CN111978082A - 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法 - Google Patents

一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111978082A
CN111978082A CN202010875275.5A CN202010875275A CN111978082A CN 111978082 A CN111978082 A CN 111978082A CN 202010875275 A CN202010875275 A CN 202010875275A CN 111978082 A CN111978082 A CN 111978082A
Authority
CN
China
Prior art keywords
energy storage
bismuth titanate
modified sodium
storage ceramic
based energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010875275.5A
Other languages
English (en)
Other versions
CN111978082B (zh
Inventor
戴中华
张文婧
张凡博
刘卫国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN202010875275.5A priority Critical patent/CN111978082B/zh
Publication of CN111978082A publication Critical patent/CN111978082A/zh
Application granted granted Critical
Publication of CN111978082B publication Critical patent/CN111978082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法,属于电子陶瓷技术领域;该铌镁酸锶掺杂改性的钛酸铋钠基储能陶瓷材料的配方为:(1‑x)(Bi0.5Na0.5)TiO3‑xSr(Mg0.3334Nb0.6666)O3,(其中0≦x≦0.20);本发明采用固相烧结法,按照化学计量式称取原料混合均匀形成全配料;将全配料依次进行球磨、烘干、研磨、过筛,形成过筛料;将过筛料压制成试样,并对试样进行烧结,成功制备出晶粒较小且致密均匀的储能陶瓷。本发明方法制得的储能陶瓷能够在较高的击穿场强(140KV/cm)下获得1.59J/cm3的可回收储能密度;且具有成本低、产量大、制备工艺简单及绿色环保等优点,有可能成为无铅储能电容器材料的重要候选材料。

Description

一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备 方法
技术领域
本发明涉及陶瓷电容器材料技术领域,具体涉及一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法。
背景技术
近年来,在电子工业飞速发展的大背景下,储能元件不断向无铅化、小型化、大储能密度以及高储能效率的方向发展。陶瓷电介质材料因其介电常数高、热稳定性好、力学性能突出等优点,且其存储的电能可以在极短的时间内(最短可到纳秒)释放,因此被广泛应用在脉冲功率系统中。
其中,钛酸铋钠基系列陶瓷材料具有铁电性强(室温剩余极化Pr=38μC/cm2),介电常数小(大约为240~340),机电耦合系数大以及较高的居里温度等优异特性,且其烧结温度比较低(1050℃~1100℃左右),是最有希望成为取代铅基陶瓷材料的体系之一。然而由于BNT基陶瓷材料矫顽场较大(Ec=7.3KV/mm),难以极化处理,获得较好的电学性能。在BNT基无铅储能陶瓷介质中增加一种或多种体系,增加体系的多元化以得到优异的铁电性能,这是目前改性BNT基无铅储能陶瓷的最主要而且是最有用的方式之一。
目前已知的改性钛酸铋钠基储能陶瓷的组成主要有:(1)、(1-x)Bi0.5Na0.5TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3;(2)、(1-x)Bi0.5Na0.5TiO3-xBaTiO3等。但由于存在击穿场强低、极化差小等问题,导致可释放储能密度小于1J/cm3
发明内容
本发明的目的在于提供一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法,通过设计新型的二元固溶体,以克服现有技术组分设计击穿场强低、极化差小等问题。
为了达到上述目的,本发明的技术解决方案是:
一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料,所述铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷的组分原料及其摩尔百分比含量范围为:(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3,其中0≦x≦0.20。
进一步的,所述铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷的组分原料及其摩尔百分比含量为:0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3
一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料的制备方法,包括以下步骤:
(1)按照化学计量式,分别称取Bi2O3粉体、Na2CO3粉体、TiO2粉体、SrCO3粉体、MgO粉体和Nb2O5粉体,混合后进行球磨,得到混合粉料;
(2)将混合粉料烘干、过筛,在830~870℃进行预烧;
(3)将经过预烧的混合粉料进行二次球磨、过筛,得到化学组成通式为(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3的粉料,其中0≦x≦0.20;
(4)将聚乙烯醇PVA加入上述粉料中,制得粒料,经过压片、排胶得到(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3生坯;
(5)将所述(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3生坯在1140~1180℃下保温3~5h,得到铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料。
进一步的,其特征在于,步骤(1)、步骤(3)中所述的球磨机转速为330~400r/min。
进一步的,其特征在于,步骤(2)中所述的烘干均是在85~100℃烘干2~4h。
进一步的,其特征在于,步骤(4)中所述的排胶均是在600℃保温3~5h。
进一步的,步骤(4)中所述的压片均是在压力为200~300MPa下,保压时间为1~3min,所得生坯的尺寸为11~15mm,厚度为1~1.4mm。
进一步的,步骤(2)中所述的预烧过程保温时间为2~4h,升温速率为2~3℃/min。
与现有技术相比,本发明的有益效果:
1、材料本身:随着第二组元掺杂量的增加,使陶瓷击穿场强提高,极化差(Pmax-Pr)降低,以获得较高的储能密度。本发明采用高纯的原料,极大程度上控制粒径的大小;严格控制原料物质的量的比即可避免第二相的产生。本发明方法制得的储能陶瓷能够在较高的击穿场强(140KV/cm)下获得1.59J/cm3的高储能密度;
2、制备方法:本发明采用固相烧结法,通过铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷,且具有成本低、产量大、制备工艺简单及绿色环保等优点,可作为替代铅基储能陶瓷材料成为陶瓷电容器在技术上和经济上兼优的重要候选材料。
附图说明
图1是本发明制得的0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3陶瓷样品的电子显微镜图片。
图2是本发明制得的(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3陶瓷在室温下的电滞回线。
图3是本发明制得的0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3陶瓷样品在室温下的电滞回线。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合实施例对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明提供一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料,其组分原料及摩尔百分比含量为:(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3,其0≦x≦0.20。
对于钛酸铋钠基储能陶瓷而言,通过引入新的组分来进行调控,可以减小其晶粒尺寸,获得更致密的陶瓷,进而达到降低极化差(Pmax-Pr),获得高储能密度的效果。
本发明引入第二组元Sr(Mg0.3334Nb0.6666)O3,经过实验测量,当x=0.10时为最优化组分。
本发明提供一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料的制备方法,包括以下步骤:
(1)按照化学计量式的比例称取Bi2O3、Na2CO3、TiO2、SrCO3、MgO和Nb2O5混合,且遵循“多量-少量-多量”的原则;然后进行球磨,球磨的过程可以将粉料细化,同时使各种物料混合的更均匀。其中球磨8~12h,球磨的转速为330~400r/min。球磨结束后,将混合料烘干,烘干温度为85~100℃烘干2~4h;利用60~120目筛网过筛,得到化学组成通式为(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3粉体,所述0≦x≦0.20。
(2)将上述混合料加入到坩埚中,经压实后,置于烧结炉中,升温至830~870℃并保温2~4h,预烧的升温速率为2~3℃/min,然后再自然冷却至室温后将坩埚取出。其目的是为了提高纯度,排除杂质。
(3)将进过预烧的混合粉体进行球磨,球磨的转速为330~400r/min,球磨时间为20~24h,球磨结束后,将混合料在85~100℃烘干2~4h,然后再经60~120目的筛网过筛。
(4)在上述粉料中加入质量分数为5~7%的聚乙烯醇(PVA)进行造粒。将PVA与粉料混合均匀以后,再经60~120目的筛网过筛,制得粒料;在200~300MPa的压力下将此粒料压成厚度1~1.4mm的生坯,保压时间为1~3min,所得生坯的尺寸为11~15mm;将上述生坯置于氧化铝板上,放入烧结炉中,在600℃的温度下保温3~5h进行排胶,并随炉自然冷却至室温。
(5)将经过排胶后的陶瓷生坯放入氧化铝坩埚,以2~3℃/min升温至1140~1180℃时保温3~5h;之后自然冷却至室温,得到钛酸铋钠基陶瓷材料。
实施例1
本实施例铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷,其化学组成为0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3,其制备方法的步骤包括:
(1)按照化学计量式的比例称取Bi2O3、Na2CO3、TiO2、SrCO3、MgO和Nb2O5混合,且遵循“多量-少量-多量”的原则;然后进行球磨,其中球磨12h,球磨的转速为350r/min。球磨结束后,将混合料烘干,烘干温度为85℃烘干2h;利用60目筛网过筛,得到0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3粉体。
(2)将上述混合料加入到坩埚内,置于烧结炉中,升温至850℃并保温2h,预烧的升温速率为3℃/min,然后再自然冷却至室温。
(3)将经过预烧的混合粉料进行球磨,球磨的转速为350r/min,球磨时间为24h,球磨结束后,将混合料在85℃烘干2h,然后再经80目的筛网过筛。
(4)在上述粉料中加入质量分数为5%的聚乙烯醇(PVA)进行造粒。将PVA与粉料混合均匀以后,再经60和120目的筛网过筛,取中间层粉体制得0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3粒料;在300MPa的压力下将此粒料压成厚度1.2mm的生坯,保压时间为2min,所得生坯的尺寸为13mm;将上述生坯置于氧化铝板上,放入烧结炉中,在600℃的温度下保温4h进行排胶,并随炉自然冷却至室温。
(5)将经过排胶的生坯放入氧化铝坩埚,以3℃/min升温至1160℃时保温4h;之后自然冷却至室温,得到钛酸铋钠基陶瓷材料。
将制得的0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3储能陶瓷样品进行扫描电子显微镜测试,如图1所示,结果表明该样品晶粒较小且致密均匀。
对本实施例1制得的0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3储能陶瓷样品进行了室温下不同电场强度的电滞回线测试,如图3所示,击穿场强为140KV/cm,储能密度为3.04J/cm3,可回收储能密度为1.59J/cm3,储能效率为52.28%。
实施例2
按照配方(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3,除x取值改变外,其它步骤与实施例1相同。计算各原料的需要量,用电子天平进行称量,称量精确到小数点后3位。
对本实施例2制得的储能陶瓷样品进行了室温下不同电场强度的电滞回线测试,如图2所示,随着铌镁酸锶掺杂量的增加,可回收储能密度呈现出先增大后减小的趋势。
实施例3
其他条件均与实施例1相同,仅是烧结温度改变为1150℃。
对本实施例3制得的样品进行了电子扫描显微镜和电滞回线的测试。电子扫描显微镜结果表明此烧结温度下制得的陶瓷中出现了微孔,其相对密度有所降低。电滞回线显示,虽然其最大极化强度Pmax较大,但同时剩余极化强度Pr也有所增大,导致极化差(Pmax-Pr)减小,进而使得可回收储能密度降低。
实施例4
其他条件均与实施例1相同,仅是在烧结温度为1160℃时,保温时间改变为6h。
对本实施例4制得的样品进行了测试,在此保温时间下制得的陶瓷样品存在晶粒异常生长,晶粒结构不致密的现象。
本发明采用上述实验方案,通过铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷,成功制备出具有较高储能密度的无铅陶瓷。本发明方法制得的储能陶瓷能够在较高的击穿场强(140KV/cm)下获得1.59J/cm3的高储能密度;且具有成本低、产量大、制备工艺简单及绿色环保等优点,可作为替代铅基储能陶瓷材料成为陶瓷电容器在技术上和经济上兼优的重要候选材料。
表1列出了(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3陶瓷样品的平均击穿强度(Eb),放电(可回收)能量存储密度(Wre),储存(充电)能量密度(W),储能效率(η),其中0≦x≦0.20。
表1实施例制备的陶瓷样品的储能性能测试数据
Figure BDA0002652479600000051
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。任何熟悉该技术的人在本发明所揭露的技术范围内的局部修改或替换,都应涵盖在本发明的包含范围之内。

Claims (8)

1.一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料,其特征在于:所述铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷的组分原料及其摩尔百分比含量范围为:(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3,其中0≦x≦0.20。
2.根据权利要求1所述的铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料,其特征在于:所述铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷的组分原料及其摩尔百分比含量为:0.90(Bi0.5Na0.5)TiO3-0.10Sr(Mg0.3334Nb0.6666)O3
3.一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)按照化学计量式,分别称取Bi2O3粉体、Na2CO3粉体、TiO2粉体、SrCO3粉体、MgO粉体和Nb2O5粉体,混合后进行球磨,得到混合粉料;
(2)将混合粉料烘干、过筛,在830~870℃进行预烧;
(3)将经过预烧的混合粉料进行二次球磨、过筛,得到化学组成通式为(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3的粉料,其中0≦x≦0.20;
(4)将聚乙烯醇PVA加入上述粉料中,制得粒料,经过压片、排胶得到(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3生坯;
(5)将所述(1-x)(Bi0.5Na0.5)TiO3-xSr(Mg0.3334Nb0.6666)O3生坯在1140~1180℃下保温3~5h,得到铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料。
4.根据权利要求3所述的铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料的制备方法,其特征在于,步骤(1)、步骤(3)中所述的球磨机转速为330~400r/min。
5.根据权利要求3所述的铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料的制备方法,其特征在于,步骤(2)中所述的烘干均是在85~100℃烘干2~4h。
6.根据权利要求3所述的铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料的制备方法,其特征在于,步骤(4)中所述的排胶均是在600℃保温3~5h。
7.根据权利要求3所述的铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料的制备方法,步骤(4)中所述的压片均是在压力为200~300MPa下,保压时间为1~3min,所得生坯的尺寸为11~15mm,厚度为1~1.4mm。
8.根据权利要求3所述的铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料的制备方法,步骤(2)中所述的预烧过程保温时间为2~4h,升温速率为2~3℃/min。
CN202010875275.5A 2020-08-27 2020-08-27 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法 Active CN111978082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010875275.5A CN111978082B (zh) 2020-08-27 2020-08-27 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010875275.5A CN111978082B (zh) 2020-08-27 2020-08-27 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111978082A true CN111978082A (zh) 2020-11-24
CN111978082B CN111978082B (zh) 2022-05-17

Family

ID=73441447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010875275.5A Active CN111978082B (zh) 2020-08-27 2020-08-27 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111978082B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661508A (zh) * 2021-01-20 2021-04-16 西北大学 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN113716956A (zh) * 2021-08-31 2021-11-30 西安工业大学 一种锆钛酸锶固溶改性钛酸铋钠基陶瓷材料及其制备方法
CN113800904A (zh) * 2021-08-27 2021-12-17 西安理工大学 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
CN114573339A (zh) * 2022-03-31 2022-06-03 华北电力大学 高储能密度无铅高熵钙钛矿陶瓷、制备方法、及电容器
CN114920554A (zh) * 2022-06-14 2022-08-19 西安智疆航空科技发展有限公司 一种无铅nbt基陶瓷材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1840654A1 (ru) * 1964-10-05 2008-05-20 ОАО "Концерн "Океанприбор" Свинцовосодержащая пьезокерамика
CN105819856A (zh) * 2016-03-14 2016-08-03 陕西师范大学 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN110540423A (zh) * 2019-08-19 2019-12-06 同济大学 钛酸铋钠基高储能密度和功率密度陶瓷及制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1840654A1 (ru) * 1964-10-05 2008-05-20 ОАО "Концерн "Океанприбор" Свинцовосодержащая пьезокерамика
CN105819856A (zh) * 2016-03-14 2016-08-03 陕西师范大学 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN110540423A (zh) * 2019-08-19 2019-12-06 同济大学 钛酸铋钠基高储能密度和功率密度陶瓷及制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661508A (zh) * 2021-01-20 2021-04-16 西北大学 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN112661508B (zh) * 2021-01-20 2022-12-13 西北大学 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN113800904A (zh) * 2021-08-27 2021-12-17 西安理工大学 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
CN113716956A (zh) * 2021-08-31 2021-11-30 西安工业大学 一种锆钛酸锶固溶改性钛酸铋钠基陶瓷材料及其制备方法
CN114573339A (zh) * 2022-03-31 2022-06-03 华北电力大学 高储能密度无铅高熵钙钛矿陶瓷、制备方法、及电容器
CN114920554A (zh) * 2022-06-14 2022-08-19 西安智疆航空科技发展有限公司 一种无铅nbt基陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN111978082B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN112174664B (zh) 一种高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN109180178A (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN108751982B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN112919907B (zh) 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN110981476A (zh) 一种铌酸钾钠基透明陶瓷材料及其制备方法
CN114644523A (zh) 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN115448716A (zh) 一种钛酸钡基储能陶瓷材料及其制备方法
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN111704463A (zh) 电介质陶瓷材料及其制备方法
CN115073169A (zh) 一种高能量低损耗的(1-x)NBT-SBT-xBKT无铅陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN107814569A (zh) 一种无铅反铁电体陶瓷及其制备方法
CN107445611B (zh) 一种无铅低损耗高储能密度陶瓷材料及其制备方法
CN112521145A (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN108358626B (zh) 一种bnt基无铅热释电陶瓷材料及其制备方法
CN106957174A (zh) Bnt-ba-knn无铅铁电相变陶瓷及其制备方法
CN115947598A (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN115159983A (zh) 一种铌酸钠基弛豫反铁电陶瓷材料及其制备方法
CN116751053B (zh) 一种高储能陶瓷介质材料及制备方法
CN114874007B (zh) 锆酸钙-钛酸锶高效率储能电介质复合陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant