CN116803948A - 一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用 - Google Patents

一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN116803948A
CN116803948A CN202210258632.2A CN202210258632A CN116803948A CN 116803948 A CN116803948 A CN 116803948A CN 202210258632 A CN202210258632 A CN 202210258632A CN 116803948 A CN116803948 A CN 116803948A
Authority
CN
China
Prior art keywords
energy storage
barium titanate
ceramic material
high energy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210258632.2A
Other languages
English (en)
Inventor
王根水
邓韬
刘振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202210258632.2A priority Critical patent/CN116803948A/zh
Publication of CN116803948A publication Critical patent/CN116803948A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用。所述钛酸钡基铁电陶瓷材料的组成为:(1‑x)BaTiO3‑xNaNbO3+y MnCO3;其中,0.15≤x≤0.20,y=0.2wt%~0.5wt%。

Description

一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用
技术领域
本发明涉及一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用,其具有击穿强度大、储能密度高、储能效率高等特点,属于功能陶瓷技术领域。
背景技术
自20世纪70年代以来,随着电子束、核物理、加速器、激光技术、等离子技术和放电理论的不断发展,脉冲功率技术在国防、高新技术等诸多领域里都有着极为重要的广泛应用。能量存储系统是脉冲功率装置中的主要组成部分,介质电容器能量释放速度快、组合灵活、技术成熟、价格低廉,成为目前应用最为广泛的储能器件。
钛酸钡(BaTiO3)具有优异电学性能,包括强介电性、良好的铁电性,是制备陶瓷介质电容器的优质候选材料。传统的钛酸钡介电陶瓷击穿强度小(最大电场强度只有50~80kV/cm),储能密度低(约0.3J/cm3),难以适应现代工业的需求,对其性能改良是十分有必要的。
掺杂改性是提升BaTiO3陶瓷性能的主要手段。研究者们曾使用Bi(Li0.5Nb0.5)-Bi(Mg0.5Ti0.5)取代BaTiO3的A/B位,制备了0.88BT-0.12(1-x)BLN-0.12xBMT陶瓷,陶瓷的击穿强度约为290kV/cm、储能密度约为2.4J/cm3(Chem.Eng.J.,2021,414:128760.);也有人采用两步法制备采用(Ba0.65Sr0.245Bi0.07)0.99Nd0.01TiO3(BT-SBT-NdVPP)陶瓷,陶瓷的击穿强度可达为460kV/cm、储能密度约为4.2J/cm3(Chem.Eng.J.,2021,419:129673.);也有人使用Ce元素掺杂0.65BaTiO3-0.35Sr0.2Bi0.2TiO3陶瓷,得到了一系列电学性能优异的陶瓷材料,击穿强度最高可达为330kV/cm,储能密度最高约为2.57J/cm3,储能效率为81.30%(Ceram.Int,2021,47(22):32015-32024.)。但,大多钛酸钡基储能材料组分构成复杂,制备流程繁琐,击穿场强达不到应用要求,储能效率低,严重限制了其在高功率脉冲电源中的应用。
发明内容
针对上述问题,本发明提供了一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用。该材料组分简单,性能优异,为脉冲电源等储能元器件提供了一种铁电备选材料。
第一方面,本发明提供了一种高储能特性的钛酸钡基陶瓷材料,所述钛酸钡基铁电陶瓷材料的组成为:(1-x)BaTiO3-xNaNbO3+y MnCO3;其中,0.15≤x≤0.20,y=0.2wt%~0.5wt%。
本发明中,在选取具有反铁电特性的铌酸钠(NaNbO3)固溶钛酸钡(BaTiO3)的基础上加入MnCO3,制备储能元件,得到了击穿场强和储能密度大幅提升的陶瓷材料。
较佳的,所述高储能特性的钛酸钡基陶瓷材料的击穿电场为475.41~615.37kV/cm。
较佳的,所述高储能特性的钛酸钡基陶瓷材料的储能密度3.825~5.106J/cm3
较佳的,所述高储能特性的钛酸钡基陶瓷材料的储能效率为87.14~87.74%。
第二方面,本发明提供了一种高储能特性的钛酸钡基陶瓷材料的制备方法,包括:
(1)选用碳酸钡粉体、二氧化钛粉体、碳酸钠粉体、氧化铌粉体和碳酸锰粉体作为原料,按照化学式(1-x)BaTiO3-xNaNbO3+y MnCO3称量并混合,然后经过煅烧和细磨,得到陶瓷粉体;
(2)将所得陶瓷粉体和粘结剂混合,再经造粒、过筛和成型,得到陶瓷生坯;
(3)将所得陶瓷生坯再经排塑和烧结,得到所述高储能特性的钛酸钡基陶瓷材料。
较佳的,所述碳酸钡粉体的纯度至少为99%;所述二氧化钛粉体的纯度至少为99.38%;所述碳酸钾粉体的纯度至少为99%;所述氧化铌粉体的纯度至少为99.93%;所述碳酸锰粉体的纯度至少为99%。
较佳的,步骤(1)中,所述混合的方式球磨混合;无水乙醇作为球磨介质,转速为200~240转/分钟,时间为4~8小时,所用磨球为氧化锆球和氧化锆柱;所述煅烧的温度为1200~1400℃,时间为2~4小时。
较佳的,步骤(2)中,所述粘结剂为聚乙烯醇水溶液,浓度为6~7wt%;所述粘结剂的加入量为陶瓷粉体质量的5~7wt%;所述过筛的筛网为40目。
较佳的,步骤(3)中,所述排塑的温度为800~850℃,时间为2~3小时;优选地,在室温下以3~4℃/分钟的升温速率升至1000~1050℃,随后以2~3℃/min的升温速率升温至1200~1400℃保温2~4小时。
第三方面,本发明提供了一种储能陶瓷元件,包括:上述高储能特性的钛酸钡基陶瓷材料,以及分布在高储能特性的钛酸钡基陶瓷材料表面的电极。
第四方面,本发明提供了一种上述高储能特性的钛酸钡基陶瓷材料在高功率脉冲电容器中的应用。
有益效果:
本发明中,在掺杂NaNbO3的基础上结合MnCO3,改变本发明高储能特性的钛酸钡基陶瓷材料电学性能,增强了陶瓷击穿强度(最大可达615.37kV/cm)、提高了陶瓷储能密度(最大储能密度为5.106J/cm3)和增大了陶瓷储能效率(最大储能效率为87.74%)。所得材料具有耐高压、无铅环保、成分及制备工艺简单等优点,适用于高功率脉冲电源制备和应用,具有显著应用价值。
附图说明
图1为实施例1、2的钛酸钡基陶瓷材料的X-射线衍射图;
图2为实施例1钛酸钡基陶瓷材料的表面微观形貌图;
图3为实施例2钛酸钡基陶瓷材料的表面微观形貌图;
图4为实施例1钛酸钡基陶瓷材料的单极电滞回线图;
图5为实施例2钛酸钡基陶瓷材料的单极电滞回线图;
图6为对比例1-4的单级电滞回线图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本公开中,高储能特性的钛酸钡基陶瓷材料,分子式为,(1-x)BaTiO3-xNaNbO3+yMnCO3;其中0.15≤x≤0.20,y=0.2wt%~0.5wt%。本发明材料储能特性优异,最大击穿电场达615.37kV/cm,储能密度为5.106J/cm3,最大储能效率为87.74%。特别地,本发明的(1-x)BaTiO3-xNaNbO3+yMnCO3陶瓷,储能密度高,价格低廉,适用于高功率脉冲电源的制备和应用。
本发明材料组成简单,制备工艺简单,适用于高功率脉冲电源制备和应用。以下示例性地说明高储能特性的钛酸钡基陶瓷材料的制备方法。
按照预设化学式(1-x)BaTiO3-xNaNbO3+y MnCO3进行配料计算,使用原料包括碳酸钡、二氧化钛、碳酸钠、氧化铌、碳酸锰等粉体。采用电子天平进行称量,称量精确至0.001g。
将原料混合放入球磨机中,以氧化锆球、氧化锆柱和无水乙醇为介质进行混合,再经烘干、煅烧,得到陶瓷粉体。其中,氧化锆球粒径为6mm,氧化锆柱尺寸为直径10mm×高10mm,质量各占一半。
优选的,将陶瓷粉体放搅拌磨中,以小粒径氧化锆球(氧化锆球粒径为1mm)和无水乙醇为介质进行磨细,烘干,得到磨细陶瓷粉体。
将陶瓷粉体(或细磨后的陶瓷粉体)与粘结剂混合均匀并研磨造粒,再经过筛和模压成型,得到陶瓷生坯。
将陶瓷生坯进行排塑和烧结,得到高储能特性的钛酸钡基陶瓷材料。
将所述高储能特性的钛酸钡基陶瓷材料加工成所需尺寸,表面被覆电极后得到储能陶瓷元件。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:(1-x)BaTiO3-xNaNbO3+y MnCO3,其中x=0.15,y=0.5wt%。
采用固相烧结法制备本发明,具体按照以下步骤进行:
(1)按照本发明的分子式(1-x)BaTiO3-xNaNbO3+y MnCO3,其中按x=0.15进行配料计算,需要原料为:碳酸钡,二氧化钛,氧化铌,碳酸钠,碳酸锰;采用电子天平进行称量,称量精确至0.001g;
(2)将称取的原料混合放入尼龙罐中,向罐中加入不高于罐体高度2/3的无水乙醇,以氧化锆球、氧化锆柱为介质,将尼龙罐放在行星球磨机上混合6小时,氧化锆球粒径为6mm、氧化锆柱尺寸为直径10mm×高10mm,质量各占一半;然后倒出在烘烤箱中干燥,再用40目尼龙筛进行过筛,将过筛后的混合粉体在压力机上压成尺寸为直径15mm×高2mm的圆柱体;在大气氛围下,在850℃下合成4小时,然后砸碎过40目筛网得到陶瓷粉体;
(3)将所得粉体放入搅拌磨中,以直径为1mm的氧化锆球和无水乙醇为介质磨细6小时,在烘烤箱中烘干,得到磨细陶瓷粉体;
(4)在磨细陶瓷粉体中加入浓度为7wt%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为陶瓷粉体质量的6%,然后均匀造粒,过40目筛,模压成型,得到尺寸为直径10mm×高1mm的小圆柱体,并进行排塑;
(5)将所得排塑后的坯体在大气氛围下烧结,烧结温度为1260℃,烧结时间为8小时,自然冷却至室温后取出试样。
将所制备的钛酸钡基陶瓷材料进行X射线衍射测试,附图1展示了实施例1的X射线衍射图。将陶瓷表面处理后拍摄表面形貌图,附图2展示了实施例1的表面形貌图。将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图4展示了实施例1的电滞回线。
实施例2:(1-x)BaTiO3-xNaNbO3+y MnCO3,其中x=0.20,y=0.5wt%。
除步骤(1)中x取值不同外,其他步骤与实施例1相同。
将所制备的钛酸钡基铁电陶瓷材料进行X射线衍射测试,附图1展示了实施例2的X射线衍射图。将陶瓷表面处理后拍摄表面形貌图,附图3展示了实施例2的表面形貌图。将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图5展示了实施例2的电滞回线。
对比例1
本对比例1中材料组成为(1-x)BaTiO3-xNaNbO3+y MnCO3,其中x=0.05,y=0.5wt%,其他步骤与实施例1相同。将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图6展示了对比例1的电滞回线。
对比例2
本对比例2中材料组成为(1-x)BaTiO3-xNaNbO3+y MnCO3,其中x=0.10,y=0.5wt%,其他步骤与实施例1相同。将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图6展示了对比例2的电滞回线。
对比例3
本实施例3中材料组成为(1-x)BaTiO3-xNaNbO3+y MnCO3,其中x=0.30,y=0.5wt%,其他步骤与实施例1相同。将陶瓷两面磨平、抛光、镀银电极,测试电学性能。附图6展示了对比例3的电滞回线。
对比例4
本对比例4中材料组成为(1-x)BaTiO3-xNaNbO3+y MnCO3,其中x=0.15,y=0,其他步骤与实施例1相同。
表1为本发明制备的钛酸钡基铁电陶瓷材料的组成及性能参数:
x y 击穿电场(kV/cm) 储能密度(J/cm3) 储能效率(%)
实施例1 0.15 0.5wt% 615.37 5.106 87.17
实施例2 0.20 0.5wt% 475.41 3.825 87.74
对比例1 0.05 0.5wt% 236.39 2.190 50.96
对比例2 0.10 0.5wt% 336.31 2.950 76.64
对比例3 0.30 0.5wt% 225.41 1.603 84.34
对比例4 0.15 0 300.82 1.921 90.16
从图1可以看出,NaNbO3掺入BaTiO3后,实施例1、2均为纯相,属于赝立方晶系,并且随着NaNbO3含量的增加,衍射峰向有向高角度偏移的趋势。
图2和图3对实施例1、2的表面形貌进行观察,可以看出,实施例1、2晶粒发育良好,饱满度高,致密度大,且晶粒分布均匀。
本发明中,实施例1、2的单极电滞回线如图4、图5所示,对比例1-4的单极电滞回线如图6所示,各例性能参数如表1所示。可见,实施例1、2的储能特性优越,击穿电场高,分别为615.37kV/cm、475.41kV/cm;储能密度大,分别为5.106J/cm3、3.825J/cm3。实施例1、2的储能效率较高(≥87%),并且储能密度(都大于3.8J/cm3)随着电场的增加而不断增加,弛豫特性良好。从对比例1-3的电滞回线可以看出,固溶过多或者过少NaNbO3,会导致陶瓷储能密度小,储能效率低,储能特性差。不难看出,陶瓷储能特性与固溶NaNbO3量无明显的线性变化,只有当NaNbO3适量时,才能呈现弛豫特性,才能够实现高储能特性。对比实施例1和对比例4的电滞回线,结合表1可以看出,相较于不添加MnCO3的对比例4,MnCO3添加量为0.5wt%的实施例1有更优异的击穿电场、储能密度,说明添加MnCO3能增强实施例的储能特性。

Claims (10)

1.一种高储能特性的钛酸钡基陶瓷材料,其特征在于,所述钛酸钡基铁电陶瓷材料的组成为:(1-x)BaTiO3-xNaNbO3+y MnCO3;其中,0.15≤x≤0.20,y=0.2wt%~0.5wt%。
2.根据权利要求1所述的高储能特性的钛酸钡基陶瓷材料,其特征在于,所述高储能特性的钛酸钡基陶瓷材料的击穿电场为475.41~615.37 kV/cm。
3.根据权利要求1或2所述的高储能特性的钛酸钡基陶瓷材料,其特征在于,所述高储能特性的钛酸钡基陶瓷材料的储能密度3.825~5.106J/cm3,储能效率为87.17~87.74%。
4.一种如权利要求1-3中任一项所述的高储能特性的钛酸钡基陶瓷材料的制备方法,其特征在于,包括:
(1)选用碳酸钡粉体、二氧化钛粉体、碳酸钠粉体、氧化铌粉体和碳酸锰粉体作为原料,按照化学式(1-x)BaTiO3-xNaNbO3+y MnCO3称量并混合,然后经过煅烧和细磨,得到陶瓷粉体;
(2)将所得陶瓷粉体和粘结剂混合,再经造粒、过筛和成型,得到陶瓷生坯;
(3)将所得陶瓷生坯再经排塑和烧结,得到所述高储能特性的钛酸钡基陶瓷材料。
5.根据权利要求4所述的的制备方法,其特征在于,所述碳酸钡粉体的纯度至少为99%;所述二氧化钛粉体的纯度至少为99.38%;所述碳酸钠粉体的纯度至少为99%;所述氧化铌粉体的纯度至少为99.93%;所述碳酸锰粉体的纯度至少为99%。
6.根据权利要求4所述的的制备方法,其特征在于,步骤(1)中,所述混合的方式球磨混合;无水乙醇作为球磨介质,转速为200~240转/分钟,时间为4~8小时,所用磨球为氧化锆球和氧化锆柱;所述煅烧的温度为1200~1400℃,时间为2~4小时。
7.根据权利要求4所述的的制备方法,其特征在于,步骤(2)中,所述粘结剂为聚乙烯醇水溶液,浓度为6~7wt%;所述粘结剂的加入量为陶瓷粉体质量的5~7wt%;所述过筛的筛网为40目。
8.根据权利要求4所述的的制备方法,其特征在于,步骤(3)中,所述排塑的温度为800~850℃,时间为2~3小时;优选地,在室温下以3~4℃/分钟的升温速率升至1000~1050℃,随后以2~3℃/min的升温速率升温至1200~1400℃保温2~4小时。
9.一种储能陶瓷元件,其特征在于,包括:权利要求1-3中任一项所述的高储能特性的钛酸钡基陶瓷材料,以及分布在高储能特性的钛酸钡基陶瓷材料表面的电极。
10.一种权利要求1-3中任一项所述的高储能特性的钛酸钡基陶瓷材料在高功率脉冲电容器中的应用。
CN202210258632.2A 2022-03-16 2022-03-16 一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用 Pending CN116803948A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210258632.2A CN116803948A (zh) 2022-03-16 2022-03-16 一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210258632.2A CN116803948A (zh) 2022-03-16 2022-03-16 一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116803948A true CN116803948A (zh) 2023-09-26

Family

ID=88078393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210258632.2A Pending CN116803948A (zh) 2022-03-16 2022-03-16 一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116803948A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254913A (ja) * 2011-05-18 2012-12-27 Tdk Corp 複合圧電セラミックスおよび圧電素子
US20130250482A1 (en) * 2012-03-22 2013-09-26 Holy Stone Enterprise Co., Ltd. Dielectric Ceramic Material and Multilayer Ceramic Capacitor Using the Same
CN104603083A (zh) * 2012-08-27 2015-05-06 佳能株式会社 压电材料、压电元件和电子装置
US20160194248A1 (en) * 2015-01-05 2016-07-07 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor including the same
US20180362410A1 (en) * 2017-06-19 2018-12-20 National Taipei University Of Technology Ceramic material for multilayer ceramic capacitor and method of making the same
CN109133915A (zh) * 2018-08-30 2019-01-04 武汉理工大学 一种高储能钛酸钡基介质材料及其制备方法
CN110357630A (zh) * 2019-07-04 2019-10-22 中国科学院上海硅酸盐研究所 一种高性能铌酸钠基无铅热释电陶瓷材料及其制备方法和应用
CN111792929A (zh) * 2020-06-03 2020-10-20 西安交通大学 一种使用施主-受主复合掺杂提高钛酸钡基陶瓷储能特性的方法
CN112521145A (zh) * 2020-12-25 2021-03-19 杭州电子科技大学 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN113526950A (zh) * 2021-08-12 2021-10-22 陕西科技大学 一种高储能高效率的NaNbO3掺杂BaTiO3基氧化物陶瓷材料、制备方法及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254913A (ja) * 2011-05-18 2012-12-27 Tdk Corp 複合圧電セラミックスおよび圧電素子
US20130250482A1 (en) * 2012-03-22 2013-09-26 Holy Stone Enterprise Co., Ltd. Dielectric Ceramic Material and Multilayer Ceramic Capacitor Using the Same
CN104603083A (zh) * 2012-08-27 2015-05-06 佳能株式会社 压电材料、压电元件和电子装置
US20160194248A1 (en) * 2015-01-05 2016-07-07 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor including the same
US20180362410A1 (en) * 2017-06-19 2018-12-20 National Taipei University Of Technology Ceramic material for multilayer ceramic capacitor and method of making the same
CN109133915A (zh) * 2018-08-30 2019-01-04 武汉理工大学 一种高储能钛酸钡基介质材料及其制备方法
CN110357630A (zh) * 2019-07-04 2019-10-22 中国科学院上海硅酸盐研究所 一种高性能铌酸钠基无铅热释电陶瓷材料及其制备方法和应用
CN111792929A (zh) * 2020-06-03 2020-10-20 西安交通大学 一种使用施主-受主复合掺杂提高钛酸钡基陶瓷储能特性的方法
CN112521145A (zh) * 2020-12-25 2021-03-19 杭州电子科技大学 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN113526950A (zh) * 2021-08-12 2021-10-22 陕西科技大学 一种高储能高效率的NaNbO3掺杂BaTiO3基氧化物陶瓷材料、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU-TA SAKAMOTO: ""Fabrication and properties of reduction-resistant lead-free NaNbO3–BaTiO3 piezoelectric ceramics"", 《JAPANESE JOURNAL OF APPLIED PHYSICS》, 11 August 2021 (2021-08-11), pages 03 - 1 *

Similar Documents

Publication Publication Date Title
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN109650885B (zh) 一种掺镧铌酸银无铅反铁电储能陶瓷材料及其制备方法
CN109180178A (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN109694248B (zh) 高抗电强度无铅储能介质陶瓷材料及其制备方法
CN113004032B (zh) 一种类线性高储能高效率无铅弛豫陶瓷及其制备方法
CN112919907B (zh) 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法
CN107602115B (zh) 一种无铅高储能密度和宽温稳定陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN115159983B (zh) 一种铌酸钠基弛豫反铁电陶瓷材料及其制备方法
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN106915960A (zh) 一种无铅高储能密度和储能效率陶瓷材料及其制备方法
CN111978082A (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN111233470A (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN114394833B (zh) 钨青铜结构高储能密度及功率密度无铅储能介质陶瓷材料
CN115180944A (zh) 一种充满型钨青铜结构高熵铁电陶瓷材料及其制备方法
CN115073169A (zh) 一种高能量低损耗的(1-x)NBT-SBT-xBKT无铅陶瓷材料及其制备方法
CN104692797A (zh) 一种钛酸锶钡基电容器瓷料及其制备方法
CN115403372B (zh) 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用
CN107445611A (zh) 一种无铅低损耗高储能密度陶瓷材料及其制备方法
CN111825451B (zh) 稀土元素Tm掺杂的铌酸银反铁电陶瓷材料及其制备方法
CN109320236B (zh) 一种高储能密度和充放电性能的复合材料及其制备方法
CN116803948A (zh) 一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用
CN116789450B (zh) 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用
CN116789449B (zh) 一种温度稳定性优异的高储能铌酸钠基铁电陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination