CN113698213B - 一种高导热陶瓷通用覆铜基板及其制备方法 - Google Patents

一种高导热陶瓷通用覆铜基板及其制备方法 Download PDF

Info

Publication number
CN113698213B
CN113698213B CN202110976928.3A CN202110976928A CN113698213B CN 113698213 B CN113698213 B CN 113698213B CN 202110976928 A CN202110976928 A CN 202110976928A CN 113698213 B CN113698213 B CN 113698213B
Authority
CN
China
Prior art keywords
parts
ceramic substrate
copper
ceramic
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110976928.3A
Other languages
English (en)
Other versions
CN113698213A (zh
Inventor
陈应峰
吴海兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yaohong Electronics Co ltd
Original Assignee
Jiangsu Yaohong Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yaohong Electronics Co ltd filed Critical Jiangsu Yaohong Electronics Co ltd
Priority to CN202110976928.3A priority Critical patent/CN113698213B/zh
Publication of CN113698213A publication Critical patent/CN113698213A/zh
Application granted granted Critical
Publication of CN113698213B publication Critical patent/CN113698213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper

Abstract

本发明公开了一种高导热陶瓷通用覆铜基板,具体涉及陶瓷覆铜板技术领域,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下原料:氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇。本发明通过添加有纳米炭黑、二乙基二硫代氨基甲酸锌、磷酸三乙酯和纳米硒,在二乙基二硫代氨基甲酸锌和磷酸三乙酯的作用下纳米炭黑和纳米硒能够在氮化硅陶瓷基板中形成致密的点状交联结构或线网状交联结构,既能够提高陶瓷基板的导热效率,而且能够提高陶瓷基板的力学性能,纳米炭黑和纳米硒也能够填充陶瓷基板内部的缺陷,使得导热网路更好,能够有效提高陶瓷基板的导热效果。

Description

一种高导热陶瓷通用覆铜基板及其制备方法
技术领域
本发明涉及陶瓷覆铜板技术领域,更具体地说,本发明涉及一种高导热陶瓷通用覆铜基板及其制备方法。
背景技术
陶瓷覆铜基板是使用DBC(DirectBondCopper)技术将铜箔直接烧结在陶瓷表面而制成的一种电子基础材料。由于陶瓷覆铜基板既具有陶瓷的高导热系数、高耐热、高电绝缘性、高机械强度、与硅芯片相近的热膨胀系数以及低介质损耗等特点,又具有无氧铜的高导电性和优异焊接性能,是当今电力电子领域功率模块封装、连接芯片与散热衬底的关键材料,广泛应用于各类电气设备及电子产品。DBC是将Al2O3或AlN陶瓷基板的单面或双面覆上Cu板后,经由高温1065-1085℃的环境加热,使Cu板表面因高温氧化、扩散与Al2O3基板产生Cu-Cu2O共晶相,使铜板与陶瓷基板黏合,形成陶瓷基覆铜板。
现有的陶瓷覆铜基板封装材料主要有三种:氧化铝、氮化铝和氮化硅。对于新一代的大功率化和高集成化的功率电子器件来说,氧化铝因为机械强度和热导率都不高而不能胜任;氮化铝尽管热导率很高,但其机械性能不够高。而氮化硅的抗弯强度和断裂韧性等机械性能在各种结构陶瓷里非常出众,但其热导率还有待进一步提高。
发明内容
为了克服现有技术的上述缺陷,本发明的实施例提供一种高导热陶瓷通用覆铜基板及其制备方法,本发明所要解决的问题是:如何提高陶瓷覆铜基板的导热性能和力学性能。
为实现上述目的,本发明提供如下技术方案:一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下重量份的原料:氮化硅粉70-90份、氮化铝8-15份、氧化铍1-3份、烧结助剂4-6份、纳米炭黑2-8份、纳米硒3-8份、二乙基二硫代氨基甲酸锌0.5-2.5份、磷酸三乙酯0.2-1份和无水乙醇50-120份。
在一种优选的实施方式中,所述陶瓷基板包括以下重量份的原料:氮化硅粉75-85份、氮化铝10-13份、氧化铍1.5-2.5份、烧结助剂4.5-5.5份、纳米炭黑4-6份、纳米硒5-6份、二乙基二硫代氨基甲酸锌1-2份、磷酸三乙酯0.5-0.7份和无水乙醇70-100份。
在一种优选的实施方式中,所述陶瓷基板包括以下重量份的原料:氮化硅粉80份、氮化铝12份、氧化铍2份、烧结助剂5份、纳米炭黑5份、纳米硒5.5份、二乙基二硫代氨基甲酸锌2份、磷酸三乙酯0.6份和无水乙醇90份。
在一种优选的实施方式中,所述纳米硒为点状纳米硒或线状纳米硒的一种或两种混合,所述点状纳米硒的粒径为60-100nm,所述线状纳米硒的直径为50-90nm,长度为4-8um,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.01-0.15mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.01-0.2mm。
在一种优选的实施方式中,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:(1-3)。
本发明还提供一种高导热陶瓷通用覆铜基板的制备方法,具体制备步骤如下:
步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇置于球磨机中进行初次混合,混合完成后向球磨机中加入纳米硒和二乙基二硫代氨基甲酸锌进行二次球磨混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;
步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;
步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;
步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。
在一种优选的实施方式中,所述步骤一中初次球磨混合时间14-18h,所述二次球磨混合时间为8-12h,所述步骤一中脱泡处理采用脱泡机处理。
在一种优选的实施方式中,所述步骤二中排胶处理时排胶炉中温度为400-600℃,在真空条件下处理时间为4-8h,所述步骤二中压力烧结时在0.1-10MPa的氮气压力下加热至1800-1980℃,保温烧结3-5h。
在一种优选的实施方式中,所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为360-480W。
在一种优选的实施方式中,所述步骤四中真空高温焊接的焊接温度为850-950℃,真空度为1×10-4-9×10-4Pa。
本发明的技术效果和优点:
1、采用本发明的原料配方所制备出的高导热陶瓷通用覆铜基板,采用氮化硅陶瓷板,使得陶瓷基板具有较高的硬度和耐磨性能,并在氮化硅基板中添加有氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯,氧化铍在提高氮化硅陶瓷基板导热性的同时能够提高材料的热稳定性;通过添加有纳米炭黑、二乙基二硫代氨基甲酸锌、磷酸三乙酯和纳米硒,在二乙基二硫代氨基甲酸锌和磷酸三乙酯的作用下纳米炭黑和纳米硒能够在氮化硅陶瓷基板中形成致密的点状交联结构或线网状交联结构,既能够提高陶瓷基板的导热效率,而且能够提高陶瓷基板的力学性能,纳米炭黑和纳米硒也能够填充陶瓷基板内部的缺陷,使得导热网路更好,能够有效提高陶瓷基板的导热效果;
2、本发明对陶瓷基板、焊料片和铜箔层预处理后利用真空钎焊炉进行高温钎焊加工,加工工艺简单,成品率较高。
具体实施方式
下面将结合本发明中的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
本发明提供了一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下重量份的原料:氮化硅粉70份、氮化铝8份、氧化铍1份、烧结助剂4份、纳米炭黑2份、纳米硒3份、二乙基二硫代氨基甲酸锌0.5份、磷酸三乙酯0.2份和无水乙醇80份。
在一种优选的实施方式中,所述纳米硒为点状纳米硒,所述点状纳米硒的粒径为60-100nm,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.08mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.1mm。
在一种优选的实施方式中,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:2.5。
本发明还提供一种高导热陶瓷通用覆铜基板的制备方法,具体制备步骤如下:
步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇置于球磨机中进行初次混合,混合完成后向球磨机中加入纳米硒和二乙基二硫代氨基甲酸锌进行二次球磨混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;
步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;
步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;
步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。
在一种优选的实施方式中,所述步骤一中初次球磨混合时间16h,所述二次球磨混合时间为10h,所述步骤一中脱泡处理采用脱泡机处理。
在一种优选的实施方式中,所述步骤二中排胶处理时排胶炉中温度为550℃,在真空条件下处理时间为6h,所述步骤二中压力烧结时在5.5MPa的氮气压力下加热至1930℃,保温烧结4h。
在一种优选的实施方式中,所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为420W。
在一种优选的实施方式中,所述步骤四中真空高温焊接的焊接温度为900℃,真空度为5×10-4Pa。
实施例2:
本发明提供了一种高导热陶瓷通用覆铜基板,所述陶瓷基板包括以下重量份的原料:氮化硅粉80份、氮化铝12份、氧化铍2份、烧结助剂5份、纳米炭黑5份、纳米硒5.5份、二乙基二硫代氨基甲酸锌2份、磷酸三乙酯0.6份和无水乙醇95份。
实施例3:
与实施例1和2不同的是,本发明提供了一种高导热陶瓷通用覆铜基板,所述陶瓷基板包括以下重量份的原料:氮化硅粉90份、氮化铝15份、氧化铍3份、烧结助剂6份、纳米炭黑8份、纳米硒8份、二乙基二硫代氨基甲酸锌2份、磷酸三乙酯1.8份和无水乙醇110份。
实施例4:
与实施例1不同的是,所述纳米硒为线状纳米硒,所述线状纳米硒的直径为50-90nm,长度为4-8um。
实施例5:
本发明提供了一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下重量份的原料:氮化硅粉70份、氮化铝8份、氧化铍1份、烧结助剂4份、纳米炭黑2份、磷酸三乙酯0.2份和无水乙醇80份。
在一种优选的实施方式中,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.08mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.1mm。
在一种优选的实施方式中,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:2.5。
本发明还提供一种高导热陶瓷通用覆铜基板的制备方法,具体制备步骤如下:
步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇置于球磨机中进行混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;
步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;
步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;
步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。
在一种优选的实施方式中,所述步骤一中球磨混合时间为10h,所述步骤一中脱泡处理采用脱泡机处理。
在一种优选的实施方式中,所述步骤二中排胶处理时排胶炉中温度为550℃,在真空条件下处理时间为6h,所述步骤二中压力烧结时在5.5MPa的氮气压力下加热至1930℃,保温烧结4h。
在一种优选的实施方式中,所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为420W。
在一种优选的实施方式中,所述步骤四中真空高温焊接的焊接温度为900℃,真空度为5×10-4Pa。
实施例6:
本发明提供了一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,所述陶瓷基板包括以下重量份的原料:氮化硅粉70份、氮化铝8份、氧化铍1份、烧结助剂4份、纳米硒3份、二乙基二硫代氨基甲酸锌0.5份、磷酸三乙酯0.2份和无水乙醇80份。
在一种优选的实施方式中,所述纳米硒为点状纳米硒,所述点状纳米硒的粒径为60-100nm,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.08mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.1mm。
在一种优选的实施方式中,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:2.5。
本发明还提供一种高导热陶瓷通用覆铜基板的制备方法,具体制备步骤如下:
步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、磷酸三乙酯和无水乙醇置于球磨机中进行初次混合,混合完成后向球磨机中加入纳米硒和二乙基二硫代氨基甲酸锌进行二次球磨混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;
步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;
步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;
步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。
在一种优选的实施方式中,所述步骤一中初次球磨混合时间16h,所述二次球磨混合时间为10h,所述步骤一中脱泡处理采用脱泡机处理。
在一种优选的实施方式中,所述步骤二中排胶处理时排胶炉中温度为550℃,在真空条件下处理时间为6h,所述步骤二中压力烧结时在5.5MPa的氮气压力下加热至1930℃,保温烧结4h。
在一种优选的实施方式中,所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为420W。
在一种优选的实施方式中,所述步骤四中真空高温焊接的焊接温度为900℃,真空度为5×10-4Pa。
分别取上述实施例1-6所制得的高导热陶瓷覆铜基板分别作为实验组1、实验组2、实验组3、实验组4、实验组5和实验组6,采用市售氮化硅陶瓷覆铜基板作为对照组,对选取的陶瓷覆铜基板加工前陶瓷基板的结合强度、剥离强度进行测试,并对陶瓷覆铜基板的综合热导率和拉伸强度进行测试。测试结果如表一:
Figure BDA0003227671270000091
表一
由表一可知,采用本发明生产的陶瓷覆铜基板相比较传统氮化硅陶瓷覆铜基板力学性能显著提高,而导热性能更好,实施例4采用线状纳米硒材料,与实施例1相比力学性能和导热效果更好,实施例5未添加纳米硒和二乙基二硫代氨基甲酸锌,与实施例1相比,力学性能和导热效果明显降低;实施例6未添加纳米炭黑,与实施例1相比,力学性能和导热效果下降,采用氮化硅陶瓷板,使得陶瓷基板具有较高的硬度和耐磨性能,并在氮化硅基板中添加有氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯,氧化铍在提高氮化硅陶瓷基板导热性的同时能够提高材料的热稳定性;通过添加有纳米炭黑、二乙基二硫代氨基甲酸锌、磷酸三乙酯和纳米硒,在二乙基二硫代氨基甲酸锌和磷酸三乙酯的作用下纳米炭黑和纳米硒能够在氮化硅陶瓷基板中形成致密的点状交联结构或线网状交联结构,既能够提高陶瓷基板的导热效率,而且能够提高陶瓷基板的力学性能,纳米炭黑和纳米硒也能够填充陶瓷基板内部的缺陷,使得导热网路更好,能够有效提高陶瓷基板的导热效果。
最后:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种高导热陶瓷通用覆铜基板,包括陶瓷基板、焊料片和铜箔层,其特征在于:所述陶瓷基板包括以下重量份的原料:氮化硅粉70-90份、氮化铝8-15份、氧化铍1-3份、烧结助剂4-6份、纳米炭黑2-8份、纳米硒3-8份、二乙基二硫代氨基甲酸锌0.5-2.5份、磷酸三乙酯0.2-1份和无水乙醇50-120份,所述纳米硒为点状纳米硒或线状纳米硒的一种或两种混合,所述点状纳米硒的粒径为60-100nm,所述线状纳米硒的直径为50-90nm,长度为4-8um,所述焊料片为用Ag-Cu-Ti系焊料片,厚度为0.01-0.15mm,所述铜箔层为无氧铜,且所述无氧铜的纯度为99.99%,厚度为0.01-0.2m,所述烧结助剂为氧化镁和氧化铈的混合物,所述氧化镁与氧化铈的重量比为1:(1-3)。
2.根据权利要求1所述的一种高导热陶瓷通用覆铜基板,其特征在于:所述陶瓷基板包括以下重量份的原料:氮化硅粉75-85份、氮化铝10-13份、氧化铍1.5-2.5份、烧结助剂4.5-5.5份、纳米炭黑4-6份、纳米硒5-6份、二乙基二硫代氨基甲酸锌1-2份、磷酸三乙酯0.5-0.7份和无水乙醇70-100份。
3.根据权利要求1所述的一种高导热陶瓷通用覆铜基板,其特征在于:所述陶瓷基板包括以下重量份的原料:氮化硅粉80份、氮化铝12份、氧化铍2份、烧结助剂5份、纳米炭黑5份、纳米硒5.5份、二乙基二硫代氨基甲酸锌2份、磷酸三乙酯0.6份和无水乙醇90份。
4.根据权利要求1-3任意一项所述的一种高导热陶瓷通用覆铜基板的制备方法,其特征在于:具体制备步骤如下:
步骤一:陶瓷基板坯体的制备,按照陶瓷基板的原料配比称取氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、纳米硒、二乙基二硫代氨基甲酸锌、磷酸三乙酯和无水乙醇,将称取的氮化硅粉、氮化铝、氧化铍、烧结助剂、纳米炭黑、磷酸三乙酯和无水乙醇置于球磨机中进行初次混合,混合完成后向球磨机中加入纳米硒和二乙基二硫代氨基甲酸锌进行二次球磨混合,混合完成后将得到的浆料倒入容器中进行脱泡处理,脱泡处理完成后采用流延成型的方法制备出陶瓷基板坯体;
步骤二:陶瓷基板的制备,将步骤一中得到的陶瓷基板坯体置于排胶炉中进行排胶处理,排胶处理完成后经气氛压力烧结制备出陶瓷基板;
步骤三:将焊料片、铜箔层和步骤二中得到的陶瓷基板进行预处理,预处理完成后将陶瓷基板、焊料片和铜箔层按顺序排列,利用工装夹具夹紧固定;
步骤四:将步骤三中夹紧固定的陶瓷基板、焊料片和铜箔层送入真空钎焊炉中高温焊接,焊接完成后得到高导热陶瓷通用覆铜基板。
5.根据权利要求4所述的一种高导热陶瓷通用覆铜基板的制备方法,其特征在于:所述步骤一中初次球磨混合时间14-18h,所述二次球磨混合时间为8-12h,所述步骤一中脱泡处理采用脱泡机处理。
6.根据权利要求4所述的一种高导热陶瓷通用覆铜基板的制备方法,其特征在于:所述步骤二中排胶处理时排胶炉中温度为400-600℃,在真空条件下处理时间为4-8h,所述步骤二中压力烧结时在0.1-10MPa的氮气压力下加热至1800-1980℃,保温烧结3-5h。
7.根据权利要求4所述的一种高导热陶瓷通用覆铜基板的制备方法,其特征在于:所述步骤三中预处理步骤为:在超声辅助作用下依次利用乙醇、去离子水、酸性溶液、碱性溶液、去离子水进行冲洗,冲洗完成后进行烘干处理,超声辅助时功率为360-480W。
8.根据权利要求4所述的一种高导热陶瓷通用覆铜基板的制备方法,其特征在于:所述步骤四中真空高温焊接的焊接温度为850-950℃,真空度为1×10-4-9×10-4Pa。
CN202110976928.3A 2021-08-24 2021-08-24 一种高导热陶瓷通用覆铜基板及其制备方法 Active CN113698213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110976928.3A CN113698213B (zh) 2021-08-24 2021-08-24 一种高导热陶瓷通用覆铜基板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110976928.3A CN113698213B (zh) 2021-08-24 2021-08-24 一种高导热陶瓷通用覆铜基板及其制备方法

Publications (2)

Publication Number Publication Date
CN113698213A CN113698213A (zh) 2021-11-26
CN113698213B true CN113698213B (zh) 2022-10-21

Family

ID=78668897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110976928.3A Active CN113698213B (zh) 2021-08-24 2021-08-24 一种高导热陶瓷通用覆铜基板及其制备方法

Country Status (1)

Country Link
CN (1) CN113698213B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394838B (zh) * 2022-02-09 2023-02-14 江苏耀鸿电子有限公司 一种高击穿强度的高频覆铜基板及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503199A (zh) * 2015-12-30 2016-04-20 山东大学 一种高热导率氮化硅-氮化铝复合材料及其制备方法
CN109569551A (zh) * 2018-11-27 2019-04-05 中国科学院北京综合研究中心 一种负载纳米硒的纳米陶瓷材料的制备方法与再生方法
CN110698734B (zh) * 2019-10-30 2021-08-27 华南理工大学 一种纳米硒导热绝缘橡胶材料及其制备方法和应用
CN112159236B (zh) * 2020-10-19 2021-06-11 江苏贝色新材料有限公司 高导热氮化硅陶瓷基板及其制备方法
CN112679220A (zh) * 2020-12-30 2021-04-20 中国电子科技集团公司第十三研究所 氮化硅陶瓷覆铜基板及其制备方法

Also Published As

Publication number Publication date
CN113698213A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN113307647B (zh) 一种氮化铝陶瓷覆铜板的间接钎焊方法
CN102339758A (zh) 低温键合制备铜-陶瓷基板方法
CN103722807A (zh) 一种高导热高耐压的铝基覆铜板及其制备方法
CN108520855A (zh) 一种纳米银浆提高陶瓷覆铜板可靠性的方法
CN111687561A (zh) 一种钎焊氮化铝陶瓷与无氧铜的复合钎料及其钎焊工艺
CN113698213B (zh) 一种高导热陶瓷通用覆铜基板及其制备方法
CN109332705B (zh) 石墨烯改性铜-钼-铜复合材料及其制备方法
CN114478022B (zh) 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法
CN105057919A (zh) 用于Si3N4陶瓷表面金属化的材料和制备方法及钎焊工艺
CN113213894A (zh) 一种高纯氧化铝陶瓷基板及其制备工艺
CN114349471B (zh) 一种用于igbt封装的陶瓷覆铝板及其制备方法
CN101127430A (zh) 碳铜复合结构换向器钎焊成型方法
CN113645765A (zh) 一种用于高端印刷线路板的覆铜基板及其制备方法
CN106888551A (zh) 一种陶瓷基覆铜板及其制备工艺
CN112609115B (zh) 电子封装用金刚石/铜热沉材料及其制备方法
CN114656245B (zh) 一种氧化铝基复合陶瓷基板及其制备方法
CN113540001B (zh) 一种微电子封装用可伐/银合金复合材料及其制备方法
CN114716251A (zh) 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
CN114315371A (zh) 一种氮化铝陶瓷基板
CN110323188B (zh) 一种铝碳化硅的igbt模块
CN112608155A (zh) 一种金属和氮化硅陶瓷高温共烧复合基板的方法
CN207775101U (zh) 功率电子器件用AlN陶瓷敷铜基板
CN107986810B (zh) 功率电子器件用AlN陶瓷敷铜基板及其制备方法
CN85107155B (zh) 无银合金焊料封接陶瓷和柯瓦,陶瓷和铜的固态压力扩散焊
CN112358300A (zh) 基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Zhu Liming

Inventor after: Chen Yingfeng

Inventor after: Wu Haibing

Inventor before: Chen Yingfeng

Inventor before: Wu Haibing

CB03 Change of inventor or designer information