CN111056849A - 一种高分散反铁电亚微米陶瓷粉体及其制备方法 - Google Patents

一种高分散反铁电亚微米陶瓷粉体及其制备方法 Download PDF

Info

Publication number
CN111056849A
CN111056849A CN201911295252.0A CN201911295252A CN111056849A CN 111056849 A CN111056849 A CN 111056849A CN 201911295252 A CN201911295252 A CN 201911295252A CN 111056849 A CN111056849 A CN 111056849A
Authority
CN
China
Prior art keywords
grinding
antiferroelectric
powder
submicron
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911295252.0A
Other languages
English (en)
Inventor
闫世光
曹菲
陈学锋
王根水
董显林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201911295252.0A priority Critical patent/CN111056849A/zh
Publication of CN111056849A publication Critical patent/CN111056849A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种高分散反铁电亚微米陶瓷粉体及其制备方法。所述高分散反铁电亚微米陶瓷粉体的制备方法是,首先采用高能研磨方法一次研磨,获得一次研磨亚微米粒度反铁电陶瓷粉体;再将一次研磨亚微米粒度反铁电陶瓷粉体进行二次研磨,获得高分散反铁电亚微米陶瓷粉体。

Description

一种高分散反铁电亚微米陶瓷粉体及其制备方法
技术领域
本发明属于功能陶瓷材料技术领域,具体涉及一种高分散反铁电亚微米陶瓷粉体及其制备方法。
背景技术
脉冲功率技术,是指把小功率的能量经长时间缓慢输入到储能设备中,然后在极短的时间内以极高功率向负载释放的电物理技术,在高新技术、民用等领域得到广泛的应用。储能电容器储能元件具有能量释放速度快、输出功率大、组合灵活、技术成熟、价格低廉等优势,成为目前应用最为广泛的储能元件。但是由于现有的有机膜电容器储能密度低,使得设备中储能电容器占设备总体积的80%,造成目前脉冲功率源的重量和体积都过于庞大。随着脉冲功率系统小型化、集成化、轻量化的发展趋势,开发高储能密度介质材料成为研究热点。
反铁电陶瓷在外电场下介电常数在随电场增大而增大,当电场升高到一定值后,发生反铁电-铁电相变(AFE-FE),材料的极化强度突然增大,介电常数(εr)达到峰值,正因为在高场下具有高极化强度,使得反铁电材料的理论储能密度较大(Wre~J/cm3数量级),成为脉冲电容器应用中十分重要的候选材料。目前常见的反铁电体系主要为(Pb,La)(Zr,Sn,Ti)O3(PLZST基)和(Pb,La)ZrO3(PLZT基),通常选择具有低Ti含量、高转折电场、高极化强度可获得更高的储能密度。对于高储能密度反铁电配方,采用固相合成-湿法研磨方法制备亚微米粉体过程中发现粉料烘干后出现严重的硬团聚现象,导致使用该粉体烧结的陶瓷围绕团聚颗粒产生很多裂纹,使陶瓷的耐电性能劣化,不能充分发挥高储能优势。因此,如何获得高分散、高性能反铁电亚微米粉体是制备高致密、高耐电强度陶瓷材料的重点。
发明内容
本发明目的在于提供一种高分散反铁电亚微米陶瓷粉体的制备方法,通过两步研磨法获得高分散反铁电亚微米陶瓷粉体,并获得高致密的反铁电陶瓷材料。
本发明提供一种高分散反铁电亚微米陶瓷粉体的制备方法,首先采用高能研磨方法一次研磨,获得一次研磨亚微米粒度反铁电陶瓷粉体;再将一次研磨亚微米粒度反铁电陶瓷粉体进行二次研磨,获得高分散反铁电亚微米陶瓷粉体。
较佳地,上述制备方法包括以下步骤:
(1)按照陶瓷材料的化学计量比称料,采用湿法球磨混料,烘干;
(2)将步骤(1)烘干的粉料煅烧合成;
(3)向步骤(2)煅烧合成后的粉料中添加烧结助剂,一次研磨后出料,烘干,得到一次研磨亚微米粒度反铁电陶瓷粉体;
(4)将步骤(3)烘干后的一次研磨亚微米粒度反铁电陶瓷粉体过筛,二次研磨后出料,烘干,得到高分散反铁电亚微米陶瓷粉体。
较佳地,所述陶瓷材料的化学通式为Pb1-1.5xLaxZr1-y-zTiySnzO3,其中,0.0≤x≤0.15,0≤y≤0.10,0.0≤z≤0.60;优选地,0.04≤x≤0.14,0≤y≤0.08,0≤z≤0.60。
较佳地,所述一次研磨方式为搅拌磨或者砂磨,研磨球为平均直径≤2mm的氧化锆球,研磨介质为去离子水或者乙醇。
较佳地,所述二次研磨方式为搅拌磨,研磨球为平均直径≤2mm的氧化锆球,研磨介质为乙醇。
较佳地,所述二次研磨转速不高于一次研磨转速。
较佳地,所述二次研磨的研磨时间≤30min。
较佳地,所述一次研磨反铁电陶瓷粉体的中位粒径D50≤0.7μm。
本发明的有益效果:(1)通过本发明提出的二次研磨方法,可解决传统固相合成-湿法研磨制备Pb1-1.5xLaxZr1-y-zTiySnzO3反铁电亚微米粉产生硬团聚问题,获得高分散反铁电亚微米粉体;(2)采用该粉体制备的反铁电陶瓷微观结构致密,耐电强度高,可充分发挥反铁电材料的高储能特性。
附图说明
图1是比较例1经一次研磨后粉体压制素坯的断面扫描电镜图片,其中图A是×100倍放大图,图B是×1000倍放大图。
图2是比较例1经一次研磨后粉体烧结陶瓷的断面扫描电镜图片。
图3是实施例1经二次研磨后粉体压制素坯的断面扫描电镜图片。
图4是实施例1经二次研磨后粉体烧结陶瓷的断面扫描电镜图片。
具体实施方式
以下通过下述实施方式进一步说明本发明。应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明公开了高分散反铁电亚微米陶瓷粉体的制备方法,经固相法合成、高能研磨、烘干后获得反铁电亚微米粉体,进一步将粉体二次研磨烘干后获得高分散反铁电亚微米粉。本发明先采用高能研磨方法一次研磨获得反铁电亚微米粉,再将亚微米粉在乙醇中进行二次研磨烘干后获得高分散的反铁电粉体,克服了反铁电材料经第一次研磨烘干过程中亚微米粉体的严重硬团聚问题,通过二次研磨显著提高烘干后粉体的分散性。本发明的优势在于采用该高分散反铁电亚微米粉体制备的陶瓷样品可消除因团聚粉体烧结收缩不均匀引起的裂纹。
本发明的制备方法可以通过以下技术方案实现:
首先,通过固相合成法制备陶瓷粉体。上述高分散反铁电陶瓷粉体的化学组成符合化学通式:Pb1-1.5xLaxZr1-y-zTiySnzO3,0.0≤x≤0.15,0≤y≤0.10,0.0≤z≤0.60。优选地,0.04≤x≤0.14,0≤y≤0.08,0≤z≤0.60。上述陶瓷粉体可以Pb3O4、La2O3、ZrO2、TiO2、SnO2等氧化物为原料。
该固相法合成可包括以下步骤:(1)以纯度高于99%的Pb3O4、La2O3、ZrO2、TiO2、SnO2为原料,并按照Pb1-1.5xLaxZr1-y-zTiySnzO3的化学计量比称料。优选地,Pb3O4过量0-5%,可补充合成及烧结时Pb元素挥发引起的晶格缺陷。(2)采用湿法滚筒球磨混料,以氧化锆球作为球磨介质,以乙醇作为研磨添加剂,出料,烘干。一些实施方式中,原料:氧化锆球:乙醇的重量比可为1:5:0.8。又,上述球磨时间可为12-24h。(3)将烘干的粉料过筛后在850℃-1000℃煅烧合成1-4h。
然后,向固相合成得到的陶瓷粉体中添加烧结助剂,采用高能研磨方法一次研磨获得反铁电亚微米粉体。上述烧结助剂可为PbO-B2O3-SiO2,或者PbO-B2O3体系。上述烧结助剂的添加重量为固相合成得到的陶瓷粉体的1-4%。一次研磨使用高能研磨方法,可采用研磨能效高的搅拌磨或者砂磨工艺,以获得D50≤0.7μm的亚微米粉体。研磨时间和研磨转速根据研磨设备限制及最终的粒度需求确定。具体地,一次研磨的转速以及时间与研磨方式和研磨设备的体积相关。所述一次研磨若采用搅拌磨则转速可为40~500转/分钟,若采用砂磨则转速可为1000~3000转/分钟。如,1L容量搅拌磨转速可达到400-500转/分钟,1L容量的砂磨机转速可达到1000-2300转/分钟。所述一次研磨的研磨时间若采用搅拌磨可为2-5h,若采用砂磨可为0.5~3h。
一次研磨中,研磨球可为平均直径≤2mm的氧化锆球,研磨介质为去离子水或者乙醇。研磨后出料、烘干、过40~80目筛。一次研磨后的反铁电陶瓷粉体采用激光粒度分析其中位粒径D50≤0.7μm。
接着,将一次研磨获得的反铁电亚微米粉进行二次研磨烘干后获得高分散的反铁电粉体。二次研磨目的和效果为研磨打开团聚颗粒,获得“高分散”的粉体,不是为了通过研磨降低粉体粒度。从研磨分散效率考虑二次研磨可采用搅拌磨工艺。研磨球为平均直径≤2mm的氧化锆球,鉴于相较于水,乙醇作为研磨介质的极性较弱,对亚微米粉体的分散效果更佳,故研磨介质可为乙醇。考虑二次研磨目的为打散团聚体,应尽量避免对粉体颗粒的进一步研磨细化,故研磨转速和时间应严格控制,研磨转速不高于一次研磨转速,目的提高粉体的分散性。限定二次研磨的转速不高于一次研磨的转速,该限定旨在减小二次研磨对粒度的影响,突出了二次研磨目的和效果为研磨打开团聚颗粒,不是为了进一步研磨降低粉体粒度。优选地,上述二次研磨的研磨时间优选≤30min。控制二次研磨的时间在上述范围内,是为了减小二次研磨对粒度的影响。研磨后出料、烘干、过40-80目筛。所述二次研磨反铁电陶瓷粉体的中位粒径接近一次研磨后粉体中位粒径。
本发明的两个关键词为“高分散”和“亚微米”,本发明所提及的两次研磨过程分别对应这两个关键词,需通过本发明中涉及的第一次湿法高能研磨(即搅拌磨或者砂磨)才能获得“亚微米”粉体,但是这种亚微米粉体分散性差,烘干时发生团聚,且这种严重的团聚仅会在“亚微米”粉体烘干中出现,需通过本发明的二次研磨将团聚体打散,形成“高分散”粉体。因此,第一次研磨重在细化颗粒(即一次研磨目的和效果为获得“亚微米”粉体),第二次研磨重在磨碎团聚体,作用不同,同时为了防止第二次研磨中出现细化颗粒的影响,本发明控制了二次研磨的时间和转速。中国专利201110348574.4中所提及的研磨基于本领域技术人员的理解应该为研钵干法研磨,研磨后的颗粒较粗,不属于本发明中的“亚微米”粉体,对比本发明的第一次研磨,也不属于同一级别的研磨效果。因此本发明的两次研磨与中国专利201110348574.4中的两次研磨实施效果和实施目的都有本质的区别。
上述方法中,在本发明未作具体说明的情况下,烘干温度不受限制,例如可为70℃。
为了进行陶瓷样品的测试,将二次研磨获得的反铁电粉体制备成陶瓷。例如,先将粉体在120~160MPa下压制成陶瓷素坯;将素坯置于氧化铝坩埚中,四周采用同组分反铁电陶瓷粉体覆盖,在1050℃-1200℃下烧结,升温速度2-5℃/min,保温1-4h,形成陶瓷样品。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
比较例1
所述的反铁电陶瓷材料化学组成:Pb1-1.5xLaxZr1-y-zTiySnzO3,x=0.06,y=0.0,z=0.55,采用传统固相合成并一步湿法研磨制备反铁电粉体及陶瓷包括以下步骤:
(1)以纯度高于99%的Pb3O4、La2O3、ZrO2、TiO2、SnO2为原料;按照上述化学式的化学计量比称料,采用湿法滚筒球磨混料,以氧化锆球作为球磨介质,按照料:球磨介质:乙醇=1:5:0.8的重量比混合24h,在70℃下烘干;
(2)将烘干的粉料在1000℃下煅烧合成2h;
(3)将煅烧后的粉料取100-130g,按照重量百分比添加2%的烧结助剂,以2mm氧化锆球作为磨球取1.0~1.3kg,采用搅拌磨细磨,搅拌磨腔体1L,乙醇作为研磨取100~120mL,转速400转下研磨3h后出料,在70℃下烘干得到一次研磨反铁电陶瓷粉体,采用激光粒度测试粉体粒度如表1所示,中位粒径为0.502μm;
(4)将烘干后粉体过60目筛,在150MPa下压制成
Figure BDA0002320341880000051
陶瓷素坯,取素坯断面做扫描电子显微镜分析,如图1所示,明显存在高致密和低致密区域,其中高致密区域为硬团聚颗粒;
(5)将素坯置于氧化铝坩埚中,四周采用同组分反铁电陶瓷粉体覆盖,在1150℃下烧结,升温速度2℃/min,保温2h,形成陶瓷样品。采用扫描电子显微镜观察陶瓷断面,如图2所示,因图1中高致密区域代表的硬团聚颗粒与周围的低致密区域在烧结过程中收缩率存在差异,致使烧结后在二者界面处存在大量条状裂纹。
实施例1
所述的反铁电陶瓷材料化学组成:Pb1-1.5xLaxZr1-y-zTiySnzO3,x=0.06,y=0.0,z=0.55,采用传统固相合成-两步湿法研磨制备反铁电粉体及陶瓷包括以下步骤:
(1)以纯度高于99%的Pb3O4、La2O3、ZrO2、TiO2、SnO2为原料;按照上述化学式的化学计量比称料,采用湿法滚筒球磨混料,以氧化锆球作为球磨介质,按照料:球磨介质:乙醇=1:5:0.8的重量比混合24h,在70℃下烘干;
(2)将烘干的粉料在1000℃下煅烧合成2h;
(3)将煅烧后的粉料取100-130g,按照重量百分比添加2%的烧结助剂,以2mm氧化锆球作为磨球取1.0~1.3kg,采用搅拌磨细磨,搅拌磨腔体1L,乙醇作为研磨取100~120mL,转速400转下研磨3h后出料,在70℃下烘干得到一次研磨反铁电陶瓷粉体;
(4)将烘干后粉体过60目筛,以2mm氧化锆球作为磨球取1.0~1.3kg,采用搅拌磨细磨,搅拌磨腔体1L,乙醇作为研磨取90~110mL,转速400转下研磨20min后出料,在70℃下烘干得到二次研磨反铁电陶瓷粉体,采用激光粒度测试粉体粒度如表1所示,中位粒径为0.481μm;
表1实施例1一次研磨和二次研磨后反铁电粉体的激光粒度分布
D10 D50 D90
一次研磨 0.310μm 0.502μm 1.330μm
二次研磨 0.308μm 0.481μm 1.279μm
(5)将烘干后粉体过60目筛,在150MPa下压制成
Figure BDA0002320341880000061
陶瓷素坯,取素坯断面做扫描电子显微镜分析,如图3所示,相较于图1,图3微观结构均匀致密;
(6)将素坯置于氧化铝坩埚中,四周采用同组分反铁电陶瓷粉体覆盖,在1150℃下烧结,升温速度2℃/min,保温2h,形成陶瓷样品。采用扫描电子显微镜观察陶瓷断面,如图4所示,微观结构均匀致密,原图2所示的大量裂纹消失。

Claims (8)

1.一种高分散反铁电亚微米陶瓷粉体的制备方法,其特征在于,首先采用高能研磨方法一次研磨,获得一次研磨亚微米粒度反铁电陶瓷粉体;再将一次研磨亚微米粒度反铁电陶瓷粉体进行二次研磨,获得高分散反铁电亚微米陶瓷粉体。
2.根据权利要求1所述的制备方法,其特征在于,包括以下步骤:
(1)按照陶瓷材料的化学计量比称料,采用湿法球磨混料,烘干;
(2)将步骤(1)烘干的粉料煅烧合成;
(3)向步骤(2)煅烧合成后的粉料中添加烧结助剂,一次研磨后出料,烘干,得到一次研磨亚微米粒度反铁电陶瓷粉体;
(4)将步骤(3)烘干后的一次研磨亚微米粒度反铁电陶瓷粉体过筛,二次研磨后出料,烘干,得到高分散反铁电亚微米陶瓷粉体。
3.根据权利要求2所述的制备方法,其特征在于,所述陶瓷材料的化学通式为Pb1- 1.5xLaxZr1-y-zTiySnzO3,其中,0.0≤x≤0.15,0≤y≤0.10,0.0≤z≤0.60;优选地,0.04≤x≤0.14,0≤y≤0.08,0≤z≤0.60。
4.根据权利要求1-3中任一项所述的制备方法,其特征在于,所述一次研磨方式为搅拌磨或者砂磨,研磨球为平均直径≤2mm的氧化锆球,研磨介质为去离子水或者乙醇。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于,所述二次研磨方式为搅拌磨,研磨球为平均直径≤2mm的氧化锆球,研磨介质为乙醇。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于,所述二次研磨转速不高于一次研磨转速。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于,所述二次研磨的研磨时间≤30min。
8.根据权利要求1-7中任一项所述的制备方法,其特征在于,所述一次研磨反铁电陶瓷粉体的中位粒径D50≤0.7μm。
CN201911295252.0A 2019-12-16 2019-12-16 一种高分散反铁电亚微米陶瓷粉体及其制备方法 Pending CN111056849A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911295252.0A CN111056849A (zh) 2019-12-16 2019-12-16 一种高分散反铁电亚微米陶瓷粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911295252.0A CN111056849A (zh) 2019-12-16 2019-12-16 一种高分散反铁电亚微米陶瓷粉体及其制备方法

Publications (1)

Publication Number Publication Date
CN111056849A true CN111056849A (zh) 2020-04-24

Family

ID=70301130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911295252.0A Pending CN111056849A (zh) 2019-12-16 2019-12-16 一种高分散反铁电亚微米陶瓷粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN111056849A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995391A (zh) * 2020-08-11 2020-11-27 同济大学 高储能密度电容器用低烧反铁电陶瓷材料及其制备方法
CN115368144A (zh) * 2022-07-11 2022-11-22 苏州隐冠半导体技术有限公司 一种压电陶瓷超细粉体、制备方法及压电陶瓷膜片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985716A (zh) * 2010-12-30 2011-03-16 九江学院 一种多尺度双界面金属陶瓷粉末的制备方法
CN103466645A (zh) * 2013-09-27 2013-12-25 上海冠旗电子新材料股份有限公司 湿法研磨纳米级二氧化硅制备方法
US20150131200A1 (en) * 2012-04-10 2015-05-14 Epcos Ag Ceramic material and capacitor comprising the ceramic material
CN104692799A (zh) * 2015-03-12 2015-06-10 中国科学院上海硅酸盐研究所 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
KR20180116728A (ko) * 2017-04-14 2018-10-25 인하대학교 산학협력단 강유전체-반강유전체 세라믹 복합체의 제조방법
CN110467457A (zh) * 2019-08-14 2019-11-19 同济大学 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985716A (zh) * 2010-12-30 2011-03-16 九江学院 一种多尺度双界面金属陶瓷粉末的制备方法
US20150131200A1 (en) * 2012-04-10 2015-05-14 Epcos Ag Ceramic material and capacitor comprising the ceramic material
CN103466645A (zh) * 2013-09-27 2013-12-25 上海冠旗电子新材料股份有限公司 湿法研磨纳米级二氧化硅制备方法
CN104692799A (zh) * 2015-03-12 2015-06-10 中国科学院上海硅酸盐研究所 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
KR20180116728A (ko) * 2017-04-14 2018-10-25 인하대학교 산학협력단 강유전체-반강유전체 세라믹 복합체의 제조방법
CN110467457A (zh) * 2019-08-14 2019-11-19 同济大学 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李凤生,杨毅等编著: "《纳米功能复合材料及应用》", 1 July 2003, 国防工业出版社 *
黄水根等编著: "《多元氧化锆 (ZrO2) 基陶瓷的相图计算和材料制备》", 30 December 2003 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995391A (zh) * 2020-08-11 2020-11-27 同济大学 高储能密度电容器用低烧反铁电陶瓷材料及其制备方法
CN115368144A (zh) * 2022-07-11 2022-11-22 苏州隐冠半导体技术有限公司 一种压电陶瓷超细粉体、制备方法及压电陶瓷膜片

Similar Documents

Publication Publication Date Title
Zhang et al. Sinterability and ionic conductivity of coprecipitated Ce0. 8Gd0. 2O2− δ powders treated via a high-energy ball-milling process
CN107585768B (zh) 一种氧化-还原法制备超细碳化钨粉末的方法
CN111116192B (zh) 一种微波铁氧体材料、制备方法及微波通信器件
CN111056849A (zh) 一种高分散反铁电亚微米陶瓷粉体及其制备方法
CN109321768A (zh) 一种ZrO2-Y2O3颗粒增强钼合金及其制备方法、复合粉体及其制备方法
CN104860672A (zh) 一种高介微波陶瓷介质材料及其制备方法
CN111116193B (zh) 一种微波铁氧体材料及其制备方法和器件
CN109485420B (zh) 一种提高陶瓷纳米粉体的湿法成型性及烧结性的方法
CN109650875B (zh) 一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用
CN116283251B (zh) 一种氧化铝陶瓷及其制备方法与应用
TWI813749B (zh) 固體氧化物型燃料電池用電解質材料及其前驅體的製造方法
CN108863362B (zh) 一种纳米微波介质陶瓷材料及其制备方法
CN105777108B (zh) 一种高介电常数的纳米介质陶瓷及其制备方法
CN112390637A (zh) 无钇配方的高介电常数微波铁氧体材料及其制备方法和器件
CN115536377B (zh) 一种黑滑石矿质微波介质陶瓷材料及其制备方法
CN113683418B (zh) 一种用于热喷涂的钽酸盐球形粉体CaMoTa2O9及其制备方法
CN111217608A (zh) 一种氧化物陶瓷的低温烧结方法
CN101817686A (zh) 一种掺杂改性的钛酸钡复合粒子及其制备方法
CN112225560B (zh) 一种固相法制备低热导高温热障陶瓷CaMoNb2O9的方法
JP3336851B2 (ja) Ni/YSZサーメット原料粉末の製造方法
JPH02297812A (ja) 酸化物焼結体及びその製造方法並びにそれを用いたターゲツト
Solodkyi et al. Effect of grain size on the electrical properties of samaria-doped ceria solid electrolyte
JPH02297813A (ja) 酸化物焼結体及びその製造方法並びにそれを用いたターゲット
CN104528817A (zh) 钛酸铝粉体及其制备方法
CN112441830A (zh) 一种高品质因数钇掺杂氧化锆微波介质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination