎焊时间为60min,真空度为5×10-3Pa;得到成品。
所述焊料各组分包括:50wt%Ag、30wt%Cu,余量为活性元素,所述活性元素为15wt%Ti、5wt%Al。所述焊料涂覆厚度为20µm;所述氮化铝陶瓷厚度为2.0mm,所述铜箔厚度为1.0mm。
对比例3:对比例3在实施例2的基础上进行改进,对比例3中并未引入石墨烯,其余组分和工艺与实施例2一致。
一种高可靠性氮化铝覆铜陶瓷基板的制备方法,包括以下步骤:
(1)取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1.2h,取出后去离子水滤洗,75℃下真空干燥1.5h,干燥后取30wt%氮化铝粉末、64wt%氮化硅粉末、6wt%烧结助剂混合均匀,以无水乙醇为球磨介质,球磨12h,旋转蒸发25min,115℃下保温干燥4.5h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,压力为5MPa,烧结温度为1725℃,保温时间为0.8h,升温速率为10℃/min;得到氮化铝陶瓷基板;
烧结助剂包括氮化硅镁粉体、氧化钇、氟化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1。
(2)取钛粉、碳化钛粉、铝粉、铜粉和无水乙醇,混合均匀后球磨7h,得到陶瓷浆料;将陶瓷浆料涂覆至氮化铝陶瓷基板两侧表面,52℃下干燥7.5h,再在氮气环境下热压烧结,烧结温度为1425℃,保温时间为45min,压力为25MPa,得到预处理陶瓷基体;钛粉、碳化钛粉、铝粉、铜粉的质量比为2:4:2:1;所述陶瓷浆料的涂覆厚度为10µm。
(3)在预处理陶瓷基板两侧表面的陶瓷浆料上涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散15min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为10min,清洗后烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,真空钎焊时温度为900℃,钎焊时间为60min,真空度为5×10-3Pa;得到成品。
所述焊料各组分包括:50wt%Ag、30wt%Cu,余量为活性元素,所述活性元素为15wt%Ti、5wt%Al。所述焊料涂覆厚度为20µm;所述氮化铝陶瓷厚度为2.0mm,所述铜箔厚度为1.0mm。
对比例4:对比例4在实施例2的基础上进行改进,对比例4中烧结助剂并未引入氟化钇,其余组分和工艺与实施例2一致。
一种高可靠性氮化铝覆铜陶瓷基板的制备方法,包括以下步骤:
(1)取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1.2h,取出后去离子水滤洗,75℃下真空干燥1.5h,干燥后取30wt%氮化铝粉末、64wt%氮化硅粉末、6wt%烧结助剂混合均匀,以无水乙醇为球磨介质,球磨12h,旋转蒸发25min,115℃下保温干燥4.5h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,压力为5MPa,烧结温度为1725℃,保温时间为0.8h,升温速率为10℃/min;得到氮化铝陶瓷基板;
烧结助剂包括氮化硅镁粉体、氧化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2。
(2)取钛粉、碳化钛粉、铝粉、石墨烯、铜粉和无水乙醇,混合均匀后球磨7h,得到陶瓷浆料;将陶瓷浆料涂覆至氮化铝陶瓷基板两侧表面,52℃下干燥7.5h,再在氮气环境下热压烧结,烧结温度为1425℃,保温时间为45min,压力为25MPa,得到预处理陶瓷基体;钛粉、碳化钛粉、铝粉、石墨烯、铜粉的质量比为2:4:2:1:1;所述陶瓷浆料的涂覆厚度为10µm。
(3)在预处理陶瓷基板两侧表面的陶瓷浆料上涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散15min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为10min,清洗后烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,真空钎焊时温度为900℃,钎焊时间为60min,真空度为5×10-3Pa;得到成品。
所述焊料各组分包括:50wt%Ag、30wt%Cu,余量为活性元素,所述活性元素为15wt%Ti、5wt%Al。所述焊料涂覆厚度为20µm;所述氮化铝陶瓷厚度为2.0mm,所述铜箔厚度为1.0mm。
检测试验:
1、取实施例1-3、对比例4制备的氮化铝陶瓷基板【步骤(1)制备】,对氮化铝陶瓷基板进行性能检测,通过三点弯曲法测试样品的弯曲强度,样品的尺寸为3mm×4mm×36mm,加载速率为0.5mm/min;通过激光导热分析仪检测热导率。样品的尺寸为10mm×4mm×30mm
项目 实施例1 实施例2 实施例3 对比例4
弯曲强度(MPa) 439 442 441 438
热导率W/(mK) 59 60 59 56
2、取实施例1-3、对比例1-3制备的覆铜陶瓷基板,检测其剥离强度和热冲击性能(-40℃,保温15min;15s内升温至150℃,保温15min),记录出现翘曲、开裂的次数。
项目 实施例1 实施例2 实施例3 对比例1 对比例2 对比例3
剥离强度N/mm 16 17 17 14 15 15
循环次数 >100 >100 >100 76 >100 87
结论:本发明公开了一种高可靠性氮化铝覆铜陶瓷基板及其制备方法,工艺设计合理,方案操作简单,陶瓷浆料层和焊料层的存在能够有效改善A1N与金属Cu之间的界面润湿性,使氮化铝与铜片之间紧密结合,使得覆铜基板具有高剥离强度及高可靠性优点,可适用于半导体制冷器、功率半导体模块的制备,特别是大规模、超大规模集成电路及大功率LED,具有较高的实用性。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:包括以下步骤:
(1)取氮化铝粉末、氮化硅粉末、烧结助剂混合均匀,以无水乙醇为球磨介质,球磨10~15h,旋转蒸发20~30min,110~120℃下保温干燥4~5h,过筛,得到陶瓷粉;取陶瓷粉体,置于模具中干压成型,氮气环境下进行气压烧结,得到氮化铝陶瓷基板;
(2)取钛粉、碳化钛粉、铝粉、石墨烯、铜粉和无水乙醇,混合均匀后球磨6~8h,得到陶瓷浆料;将陶瓷浆料涂覆至氮化铝陶瓷基板两侧表面,50~55℃下干燥7~8h,再在氮气环境下热压烧结,得到预处理陶瓷基体;
(3)在预处理陶瓷基板两侧表面的陶瓷浆料上涂覆焊料,形成焊料层;将铜箔置于丙酮溶液中清洗,超声分散10~20min,再依次采用无水乙醇、去离子水进行超声清洗,超声清洗时间均为10~12min,清洗烘干,将烘干的铜箔固定在预处理陶瓷基板两侧,真空钎焊,得到成品。
2.根据权利要求1所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:步骤(1)中,所述氮化铝粉末进行预处理,具体步骤为:取氮化铝粉末,置于6mol/L的磷酸溶液中,超声分散1~1.5h,取出后去离子水滤洗,70~80℃下真空干燥1~2h。
3.根据权利要求1所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:步骤(1)中,气压烧结的工艺参数为:压力为5MPa,烧结温度为1700~1750℃,保温时间为0.5~1h,升温速率为8~10℃/min。
4.根据权利要求1所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:步骤(1)中,各组分原料包括:25~30wt%氮化铝粉末、5~6wt%烧结助剂,其余为氮化硅粉末;所述烧结助剂包括氮化硅镁粉体、氧化钇、氟化钇,所述氮化硅镁粉体、氧化钇、氟化钇质量比为5:2:1。
5.根据权利要求1所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:步骤(2)中,所述钛粉、碳化钛粉、铝粉、石墨烯、铜粉的质量比为2:4:2:1:1。
6.根据权利要求1所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:所述陶瓷浆料的涂覆厚度为5~50µm,所述焊料涂覆厚度为5~50µm;所述氮化铝陶瓷厚度为0.25mm~2.0mm,所述铜箔厚度为0.1mm~1.0mm。
7.根据权利要求1所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:步骤(2)中,热压烧结工艺参数为:烧结温度为1400~1450℃,保温时间为40~50min,压力为25MPa。
8.根据权利要求1所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:所述焊料各组分包括:Ag50~90wt%、Cu10~40wt%,余量为活性元素,所述活性元素为Ti、Zr、Hf、Cr、V、Si、Al中的一种或几种。
9.根据权利要求1所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法,其特征在于:步骤(3)中,真空钎焊时温度为900~1000℃,钎焊时间为50~60min,真空度为5×10-3Pa。
10.根据权利要求1~9中任一项所述的一种高可靠性氮化铝覆铜陶瓷基板的制备方法制备的覆铜陶瓷基板。
CN202111659024.4A 2021-12-31 2021-12-31 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法 Active CN114478022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111659024.4A CN114478022B (zh) 2021-12-31 2021-12-31 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111659024.4A CN114478022B (zh) 2021-12-31 2021-12-31 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法

Publications (2)

Publication Number Publication Date
CN114478022A true CN114478022A (zh) 2022-05-13
CN114478022B CN114478022B (zh) 2023-01-03

Family

ID=81507810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111659024.4A Active CN114478022B (zh) 2021-12-31 2021-12-31 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法

Country Status (1)

Country Link
CN (1) CN114478022B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153112A (zh) * 2022-08-04 2022-10-11 江苏富乐华功率半导体研究院有限公司 一种高效率的电子烟双面加热片及其制备方法
CN116835990A (zh) * 2023-08-29 2023-10-03 合肥阿基米德电子科技有限公司 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用
CN117756555A (zh) * 2023-12-22 2024-03-26 江苏富乐华半导体科技股份有限公司 一种高可靠性氮化铝覆铝基板的制备方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213677A (ja) * 1992-02-04 1993-08-24 Kawasaki Steel Corp 銅板とアルミナあるいはAlN基板の接合方法
EP0868961A1 (en) * 1997-03-12 1998-10-07 Dowa Mining Co., Ltd. Metal-ceramic composite substrates, producing methods thereof and brazing materials for use in such method
US6086990A (en) * 1995-09-28 2000-07-11 Kabushiki Kaisha Toshiba High thermal conductivity silicon nitride circuit substrate and semiconductor device using the same
US20030068532A1 (en) * 2001-09-28 2003-04-10 Nobuyoshi Tsukaguchi Metal/ceramic bonding article
JP2004134493A (ja) * 2002-10-09 2004-04-30 Toshiba Corp セラミックス回路基板
JP2005330178A (ja) * 2004-05-17 2005-12-02 Qinghua Univ 高熱伝導率・高強度窒化ケイ素セラミックス及びその製造方法
WO2006120803A1 (ja) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd 高熱伝導複合材料とその製造方法
US20080157115A1 (en) * 2005-06-21 2008-07-03 Epistar Corporation High-efficiency light-emitting device and manufacturing method thereof
US20110045209A1 (en) * 2008-05-01 2011-02-24 Maxim Seleznev Continuous or discrete metallization layer on a ceramic substrate
JP2011236365A (ja) * 2010-05-12 2011-11-24 Jsr Corp 熱可塑性エラストマー組成物及び熱伝導性シート
US20140227548A1 (en) * 2012-06-27 2014-08-14 James J. Myrick Nanoparticles, Compositions, Manufacture and Applications
KR101510806B1 (ko) * 2013-10-22 2015-04-08 현대자동차주식회사 산화 그래핀-세라믹 하이브리드 코팅막 및 이의 제조 방법
WO2017030360A1 (ko) * 2015-08-17 2017-02-23 한국과학기술원 고 열전도도 질화규소 소결체 및 이의 제조 방법
JP2017085087A (ja) * 2015-10-30 2017-05-18 日本碍子株式会社 半導体製造装置用部材、その製法及びシャフト付きヒータ
CN111196728A (zh) * 2019-11-20 2020-05-26 中国科学院上海硅酸盐研究所 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN111484335A (zh) * 2020-04-22 2020-08-04 衡阳凯新特种材料科技有限公司 氮化硅陶瓷浆料用烧结助剂复合添加剂、氮化硅陶瓷浆料及其制备方法和应用
CN111908924A (zh) * 2020-07-22 2020-11-10 江苏富乐德半导体科技有限公司 一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法
CN113087531A (zh) * 2021-04-02 2021-07-09 广东工业大学 一种高强度高热导氮化硅陶瓷基板及其制备方法和应用
CN113307647A (zh) * 2021-04-16 2021-08-27 长春工业大学 一种氮化铝陶瓷覆铜板的间接钎焊方法
US20210269368A1 (en) * 2018-08-17 2021-09-02 Zone Infinity Co., Ltd. Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength
CN113453884A (zh) * 2019-02-19 2021-09-28 日东电工株式会社 二维材料层叠体的制造方法及层叠体

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213677A (ja) * 1992-02-04 1993-08-24 Kawasaki Steel Corp 銅板とアルミナあるいはAlN基板の接合方法
US6086990A (en) * 1995-09-28 2000-07-11 Kabushiki Kaisha Toshiba High thermal conductivity silicon nitride circuit substrate and semiconductor device using the same
EP0868961A1 (en) * 1997-03-12 1998-10-07 Dowa Mining Co., Ltd. Metal-ceramic composite substrates, producing methods thereof and brazing materials for use in such method
US20030068532A1 (en) * 2001-09-28 2003-04-10 Nobuyoshi Tsukaguchi Metal/ceramic bonding article
JP2004134493A (ja) * 2002-10-09 2004-04-30 Toshiba Corp セラミックス回路基板
JP2005330178A (ja) * 2004-05-17 2005-12-02 Qinghua Univ 高熱伝導率・高強度窒化ケイ素セラミックス及びその製造方法
WO2006120803A1 (ja) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd 高熱伝導複合材料とその製造方法
US20080157115A1 (en) * 2005-06-21 2008-07-03 Epistar Corporation High-efficiency light-emitting device and manufacturing method thereof
US20110045209A1 (en) * 2008-05-01 2011-02-24 Maxim Seleznev Continuous or discrete metallization layer on a ceramic substrate
JP2011236365A (ja) * 2010-05-12 2011-11-24 Jsr Corp 熱可塑性エラストマー組成物及び熱伝導性シート
US20140227548A1 (en) * 2012-06-27 2014-08-14 James J. Myrick Nanoparticles, Compositions, Manufacture and Applications
KR101510806B1 (ko) * 2013-10-22 2015-04-08 현대자동차주식회사 산화 그래핀-세라믹 하이브리드 코팅막 및 이의 제조 방법
WO2017030360A1 (ko) * 2015-08-17 2017-02-23 한국과학기술원 고 열전도도 질화규소 소결체 및 이의 제조 방법
US20180237347A1 (en) * 2015-08-17 2018-08-23 Korea Advanced Institute Of Science And Technology Silicon nitride sintered body with high thermal conductivity and method for manufacturing same
JP2017085087A (ja) * 2015-10-30 2017-05-18 日本碍子株式会社 半導体製造装置用部材、その製法及びシャフト付きヒータ
US20210269368A1 (en) * 2018-08-17 2021-09-02 Zone Infinity Co., Ltd. Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength
CN113453884A (zh) * 2019-02-19 2021-09-28 日东电工株式会社 二维材料层叠体的制造方法及层叠体
CN111196728A (zh) * 2019-11-20 2020-05-26 中国科学院上海硅酸盐研究所 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN111484335A (zh) * 2020-04-22 2020-08-04 衡阳凯新特种材料科技有限公司 氮化硅陶瓷浆料用烧结助剂复合添加剂、氮化硅陶瓷浆料及其制备方法和应用
CN111908924A (zh) * 2020-07-22 2020-11-10 江苏富乐德半导体科技有限公司 一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法
CN113087531A (zh) * 2021-04-02 2021-07-09 广东工业大学 一种高强度高热导氮化硅陶瓷基板及其制备方法和应用
CN113307647A (zh) * 2021-04-16 2021-08-27 长春工业大学 一种氮化铝陶瓷覆铜板的间接钎焊方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
徐林炜等: "磷酸酸洗对AlN粉末抗水解性能的影响", 《中国陶瓷》 *
曾婧等: "电子封装用金属基复合材料的研究进展", 《中国有色金属学报》 *
李聪 等: "MgSiN2-Y2O3复合烧结助剂对Si3N4陶瓷力学及导热性能的影响", 《硅酸盐学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153112A (zh) * 2022-08-04 2022-10-11 江苏富乐华功率半导体研究院有限公司 一种高效率的电子烟双面加热片及其制备方法
CN116835990A (zh) * 2023-08-29 2023-10-03 合肥阿基米德电子科技有限公司 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用
CN116835990B (zh) * 2023-08-29 2023-11-24 合肥阿基米德电子科技有限公司 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用
CN117756555A (zh) * 2023-12-22 2024-03-26 江苏富乐华半导体科技股份有限公司 一种高可靠性氮化铝覆铝基板的制备方法

Also Published As

Publication number Publication date
CN114478022B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
CN114478022B (zh) 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法
CN108520855B (zh) 一种纳米银浆提高陶瓷覆铜板可靠性的方法
CN113307647B (zh) 一种氮化铝陶瓷覆铜板的间接钎焊方法
CN108033810A (zh) 一种氮化铝陶瓷覆铜板的制备方法
US11964919B2 (en) Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength
CN105777210B (zh) 一种氮化铝陶瓷覆铜板及其制备方法
CN114309596B (zh) 一种高导热表面金属化金刚石/铜复合基板制备方法
CN106958009A (zh) 一种氮化铝陶瓷覆铜板及其制备方法
CN109136848A (zh) 一种基于pvd沉积方法的氮化铝陶瓷板和金属的连接方法
CN113213972A (zh) 一种氮化铝覆铝陶瓷衬板的制备方法
CN107527851B (zh) 陶瓷静电卡盘装置及其制备工艺
CN106888551A (zh) 一种陶瓷基覆铜板及其制备工艺
CN208087501U (zh) 一种AlN陶瓷金属化敷铜基板
CN113939095B (zh) 一种陶瓷覆铜板及其制备方法
CN113698213B (zh) 一种高导热陶瓷通用覆铜基板及其制备方法
CN114000112B (zh) 一种氮化铝覆铜amb方法
CN103966538A (zh) 用于电子封装和热沉材料的钨铜复合材料及其制备方法
CN111785643B (zh) 一种钛箔化学减薄方法
JP2007248317A (ja) 加熱冷却モジュール
CN114315371A (zh) 一种氮化铝陶瓷基板
CN115323211B (zh) 一种金刚石-铜复合材料及其制备方法
CN116693315A (zh) 一种AlN陶瓷覆铜基板的制备方法
CN111848226B (zh) 一种纳米金属层陶瓷基板及其制造方法
CN117773257A (zh) 真空热压钎焊陶瓷覆铜板的制备方法
KR102529238B1 (ko) 세라믹 기판 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant