CN116178006A - 一种高导电性氧化钛靶材及其制备方法 - Google Patents

一种高导电性氧化钛靶材及其制备方法 Download PDF

Info

Publication number
CN116178006A
CN116178006A CN202310204104.3A CN202310204104A CN116178006A CN 116178006 A CN116178006 A CN 116178006A CN 202310204104 A CN202310204104 A CN 202310204104A CN 116178006 A CN116178006 A CN 116178006A
Authority
CN
China
Prior art keywords
titanium oxide
target material
conductivity
target
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310204104.3A
Other languages
English (en)
Inventor
关泽汉
周贤界
黄勇彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Apg Material Technology Co ltd
Original Assignee
Shenzhen Apg Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Apg Material Technology Co ltd filed Critical Shenzhen Apg Material Technology Co ltd
Priority to CN202310204104.3A priority Critical patent/CN116178006A/zh
Publication of CN116178006A publication Critical patent/CN116178006A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种高导电性氧化钛靶材及其制备方法,属于半导体光电材料领域。该方法为:将氧化铌和氧化钛粉末混合后加入分散剂和水,球磨、烘干研磨后得到混合粉末颗粒;随后进行煅烧、过筛处理、真空热压烧结,冷却后进行机加工后处理即得。以质量百分比计,所得靶材包括90~99%的TiO2和1~10%的Nb2O5,杂质含量≦0.01%。制备方法原料易得,工艺操作简单,使用常规真空热压烧结及加工设备就能完成大规模的工业化生产。同时所得靶材可用作太阳能电池光电器件和显示屏用的薄膜原材料,导电性良好,内部组织晶粒均匀且细小、纯度高、致密度高,不存在间隙缺陷,不容易开裂,机加工性能优良;在满足良好的镀膜性能的同时,有利改善膜层的导电性和透光率。

Description

一种高导电性氧化钛靶材及其制备方法
技术领域
本发明涉及半导体光电材料领域,尤其涉及一种高导电性氧化钛靶材及其制备方法。
背景技术
二氧化钛的两种常见晶型结构中,锐钛矿相光催化活性高,金红石相紫外线吸收能力强。将它们制备成二氧化钛纳米薄膜后,由于其晶粒尺寸细化而具有纳米材料的小尺寸效应、量子效应及表面与界面效应等特殊的纳米效应,涂覆在玻璃、陶瓷等基体表面具有湿敏、气敏、光催化、超亲水、高折射率、高介电常数、化学性质稳定等性能,因而在传感器件、光电转换、环保自清洁等领域得到了广泛的应用。
CN104557021A中公开了一种陶瓷靶材,将TiO2和Nb粉混合后,使用真空热压工艺制成;CN102320824A中公开了一种二氧化钛靶材,通过溶液反应先制得金属离子掺杂的二氧化钛粉体,再将其压制和烧结来制备。CN108203297A中公开了一种氧化钛靶材,对氧化钛纳米粉体改性,再压制成型为陶瓷坯体,在真空气氛或惰性气氛下,进行烧结得到所述氧化钛靶材。上述方法存在以下不足:(1)Nb粉的添加虽然有助于提升TiO2靶材的导电性,但是由于粒度和密度的差异,Nb粉不易在TiO2粉体中分布均匀,这会进一步影响靶材的性能和密度均一性;(2)通过溶液反应先制得金属离子掺杂的二氧化钛粉体,再进行烧结,效率较低,不易规模化量产;(3)纯二氧化钛靶材导电性差,电阻率高。
有鉴于此,特提出本发明。
发明内容
本申请的目的在于提供一种高导电性氧化钛靶材及其制备方法,以解决上述问题。
为实现以上目的,本申请采用以下技术方案:
一种高导电性氧化钛靶材制备方法,其特征在于,包括如下步骤:
S1:将氧化铌和氧化钛粉末混合后加入分散剂和水,球磨得到混合浆料,将所述混合浆料进行烘干研磨处理,得到混合粉末颗粒。
进一步地,所述氧化铌和氧化钛的质量比为(90~99):(1~10)。
优选地,所述氧化铌和氧化钛粉末的纯度不小于99.99%,初始粒径为微米级。掺杂粉末同为陶瓷粉末,易混合均匀,可以提高靶材密度均匀性,改善了用铌金属粉末不易混合均匀的问题。
进一步地,所述分散剂为聚羧酸盐;
优选地,所述分散剂的加入量为所述氧化铌和氧化钛总质量的0.5~0.8%。
进一步地,经所述烘干研磨处理后,控制所述混合粉末颗粒的粒径为0.5μm~1μm。控制所述粒径范围可以提高混合均匀性的同时,为后续提高煅烧和真空热压烧结的效率打下基础。
S2:将步骤S1所得的混合粉末颗粒进行煅烧,随后过筛处理。
进一步地,所述煅烧的温度为800~1000℃,所述煅烧的时间为3~6h。
优选地,所述煅烧时,先将所述混合粉末颗粒升温至550~650℃,保温0.5~2h。所述保温过程可以使所述混合粉末颗粒中的有机物、水等杂质挥发完全,随后再升温至800~1000℃进行煅烧。否则,直接升至800~1000℃煅烧,其中的有机物在没有完全挥发时会变成碳,导致粉料中残余的C元素含量增加,对纯度产生不利的影响。
二氧化钛在800℃以上时,晶型开始由锐钛型转变为金红石型,通过在800℃~1000℃下煅烧,一方面可以保证粉料提前转变为金红石型,粉料一致性较好,晶型转变过程中,相对密度会发生一定变化,提前完成晶型转变热压时比较稳定,靶材不易产生缺陷;一方面Nb2O5和TiO2粉末可提前发生固溶反应,提高靶材致密度。
S3:将步骤S2过筛后的粉末进行真空热压烧结,之后随炉冷却至室温,获得靶材半成品,即靶材坯体。
进一步地,所述真空热压烧结为以2.5~4℃/min升至1100~1200℃,保温2~4h;烧结压力10~20MPa,保压时间2~4h。
优选地,所述真空热压烧结后,随炉冷却之前,先以1.5~3℃/min冷却至800~900℃。
Nb2O5烧结温度一般在1200℃以上,如掺杂Nb2O5比例过多,相应烧结温度也需提高,但过高的温度会导致TiO2出现过烧,内部可能出现缺陷;所以,控制合适的掺杂的比例和烧结温度非常重要。
S4:将步骤S3所得的靶材半成品进行机加工,表面打磨,尺寸修整,即得。
进一步地,所述机加工包括水割和磨床。水割可以很好的防止本发明中的靶材崩裂。
本发明还提供一种以上述的制备方法制得的高导电性氧化钛靶材,以质量百分比计,所述靶材包括90~99%的TiO2和1~10%的Nb2O5,杂质含量≦0.01%;
优选地,所述靶材包括94~96%的TiO2和4~6%的Nb2O5,杂质含量≦0.01%。
本申请的制备方法原料易得,工艺操作简单,使用常规真空热压烧结及加工设备就能完成大规模的工业化生产。同时所得靶材可用作太阳能电池光电器件和显示屏用的薄膜原材料,导电性良好,内部组织晶粒均匀且细小、纯度高、致密度高,不存在间隙缺陷,不容易开裂,机加工性能优良;在满足良好的镀膜性能的同时,有利改善膜层的导电性和透光率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对本申请范围的限定。
图1为本发明实施例4的高导电性氧化钛靶材的SEM图。
具体实施方式
下面将结合具体实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
一种高导电性氧化钛靶材的制备方法,如图1所示的工艺流程:
(1)按照质量比为99:1选取TiO2和Nb2O5粉末原料,粉末粒径控制在10μm以下,加入水作为球磨介质,加入占TiO2和Nb2O5粉末总质量0.6%的聚羧酸盐D305,将混合后的浆料球磨6h,随后在120℃下进行烘干研磨处理后,控制所述混合粉末颗粒的粒径为0.5μm~1μm之间;
(2)将步骤(1)所得的混合粉末颗粒以1.5℃/min升至600℃,保温1h;再以1.5℃/min升至950℃进行煅烧,保温5h,随后100目过筛处理;
(3)将步骤(2)中过筛后的粉末进行真空热压烧结,具体是以3℃/min升温至1180℃,压力17MPa,保温保压3h;随后以2.3℃/min降温至900℃,最后随炉冷却至室温,得到靶材半成品;
(4)将靶材进行表面机加工打磨,水割为所需尺寸,获得所述的高导电性氧化钛靶材。
所得的高导电性氧化钛靶材致密度可以达到98.6%,电阻率可达0.5~1Ω·cm,无开裂。
实施例2
一种高导电性氧化钛靶材的制备方法,如下:
(1)按照质量比为98:2选取TiO2和Nb2O5粉末原料,粉末粒径控制在10μm以下,加入水作为球磨介质,加入占TiO2和Nb2O5粉末总质量0.6%的聚羧酸盐D305,将混合后的浆料球磨6h,随后在110℃下进行烘干研磨处理后,控制所述混合粉末颗粒的粒径为0.5μm~1μm之间;
(2)将步骤(1)所得的混合粉末颗粒以1.5℃/min升至600℃,保温1h;再以1.5℃/min升至950℃进行煅烧,保温5h,随后100目过筛处理;
(3)将步骤(2)中过筛后的粉末进行真空热压烧结,具体是以3℃/min升温至1180℃,压力17MPa,保温保压3h;随后以2.3℃/min降温至900℃,最后随炉冷却至室温,得到靶材半成品;
(4)将靶材进行表面机加工打磨,水割为所需尺寸,获得所述的高导电性氧化钛靶材。
所得的高导电性氧化钛靶材致密度可以达到98.2%,电阻率可达1~5x10-1Ω·cm,无开裂。
实施例3
一种高导电性氧化钛靶材的制备方法,如下:
(1)按照质量比为96:4选取TiO2和Nb2O5粉末原料,粉末粒径控制在10μm以下,加入水作为球磨介质,加入占TiO2和Nb2O5粉末总质量0.6%的聚羧酸盐D305,将混合后的浆料球磨6h,随后在110℃下进行烘干研磨处理后,控制所述混合粉末颗粒的粒径为0.5μm~1μm之间;
(2)将步骤(1)所得的混合粉末颗粒以1.5℃/min升至600℃,保温1h;再以1.5℃/min升至950℃进行煅烧,保温5h,随后100目过筛处理;
(3)将步骤(2)中过筛后的粉末进行真空热压烧结,具体是以3℃/min升温至1180℃,压力17MPa,保温保压3h;随后以2.3℃/min降温至900℃,最后随炉冷却至室温,得到靶材半成品;
(4)将靶材进行表面机加工打磨,水割为所需尺寸,获得所述的高导电性氧化钛靶材。
所得的高导电性氧化钛靶材致密度可以达到97.9%,电阻率可达0.5~1x10-1Ω·cm,无开裂。
实施例4
一种高导电性氧化钛靶材的制备方法,如下:
(1)按照质量比为94:6选取TiO2和Nb2O5粉末原料,粉末粒径控制在10μm以下,加入水作为球磨介质,加入占TiO2和Nb2O5粉末总质量0.6%的聚羧酸盐D305,将混合后的浆料球磨6h,随后在110℃下进行烘干研磨处理后,控制所述混合粉末颗粒的粒径为0.5μm~1μm之间;
(2)将步骤(1)所得的混合粉末颗粒以1.5℃/min升至600℃,保温1h;再以1.5℃/min升至950℃进行煅烧,保温5h,随后100目过筛处理;
(3)将步骤(2)中过筛后的粉末进行真空热压烧结,具体是以3℃/min升温至1180℃,压力17MPa,保温保压3h;随后以2.3℃/min降温至900℃,最后随炉冷却至室温,得到靶材半成品;
(4)将靶材进行表面机加工打磨,水割为所需尺寸,获得所述的高导电性氧化钛靶材。
所得的高导电性氧化钛靶材致密度可以达到97.7%,电阻率可达1~5x10-2Ω·cm,无开裂。
实施例5
一种高导电性氧化钛靶材的制备方法,如下:
(1)按照质量比为96:4选取TiO2和Nb2O5粉末原料,粉末粒径控制在10μm以下,加入水作为球磨介质,加入占TiO2和Nb2O5粉末总质量0.6%的聚羧酸盐D305,将混合后的浆料球磨6h,随后在120℃下进行烘干研磨处理后,控制所述混合粉末颗粒的粒径为0.5μm~1μm之间;
(2)将步骤(1)所得的混合粉末颗粒以1.5℃/min升至600℃,保温1h;再以1.5℃/min升至950℃进行煅烧,保温5h,随后100目过筛处理;
(3)将步骤(2)中过筛后的粉末进行真空热压烧结,具体是以3℃/min升温至1180℃,压力17MPa,保温保压3h;随后随炉冷却至室温,得到靶材半成品;
(4)将靶材进行表面机加工打磨,水割为所需尺寸,获得所述的高导电性氧化钛靶材。
所得的高导电性氧化钛靶材致密度可以达到97.9%,电阻率可达0.5~1x10-1Ω·cm,出现开裂。
实施例6
与实施例1基本相同,区别仅在于步骤(2)为:将步骤(1)所得的混合粉末颗粒以1.5℃/min升至550℃,保温1h;再以1.5℃/min升至800℃进行煅烧,保温5h,随后100目过筛处理。
所得的高导电性氧化钛靶材致密度可以达到98.0%,电阻率可达0.5~1Ω·cm,无开裂。
实施例7
与实施例1基本相同,区别仅在于步骤(3)为:将步骤(2)中过筛后的粉末进行真空热压烧结,具体是以2.5℃/min升温至1100℃,压力20MPa,保温保压4h;随后以5℃/min降温至800℃,最后随炉冷却至室温,得到靶材半成品。
所得的高导电性氧化钛靶材致密度可以达到98.4%,电阻率可达0.5~1Ω·cm,出现开裂。
对比例1
与实施例3基本相同,不同之处在于没有步骤(2)的煅烧处理。
所得的氧化钛靶材致密度可以达到95.0%,电阻率可达1~5x10-1Ω·cm,出现开裂。
实施例1~7及对比例1所制得的靶材性能测试数据见表1。
表1实施例1~7及对比例1所制得的靶材性能测试数据
Figure BDA0004110151980000081
由表1可以看出,相同烧结条件下,氧化铌掺的比例越高,电性越好,但是密度会越低。综合考量,电性达到1×10-1Ω·cm以下和密度达到97.7%以上为最佳效果。同时,烧结时降温速率和节奏的控制也是重要影响因素,同时可以防止靶材开裂。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本申请的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

Claims (10)

1.一种高导电性氧化钛靶材制备方法,其特征在于,包括如下步骤:
S1:将氧化铌和氧化钛粉末混合后加入分散剂和水,球磨得到混合浆料,将所述混合浆料进行烘干研磨处理,得到混合粉末颗粒;
S2:将步骤S1所得的混合粉末颗粒进行煅烧,随后过筛处理;
S3:将步骤S2过筛后的粉末进行真空热压烧结,之后随炉冷却至室温,获得靶材半成品;
S4:将步骤S3所得的靶材半成品进行机加工,表面打磨,尺寸修整,即得。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述氧化铌和氧化钛的质量比为(90~99):(1~10);
优选地,所述氧化铌和氧化钛的质量比为(94~96):(4~6)。
优选地,所述氧化铌和氧化钛粉末的纯度不小于99.99%,初始粒径为微米级。
3.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述分散剂为聚羧酸盐;
优选地,所述分散剂的加入量为所述氧化铌和氧化钛总质量的0.5~0.8%。
4.根据权利要求1所述的制备方法,其特征在于,步骤S1中,经所述烘干研磨处理后,控制所述混合粉末颗粒的粒径为0.5μm~1μm。
5.根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述煅烧的温度为800~1000℃,所述煅烧的时间为3~6h。
6.根据权利要求5所述的制备方法,其特征在于,步骤S2中,所述煅烧时,先将所述混合粉末颗粒升温至550~650℃,保温0.5~2h。
7.根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述真空热压烧结为以2.5~4℃/min升至1100~1200℃,保温2~4h;烧结压力10~20MPa,保压时间2~4h。
8.根据权利要求7所述的制备方法,其特征在于,步骤S3中,所述真空热压烧结后,随炉冷却之前,先以1.5~3℃/min冷却至800~900℃。
9.根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述机加工包括水割和磨床。
10.一种权利要求1~9任一项所述的制备方法制得的高导电性氧化钛靶材,其特征在于,以质量百分比计,所述靶材包括90~99%的TiO2和1~10%的Nb2O5,杂质含量≦0.01%;
优选地,所述靶材包括94~96%的TiO2和4~6%的Nb2O5,杂质含量≦0.01%。
CN202310204104.3A 2023-03-06 2023-03-06 一种高导电性氧化钛靶材及其制备方法 Pending CN116178006A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310204104.3A CN116178006A (zh) 2023-03-06 2023-03-06 一种高导电性氧化钛靶材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310204104.3A CN116178006A (zh) 2023-03-06 2023-03-06 一种高导电性氧化钛靶材及其制备方法

Publications (1)

Publication Number Publication Date
CN116178006A true CN116178006A (zh) 2023-05-30

Family

ID=86448582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310204104.3A Pending CN116178006A (zh) 2023-03-06 2023-03-06 一种高导电性氧化钛靶材及其制备方法

Country Status (1)

Country Link
CN (1) CN116178006A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058871A (ja) * 1999-08-23 2001-03-06 Kyocera Corp 導電性酸化チタン焼結体とその製造方法及びこれを用いたスパッタリングターゲット
CN101460652A (zh) * 2006-06-09 2009-06-17 W.C.贺利氏有限公司 具有基于TiO2的溅射材料的溅射靶及其制备方法
CN104557021A (zh) * 2015-01-14 2015-04-29 河北东同光电科技有限公司 一种高致密性二氧化钛靶材及其制备方法
CN109678492A (zh) * 2017-10-18 2019-04-26 深圳大学 一种Nb2O5掺杂TiO2的制备工艺
CN110627497A (zh) * 2019-10-25 2019-12-31 洛阳晶联光电材料有限责任公司 一种氧化钛铌靶材的生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058871A (ja) * 1999-08-23 2001-03-06 Kyocera Corp 導電性酸化チタン焼結体とその製造方法及びこれを用いたスパッタリングターゲット
CN101460652A (zh) * 2006-06-09 2009-06-17 W.C.贺利氏有限公司 具有基于TiO2的溅射材料的溅射靶及其制备方法
CN104557021A (zh) * 2015-01-14 2015-04-29 河北东同光电科技有限公司 一种高致密性二氧化钛靶材及其制备方法
CN109678492A (zh) * 2017-10-18 2019-04-26 深圳大学 一种Nb2O5掺杂TiO2的制备工艺
CN110627497A (zh) * 2019-10-25 2019-12-31 洛阳晶联光电材料有限责任公司 一种氧化钛铌靶材的生产方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘东亮等: "《材料科学基础》", 华东理工大学出版社, pages: 179 - 180 *
朱佐祥;彭伟;尚福亮;高玲;杨海涛;: "烧结温度对Nb_2O_5掺杂TiO_2靶材性能的影响", 功能材料, no. 03 *

Similar Documents

Publication Publication Date Title
KR950010806B1 (ko) 산화물 분말의 제조방법, 산화물 소결체와 그의 제조방법 및 그것들로 구성된 타겟
Li et al. Review of lead-free Bi-based dielectric ceramics for energy-storage applications
JP6963777B2 (ja) 結晶粒サイズが制御可能なitoセラミックターゲット材の調製方法
CN113563063B (zh) 高致密细晶粒的氧化锌掺杂氧化锡基陶瓷靶材及其制备方法
JP2007070188A (ja) 酸化亜鉛微粒子及びその集合体と分散溶液の製造方法
CN108002428B (zh) 一种蒸镀用ito颗粒的制备方法及由该方法制备的ito颗粒
JP5418751B2 (ja) ZnO蒸着材とその製造方法、およびそのZnO膜形成方法
CN111410530A (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
JP2009097090A (ja) ZnO蒸着材とその製造方法、およびそのZnO膜等
CN113292097A (zh) 一种制备高四方性钛酸钡粉体的方法
CN116178006A (zh) 一种高导电性氧化钛靶材及其制备方法
KR101240197B1 (ko) 열 안정성이 우수한 투명도전막, 투명도전막용 타겟 및 투명도전막용 타겟의 제조방법
CN111056849A (zh) 一种高分散反铁电亚微米陶瓷粉体及其制备方法
JP2009097089A (ja) ZnO蒸着材とその製造方法、およびそのZnO膜等
JPH02297813A (ja) 酸化物焼結体及びその製造方法並びにそれを用いたターゲット
CN110004416A (zh) 一种钼靶材的制备方法
JPH02297812A (ja) 酸化物焼結体及びその製造方法並びにそれを用いたターゲツト
CN114807870A (zh) 一种用于rpd的靶材、透明导电薄膜及其制备方法与应用
KR102253914B1 (ko) 금속산화물 타겟의 제조 방법, 및 이를 이용하여 제조된 다중 유전 박막
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
JP5954082B2 (ja) Ito粉末及びその製造方法
CN116606143B (zh) 一种压电陶瓷材料及其制备方法
CN117263671B (zh) 一种iwso靶材、其制备方法及由其制得的薄膜
JPH0729770B2 (ja) 酸化物粉末及びその製造方法
JP2005179096A (ja) アルミニウム置換スズ含有酸化インジウム粒子とその製造方法、ならびに該粒子を用いた導電性塗料、導電性塗膜および導電性シート

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 518132 first floor, No. 16, second industrial zone, Xiacun community, Gongming street, Guangming District, Shenzhen, Guangdong Province

Applicant after: Shenzhen Zhongchengda Applied Materials Co.,Ltd.

Address before: 518132 first floor, No. 16, second industrial zone, Xiacun community, Gongming street, Guangming District, Shenzhen, Guangdong Province

Applicant before: SHENZHEN APG MATERIAL TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information