CN112358300A - 基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法 - Google Patents

基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法 Download PDF

Info

Publication number
CN112358300A
CN112358300A CN202011282621.5A CN202011282621A CN112358300A CN 112358300 A CN112358300 A CN 112358300A CN 202011282621 A CN202011282621 A CN 202011282621A CN 112358300 A CN112358300 A CN 112358300A
Authority
CN
China
Prior art keywords
ceramic
heat conduction
preparing
ceramic material
printing technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011282621.5A
Other languages
English (en)
Inventor
田卓
冯晓伟
路建宁
王海燕
王娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meizhou Yueke New Materials And Green Manufacturing Research Institute
Institute Of Materials And Processing Guangdong Academy Of Sciences
Original Assignee
Meizhou Yueke New Materials And Green Manufacturing Research Institute
Institute Of Materials And Processing Guangdong Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meizhou Yueke New Materials And Green Manufacturing Research Institute, Institute Of Materials And Processing Guangdong Academy Of Sciences filed Critical Meizhou Yueke New Materials And Green Manufacturing Research Institute
Priority to CN202011282621.5A priority Critical patent/CN112358300A/zh
Publication of CN112358300A publication Critical patent/CN112358300A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及陶瓷材料技术领域,公开了一种基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,包括以下步骤,步骤一,按照质量分数称取HDDA、THFA、PUA、陶瓷材料混合后得到陶瓷浆料;步骤二,将陶瓷浆料放置在3D打印机平台上,使陶瓷浆料经过刮刀后形成浆料膜,用紫外光固化处理,得到单层的陶瓷坯体;步骤三,重复步骤二,直至获得需要的陶瓷坯体;步骤四,将陶瓷坯体进行升温脱脂;步骤五,热压烧结,得到高定向导热h-BN基陶瓷材料。在打印过程中实现h-BN颗粒的初步重排和热压烧结过程中的二次重排而制成,结构材料在微观尺度上呈现晶粒定向排列的特征,结合h-BN晶粒的层片状结构,进而使陶瓷材料呈现定向导热的特征,可以有效的提高热量定向传输的能力。

Description

基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法
技术领域
本发明涉及陶瓷材料技术领域,特别是涉及一种基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法。
背景技术
近年来,随着电子信息产业的迅猛发展,传统超大规模集成电路基板材料的散热性能已不能满足高功率电子元器件散热的需求,因此,亟待开发出具有高绝缘、高导热的陶瓷基板材料,因而高导热陶瓷材料是陶瓷材料行业的近些年研究的热点之一。
研究表明,具有取向排列的陶瓷晶粒对于改善陶瓷材料的导热及机械强度等性能具有非常积极的意义,陶瓷晶粒的高取向度排列将大大提高基板的热学、电学及力学性能,这符合高功率化、超小型化、超大规模集成电路对新材料的选材需求及发展趋势,而现有的h-BN(六方氮化硼)基陶瓷材料热导率偏低、定向导热性能较差。
发明内容
本发明的目的是:提供一种基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,以解决现有技术中的h-BN基陶瓷材料热导率偏低、定向导热性能有待进一步提高的问题,进而满足现代工业对高导热陶瓷基复合材料的需求。
为了实现上述目的,本发明提供了一种基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,包括以下步骤,步骤一,按照质量分数称取HDDA、THFA、PUA,HDDA:THFA:PUA比例为25-30%:35-40%:30-35%,混合后得到预混液,按质量分数称取包括h-BN陶瓷颗粒和烧结助剂的陶瓷原料加入到预混液中,经混合后得到陶瓷浆料;
步骤二,将陶瓷浆料放置在3D打印机平台上,转动3D打印机平台使陶瓷浆料经过刮刀后形成平整的浆料膜,降下3D打印机平台,用紫外光对浆料膜进行固化处理,得到单层固化厚度介于10-20μm之间的陶瓷坯体;
步骤三,当步骤二中的陶瓷坯体固化完成后,升起3D打印机平台,重复步骤二,直至获得需要的陶瓷坯体;
步骤四,将步骤三中固化的陶瓷坯体取下并进行升温脱脂,得到陶瓷基复合材料的坯体;
步骤五,对步骤四中的陶瓷基复合材料的坯体进行热压烧结,烧结压力为10-30Mpa,在氮气保护条件下,在1750℃-1850℃保温2h,得到高定向导热h-BN基陶瓷材料。
优选地,步骤一中,h-BN陶瓷颗粒和烧结助剂的质量分数和为预混液的50-70%。
优选地,h-BN陶瓷颗粒和烧结助剂的质量比例为7:3或8:2。
优选地,步骤一中的烧结助剂包括氧化铝、二氧化硅、氧化镁中的两种。
优选地,氧化铝的平均粒径为300-450nm、二氧化硅的平均粒径为150-250nm、氧化镁的平均粒径为500-600nm。
优选地,步骤一中,HDDA:THFA:PUA比例为30%:40%:30%。
优选地,步骤一中,h-BN陶瓷颗粒的平均粒径为700-900nm、1100-1300nm。
优选地,步骤二中,先将步骤一中的陶瓷浆料放入超声波分散机中进行超声分散10-20分钟,将超声分散后的陶瓷浆料放入到塑料罐中,以350-400r/min的转速球磨1.5-2h,再将陶瓷浆料放置在3D打印机平台上。
优选地,步骤二中,用紫外光以40-60mJ/cm2的能量密度进行固化处理10-20s,得到单层的陶瓷坯体。
优选地,步骤四中,将步骤三中固化后的陶瓷坯体取下后以1-2℃/min升温至600℃,保温150-180min,其中每隔100℃保温30-60min进行真空脱脂;再以1-2℃/min升温至770℃,保温120-150min,其中每隔100℃保温30-60min进行空气脱脂,即得到层状陶瓷基复合材料的坯体。
本发明实施例的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法与现有技术相比,其有益效果在于:采用3D打印技术通过制备多层厚度的陶瓷坯体,经过脱脂、烧结工艺获得具有定向高导热的h-BN陶瓷基复合材料,在高热导率h-BN陶瓷颗粒基础上,通过在打印过程中实现h-BN颗粒的初步重排和热压烧结过程中的二次重排而制成,结构材料在微观尺度上呈现晶粒定向排列的特征,即材料学上呈现织构特征,结合h-BN晶粒的层片状结构,进而使热压烧结后的材料呈现出热导率各向异性的特征,即陶瓷材料呈现定向导热的特征,可以有效的提高热量定向传输的能力。
附图说明
图1是本发明的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法的热导率测试方向示意图。
图中,1、热压方向;2、垂直于压力方向;3、平行于压力方向。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法的优选实施例,该基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法包括以下步骤:
步骤一,按照质量分数称取HDDA(己二醇二丙烯酸酯)、THFA(四氢叶酸)、PUA(聚氨酯丙烯酸酯),HDDA:THFA:PUA比例为25-30%:35-40%:30-35%,混合后得到预混液,按质量分数称取包括h-BN陶瓷颗粒和烧结助剂的陶瓷原料加入到预混液中,经混合后得到陶瓷浆料。
优选地,步骤一中,HDDA:THFA:PUA比例为30%:40%:30%,h-BN陶瓷颗粒和烧结助剂的质量分数和为预混液的50-70%,h-BN陶瓷颗粒和烧结助剂的质量比例为7:3或8:2,h-BN陶瓷颗粒的平均粒径为700-900nm、1100-1300nm。
步骤一中的烧结助剂包括氧化铝、二氧化硅、氧化镁中的两种,在本实施例中,烧结助剂选择为Al2O3+SiO2、MgO+Al2O3,氧化铝的平均粒径为300-450nm、二氧化硅的平均粒径为150-250nm、氧化镁的平均粒径为500-600nm。
步骤二,将陶瓷浆料放置在3D打印机平台上,转动3D打印机平台使陶瓷浆料经过刮刀后形成平整的浆料膜,降下3D打印机平台,用紫外光对浆料膜进行固化处理,得到单层固化厚度介于10-20μm之间的陶瓷坯体。
优选地,步骤二中,先将步骤一中的陶瓷浆料放入超声波分散机中进行超声分散10-20分钟,将超声分散后的陶瓷浆料放入到塑料罐中,以350-400r/min的转速球磨1.5-2h,再将陶瓷浆料放置在3D打印机平台上。
优选地,步骤二中,用紫外光以40-60mJ/cm2的能量密度进行固化处理10-20s,得到单层的陶瓷坯体。
步骤三,当步骤二中的陶瓷坯体固化完成后,升起3D打印机平台,转动3D打印机平台使陶瓷浆料经过刮刀后再次形成平整的浆料膜,然后再降下打印平台,重复步骤二,直至获得需要的陶瓷坯体。
步骤四,将步骤三中固化的陶瓷坯体取下并进行升温脱脂,得到陶瓷基复合材料的坯体。
优选地,步骤四中,将步骤三中固化后的陶瓷坯体取下后以1-2℃/min升温至600℃,保温150-180min,其中每隔100℃保温30-60min进行真空脱脂;再以1-2℃/min升温至770℃,保温120-150min,其中每隔100℃保温30-60min进行空气脱脂,即得到层状陶瓷基复合材料的坯体。
在本实施例中,将陶瓷坯体取下后以1℃/min升温至600℃,保温180min,其中每隔100℃保温30min进行真空脱脂;再以1℃/min升温至770℃,保温180min,其中每隔100℃保温30min进行空气脱脂,即得到高导热h-BN基陶瓷材料的坯体。
步骤五,对步骤四中的陶瓷基复合材料的坯体进行热压烧结,烧结压力为10-30Mpa,在氮气保护条件下,在1750℃-1850℃保温2h,得到高定向导热h-BN基陶瓷材料。
优选地,在本实施例中,在30Mpa烧结压力条件下,在1800℃保温2h,即可得到高定向导热h-BN基陶瓷材料,烧结后高定向导热h-BN基陶瓷材料的主晶相为h-BN-Mullite、h-BN-MgAl2O4
本发明的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法的实施例二,与优选实施例的区别在于,陶瓷颗粒的固相含量按质量百分比换算后,h-BN陶瓷颗粒和烧结助剂占陶瓷浆料的质量分数为50-60%。
本发明的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法的实施例三,与优选实施例的区别在于,陶瓷颗粒的固相含量按质量百分比换算后,h-BN陶瓷颗粒和烧结助剂占陶瓷浆料的质量分数为55%。
本发明的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法的实施例四,与优选实施例的区别在于,添加的烧结助剂为Al2O3+SiO2,Al2O3、SiO2的粒径分别为300-450nm、150-250nm,摩尔比为3:2。
本发明的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法的实施例五,与优选实施例的区别在于,添加的烧结助剂为MgO+Al2O3,MgO、Al2O3的粒径分别为500-600nm、300-450nm,摩尔比为1:1。
本发明的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法的实施例六,与优选实施例的区别在于,步骤二中用紫外光以50mJ/cm2的能量密度进行固化处理15s。
如图1所示,对高定向导热h-BN基陶瓷材料的热导率进行测试,当h-BN:Al2O3+SiO2的质量比为7:3,Al2O3:SiO2摩尔比为3:2,h-BN、Al2O3、SiO2粒径分别为700-900nm、300-450nm、150-250nm时,高定向导热h-BN基陶瓷材料的热导率见表一。
Figure BDA0002779771340000061
表一
当h-BN:Al2O3+SiO2的质量比为7:3,Al2O3:SiO2摩尔比为3:2,h-BN、Al2O3、SiO2粒径分别为1100-1300nm、300-450nm、150-250nm时,高定向导热h-BN基陶瓷材料的热导率见表二。
Figure BDA0002779771340000062
表二
当h-BN:Al2O3+SiO2的质量比为8:2,Al2O3:SiO2摩尔比为3:2,h-BN、Al2O3、SiO2粒径分别为700-900nm、300-450nm、150-250nm时,高定向导热h-BN基陶瓷材料的热导率见表三。
Figure BDA0002779771340000063
表三
当h-BN:Al2O3+SiO2的质量比为8:2,Al2O3:SiO2摩尔比为3:2,h-BN、Al2O3、SiO2粒径分别为1100-1300nm、300-450nm、150-250nm时,高定向导热h-BN基陶瓷材料的热导率见表四。
Figure BDA0002779771340000064
Figure BDA0002779771340000071
表四
当h-BN:MgO+Al2O3的质量比为7:3,MgO:Al2O3摩尔比为1:1时,h-BN、MgO、Al2O3粒径分别为700-900nm、500-600nm、300-450nm时,高定向导热h-BN基陶瓷材料的热导率见表五。
Figure BDA0002779771340000072
表五
当h-BN:MgO+Al2O3的质量比为7:3,MgO:Al2O3摩尔比为1:1时,h-BN、MgO、Al2O3粒径分别为1100-1300nm、500-600nm、300-450nm时,高定向导热h-BN基陶瓷材料的热导率见表六。
Figure BDA0002779771340000073
表六
当h-BN:MgO+Al2O3的质量比为8:2,MgO:Al2O3摩尔比为1:1时,h-BN、MgO、Al2O3粒径分别为700-900nm、500-600nm、300-450nm时,高定向导热h-BN基陶瓷材料的热导率见表七。
Figure BDA0002779771340000074
表七
当h-BN:MgO+Al2O3的质量比为8:2,MgO:Al2O3摩尔比为1:1时,h-BN、MgO、Al2O3粒径分别为1100-1300nm、500-600nm、300-450nm时,高定向导热h-BN基陶瓷材料的热导率见表八。
Figure BDA0002779771340000081
表八
综上,本发明实施例提供一种基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其采用3D打印技术通过制备多层厚度的陶瓷坯体,经过脱脂、烧结工艺获得具有定向高导热的h-BN陶瓷基复合材料,在高热导率h-BN陶瓷颗粒基础上,通过在打印过程中实现h-BN颗粒的初步重排和热压烧结过程中的二次重排而制成,结构材料在微观尺度上呈现晶粒定向排列的特征,即材料学上呈现织构特征,结合h-BN晶粒的层片状结构,进而使热压烧结后的材料呈现出热导率各向异性的特征,即陶瓷材料呈现定向导热的特征,可以有效的提高热量定向传输的能力。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (10)

1.基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,包括以下步骤,步骤一,按照质量分数称取HDDA、THFA、PUA,HDDA:THFA:PUA比例为25-30%:35-40%:30-35%,混合后得到预混液,按质量分数称取包括h-BN陶瓷颗粒和烧结助剂的陶瓷原料加入到预混液中,经混合后得到陶瓷浆料;
步骤二,将陶瓷浆料放置在3D打印机平台上,转动3D打印机平台使陶瓷浆料经过刮刀后形成平整的浆料膜,降下3D打印机平台,用紫外光对浆料膜进行固化处理,得到单层固化厚度介于10-20μm之间的陶瓷坯体;
步骤三,当步骤二中的陶瓷坯体固化完成后,升起3D打印机平台,重复步骤二,直至获得需要的陶瓷坯体;
步骤四,将步骤三中固化的陶瓷坯体取下并进行升温脱脂,得到陶瓷基复合材料的坯体;
步骤五,对步骤四中的陶瓷基复合材料的坯体进行热压烧结,烧结压力为10-30Mpa,在氮气保护条件下,在1750℃-1850℃保温2h,得到高定向导热h-BN基陶瓷材料。
2.根据权利要求1所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,步骤一中,h-BN陶瓷颗粒和烧结助剂的质量分数和为预混液的50-70%。
3.根据权利要求2所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,h-BN陶瓷颗粒和烧结助剂的质量比例为7:3或8:2。
4.根据权利要求1-3任一项所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,步骤一中的烧结助剂包括氧化铝、二氧化硅、氧化镁中的两种。
5.根据权利要求4所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,氧化铝的平均粒径为300-450nm、二氧化硅的平均粒径为150-250nm、氧化镁的平均粒径为500-600nm。
6.根据权利要求1-3任一项所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,步骤一中,HDDA:THFA:PUA比例为30%:40%:30%。
7.根据权利要求1-3任一项所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,步骤一中,h-BN陶瓷颗粒的平均粒径为700-900nm、1100-1300nm。
8.根据权利要求1-3任一项所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,步骤二中,先将步骤一中的陶瓷浆料放入超声波分散机中进行超声分散10-20分钟,将超声分散后的陶瓷浆料放入到塑料罐中,以350-400r/min的转速球磨1.5-2h,再将陶瓷浆料放置在3D打印机平台上。
9.根据权利要求1-3任一项所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,步骤二中,用紫外光以40-60mJ/cm2的能量密度进行固化处理10-20s,得到单层的陶瓷坯体。
10.根据权利要求1-3任一项所述的基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法,其特征在于,步骤四中,将步骤三中固化后的陶瓷坯体取下后以1-2℃/min升温至600℃,保温150-180min,其中每隔100℃保温30-60min进行真空脱脂;再以1-2℃/min升温至770℃,保温120-150min,其中每隔100℃保温30-60min进行空气脱脂,即得到层状陶瓷基复合材料的坯体。
CN202011282621.5A 2020-11-16 2020-11-16 基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法 Pending CN112358300A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011282621.5A CN112358300A (zh) 2020-11-16 2020-11-16 基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011282621.5A CN112358300A (zh) 2020-11-16 2020-11-16 基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法

Publications (1)

Publication Number Publication Date
CN112358300A true CN112358300A (zh) 2021-02-12

Family

ID=74515748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011282621.5A Pending CN112358300A (zh) 2020-11-16 2020-11-16 基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN112358300A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754433A (zh) * 2021-09-14 2021-12-07 西安交通大学 一种基于3d打印技术的压电铁电陶瓷材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202663A (ja) * 1996-01-24 1997-08-05 Denki Kagaku Kogyo Kk ほう酸メラミン粒子とその製造方法及び用途、並びに六方晶窒化ほう素粉末の製造方法
CN103232264A (zh) * 2013-04-18 2013-08-07 哈尔滨工业大学 一种具有球形气孔结构的BN/Si3N4复合陶瓷的制备方法
CN105481369A (zh) * 2015-12-10 2016-04-13 哈尔滨工业大学 一种具有定向导热特性的层状六方氮化硼基复合陶瓷的制备方法
US20160280980A1 (en) * 2015-03-23 2016-09-29 Empire Technology Development Llc Functionalized boron nitride materials and methods for their preparation and use
CN108276005A (zh) * 2018-01-24 2018-07-13 广东工业大学 一种制备层状陶瓷基复合材料的制备方法
CN108640690A (zh) * 2018-07-17 2018-10-12 哈尔滨工业大学 一种定向传热六方氮化硼/堇青石织构陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202663A (ja) * 1996-01-24 1997-08-05 Denki Kagaku Kogyo Kk ほう酸メラミン粒子とその製造方法及び用途、並びに六方晶窒化ほう素粉末の製造方法
CN103232264A (zh) * 2013-04-18 2013-08-07 哈尔滨工业大学 一种具有球形气孔结构的BN/Si3N4复合陶瓷的制备方法
US20160280980A1 (en) * 2015-03-23 2016-09-29 Empire Technology Development Llc Functionalized boron nitride materials and methods for their preparation and use
CN105481369A (zh) * 2015-12-10 2016-04-13 哈尔滨工业大学 一种具有定向导热特性的层状六方氮化硼基复合陶瓷的制备方法
CN108276005A (zh) * 2018-01-24 2018-07-13 广东工业大学 一种制备层状陶瓷基复合材料的制备方法
CN108640690A (zh) * 2018-07-17 2018-10-12 哈尔滨工业大学 一种定向传热六方氮化硼/堇青石织构陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHUO TIAN ET AL.: "Preparation of highly oriented h-BN based textured ceramics via grain rearrangement under DLP printing and low-pressure sintering", 《MATERIALS LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754433A (zh) * 2021-09-14 2021-12-07 西安交通大学 一种基于3d打印技术的压电铁电陶瓷材料的制备方法

Similar Documents

Publication Publication Date Title
CN109666263B (zh) 一种氮化硼/环氧树脂复合材料的制备方法及产品和应用
EP3623441B1 (en) Thermal interface material, and preparation and application thereof
WO2014196496A1 (ja) 樹脂含浸窒化ホウ素焼結体およびその用途
WO2020237979A1 (zh) 一种复合陶瓷基板及其制备方法
CN105514066A (zh) 一种石墨烯复合红外辐射导热膜及其制作方法
WO2013185269A1 (zh) 一种导热纤维增强的高导热石墨散热片及制备方法
CN110079708B (zh) 一种纳米石墨片/Al合金基复合材料的粉末冶金制备方法
CN113771443B (zh) 烧结石墨烯泡沫块增强的石墨烯导热垫片及其制备方法
CN110713721A (zh) 高导热硅橡胶的制备方法
CN101734923A (zh) 一种氮化铝多孔陶瓷及其制备方法
CN115286397B (zh) 一种陶瓷基板及其制备方法
JP2007533818A (ja) 樹脂含浸フレキシブルグラファイト製品
CN111554466B (zh) 一种具有周期结构的导热吸波复合磁片及其制备方法
CN112358300A (zh) 基于3D打印技术制备高定向导热h-BN基陶瓷材料的方法
CN112322258B (zh) 一种石墨烯导热硅胶片及其制备方法
US20060099406A1 (en) Heat spreader for printed circuit boards
CN113149514B (zh) 一种陶瓷高分子复合材料的力学性能提高方法
CN112358299B (zh) 一种陶瓷基板及其3d打印方法
CN114394585A (zh) 复合膜及其制备方法、电子设备
CN111548167A (zh) 一种陶瓷基高导热复合相变储热材料及制备方法
CN113698213B (zh) 一种高导热陶瓷通用覆铜基板及其制备方法
CN112573903B (zh) 一种氧化铝复合基板材料及其制备方法
CN111675880A (zh) 一种新型软性绝缘导热垫
Lu et al. 3D printing of a SiO2@ BN TPMS structure: Efficient heat transfer strategy for BN/epoxy composites
Jiang et al. Recent Research Advances in Hexagonal Boron Nitride/Polymer Nanocomposites with Isotropic Thermal Conductivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210212