CN115159476B - 一种钠电用三维多孔Fe3N/碳复合材料的制备方法 - Google Patents

一种钠电用三维多孔Fe3N/碳复合材料的制备方法 Download PDF

Info

Publication number
CN115159476B
CN115159476B CN202210828616.2A CN202210828616A CN115159476B CN 115159476 B CN115159476 B CN 115159476B CN 202210828616 A CN202210828616 A CN 202210828616A CN 115159476 B CN115159476 B CN 115159476B
Authority
CN
China
Prior art keywords
dimensional porous
carbon composite
composite material
temperature
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210828616.2A
Other languages
English (en)
Other versions
CN115159476A (zh
Inventor
陈琛
罗永松
胡启临
薛红宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyang Normal University
Original Assignee
Xinyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyang Normal University filed Critical Xinyang Normal University
Priority to CN202210828616.2A priority Critical patent/CN115159476B/zh
Publication of CN115159476A publication Critical patent/CN115159476A/zh
Application granted granted Critical
Publication of CN115159476B publication Critical patent/CN115159476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0622Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

“一种钠电用三维多孔Fe3N/碳复合材料的制备方法”属于钠离子电池领域,该复合材料为三维多孔结构。Fe3N/碳复合材料采用溶胶凝胶和退火处理的方法,以PS球为造孔剂,PVP为碳源,九水硝酸铁为铁源,尿素为氮源,经低温烧结合成了三维多孔Fe3N/碳复合材料。该材料具有纯度高和三维连通多孔的特性。将其作为钠电的负极材料,进行电化学性能测试,其初始比容量可达635.9mAh/g(0.1A/g),经300次循环后比容量仍有360.5mAh/g(0.4A/g)。本发明制备的三维多孔Fe3N/碳复合电极材料具有比容量高和循环性能好,且制备方法极大的降低了现有的烧结温度,制备工艺简单等优势。

Description

一种钠电用三维多孔Fe3N/碳复合材料的制备方法
技术领域
一种钠电用三维多孔Fe3N/碳复合材料的制备方法属于钠离子电池领域。
技术背景
近年来,随着环保意识的提升,和国家碳中和政策的出台,新能源如风能、太阳能、潮汐能等受到广泛的关注。由于受限于天气和地域等因素,对新能源的实际应用产生不利的影响。随着二次电池的出现和规模化应用,可以将风能等新能源产生的电能储存起来,再利用电网稳定的输送给用户,该方式有效的解决了新能源的困境,极大的促进了新能源的实际应用。由于受到锂资源储量、分布和价格的影响,导致锂电池在大规模储能应用上受到一定的限制。特别是新能源电动汽车的出现与普及,更进一步加剧了锂资源的消耗,导致价格增高。与锂相反,钠资源在我国储量相对较高,价格相对较低,加之钠与锂又属于同主族元素,性质相近,所以钠离子电池更适合于大规模的储能应用。因此钠离子电池的研发,已成为储能领域中热点研究方向之一。
电极材料是电池性能的主要影响因素之一,特别是高性能负极材料的研发是推动钠离子电池实际应用的关键因素之一。过渡金属氮化物,特别是过渡金属氮化铁,具有理论比容量高和电子电导率高等优点,加之铁资源丰富、价格相对较低,受到广泛的关注。然而,氮化铁极易被空气氧化,且在钠离子的嵌入和脱出过程中,体积膨胀较为严重,虽然纳米化可以缓解氮化铁体积膨胀的问题,可是被氧化的程度也会加深。现有的方法是在纳米化氮化铁的同时包覆碳层,而其中基于三维多孔结构制备的Fe3N/C复合材料由于具有良好的电化学性能,受到广泛的关注。现有已报道的文献,主要是采用盐模板辅助的高温处理的方法,其中多数温度在650℃以上,而且后续还需多步水洗等步骤,甚至部分还需要冷干处理的步骤。现有的制备过程温度较高,且较为繁琐,进而可能导致产物中存在杂相,另外,部分制备方法对设备可能有一定要求,导致成本较高,不利于实际产业化规模制备。
发明内容
本发明提供一种烧结温度较低、制备工艺简单、周期短、可以批量制备的方法,制备的三维多孔结构的Fe3N/C复合材料纯度高,将其作为钠离子电池负极时,具有良好的电化学性能。
本发明提供的用于钠电的三维多孔Fe3N/碳复合材料的制备方法,它包括以下步骤:
a)在100mL烧杯中,加入去离子水和聚苯乙烯球;经过60min超声处理后,先后加入聚乙烯吡咯烷酮和九水硝酸铁;搅拌30min后,边搅拌边60℃加热处理,直至溶液变为凝胶状;
b)将该凝胶转移至瓷舟中并放置于管式炉中,通入5%的氩氢混合气,从室温升温至预定温度,并保温处理一段时间后,随炉冷却降至室温;
c)将粉末与尿素混合后,再次转移至管式炉中,升温至特定温度,在氮气气氛条件下,保温处理一段时间后,随炉冷却降至室温,可获得三维多孔结构的Fe3N/C复合材料;
d)将上述三维多孔Fe3N/碳复合材料作为电极材料应用于钠离子电池中。
所述步骤a)中去离子水、直径约为190nm的聚苯乙烯球、分子量为1300000的聚乙烯吡咯烷酮和九水硝酸铁的加入量分别为40.0mL、0.38g、0.38g、0.57g;
所述步骤b)中在氩氢混合气的通气速率为22sccm的条件下,按照4℃/min的升温速率,从室温升至500℃,并保温处理50min;
所述步骤c)中在粉末与尿素的质量比为1比32的条件下,从室温升至500℃,保温处理40min。
所述步骤d)在钠离子电池循环性能测试中,在0.1A/g时其初始比容量可达635.9mAh/g,可逆容量为430mAh/g;在0.4A/g时,电极经300次循环后容量仍有360.5mAh/g,容量保持率约为97.3%。
该方法与其它制备三维多孔结构的Fe3N/C复合材料方法相比,极大的降低了烧结温度,简化了制备工艺,周期短,适合规模化批量生产;更为重要的是将纯相的三维多孔Fe3N/碳复合材料用于钠离子电池时,具有较高的比容量和循环性能。
采用Bruker Advance D8 X射线粉末衍射仪(Cu Kα辐射,2θ=10-80°)测定所制备材料的结构。采用Hitachi S-4800扫描电子显微镜观察所制备材料的表面形貌。采用ASAP2460全自动物理化学吸附仪测定材料的孔径分布,采用电化学工作站(CHI660E)和新威(Neware)电池测试系统进行电池性能的测试。
由图1可知,所制备的三维多孔结构的Fe3N/C复合材料样品为纯相的六方结构(JCPDS card No.01-1236),其中除了Fe3N和碳峰以外,并未检测其它的杂峰。由图2可知所得到的产物存在着大孔和介孔,且相互连通,此外Fe3N纳米颗粒均匀的分布在这些孔的表面。由图3可知,介孔的孔径分别约为4nm和40nm左右,进一步说明了介孔的存在。由图4可知,三维多孔结构的Fe3N/C复合材料作为钠离子电池电极材料进行循环伏安测试时,从第二圈起至第三圈循环曲线都基本重合,说明具有稳定的电化学性能。由图5可知,三维多孔结构的Fe3N/C复合材料在0.1A/g时,初始储钠比容量可达635.9mAh/g,可逆容量为430mAh/g;在0.4A/g时,电极经300次循环后容量仍有360.5mAh/g,容量保持率约为97.3%。
附图说明
图1是产物的X射线衍射图。
图2是产物的扫描电镜图。
图3是产物的孔径分布图。
图4是实施方案制得的三维多孔Fe3N/C复合材料的CV曲线图。
图5是实施方案制得的三维多孔Fe3N/C复合材料的循环曲线图。
具体实施方式
1.在100mL烧杯中,加入40.0mL去离子水和0.38g聚苯乙烯球(直径约为190nm);经过60min超声处理后,再加入0.38g聚乙烯吡咯烷酮(分子量为1300000)和0.57g九水硝酸铁;接着搅拌30min后,边搅拌边60℃加热处理,直至溶液变为凝胶状;
2.将该凝胶转移至瓷舟中并放置于管式炉中,通入5%的氩氢混合气,通气速率为22sccm,按照4℃/min的升温速率,从室温升温至500℃,在该温度和氩氢混合气氛中,保温处理50min,然后随炉冷却降至室温;
3.将2中烧结所得的粉末与尿素按照质量比为1比32的比例,在瓷舟中简单混合后,再次转移至管式炉中,在氮气气氛条件下,按照5℃/min的升温速率,从室温升温至500℃,在该温度下,保温处理40min后,随炉冷却降至室温,便可获得三维多孔Fe3N/碳复合材料(见图1和2)。

Claims (2)

1.一种钠电用三维多孔Fe3N/碳复合材料的制备方法,包括以下步骤:
a)在100mL烧杯中,先后加入去离子水和聚苯乙烯球;经过60min超声处理后,先后加入聚乙烯吡咯烷酮和九水硝酸铁;搅拌30min后,边搅拌边60℃加热处理,直至溶液变为凝胶状;
b)将该凝胶转移至瓷舟中并放置于管式炉中,升温至预定温度,在5%氩氢混合气气氛下,保温处理一段时间后,随炉冷却降至室温;
c)将粉末与尿素混合后,再次转移至管式炉中,升温至特定温度,在氮气气氛条件下,保温处理一段时间后,随炉冷却降至室温,可获得三维多孔Fe3N/碳复合材料;
所述步骤b)中在氩氢混合气的通气速率为22sccm的条件下,按照4℃/min的升温速率,从室温升至500℃,保温处理50min;
所述步骤c)中在粉末与尿素的质量比为1比32的条件下,从室温升至500℃,保温处理40min。
2.根据权利要求1所述一种钠电用三维多孔Fe3N/碳复合材料的制备方法,其特征在于,所述步骤a)中聚苯乙烯球、分子量为1300000的聚乙烯吡咯烷酮、九水硝酸铁和去离子水的加入量分别为0.38g、0.38g、0.57g和40.0mL,且聚苯乙烯球的直径为190nm。
CN202210828616.2A 2022-07-07 2022-07-07 一种钠电用三维多孔Fe3N/碳复合材料的制备方法 Active CN115159476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210828616.2A CN115159476B (zh) 2022-07-07 2022-07-07 一种钠电用三维多孔Fe3N/碳复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210828616.2A CN115159476B (zh) 2022-07-07 2022-07-07 一种钠电用三维多孔Fe3N/碳复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN115159476A CN115159476A (zh) 2022-10-11
CN115159476B true CN115159476B (zh) 2024-04-02

Family

ID=83495029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210828616.2A Active CN115159476B (zh) 2022-07-07 2022-07-07 一种钠电用三维多孔Fe3N/碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN115159476B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260542A (zh) * 2011-06-21 2011-11-30 太原理工大学 一种三维有序大孔氧化铁脱硫剂的制备方法
CN107068994A (zh) * 2017-01-17 2017-08-18 陕西科技大学 一种氮掺杂的碳负载氮化铁复合物钠离子电池负极材料的制备方法
CN113198508A (zh) * 2021-04-30 2021-08-03 浙江工业大学 一种负载型铁-氮-碳复合材料及其在处理染料废水中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260542A (zh) * 2011-06-21 2011-11-30 太原理工大学 一种三维有序大孔氧化铁脱硫剂的制备方法
CN107068994A (zh) * 2017-01-17 2017-08-18 陕西科技大学 一种氮掺杂的碳负载氮化铁复合物钠离子电池负极材料的制备方法
CN113198508A (zh) * 2021-04-30 2021-08-03 浙江工业大学 一种负载型铁-氮-碳复合材料及其在处理染料废水中的应用

Also Published As

Publication number Publication date
CN115159476A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Ma et al. Fabrication of FeF 3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries
CN103427073B (zh) 一种作为锂电池负极材料的介孔Si/C复合微球的制备方法
CN105460917B (zh) 一种具有分级结构的氮掺杂碳纳米管及制备方法
CN105932234A (zh) 一种钠离子电池负极材料用掺杂多孔碳球及其制备方法
CN108258210B (zh) 一种3d多孔石墨烯/碳纳米管-纳米硅气凝胶锂离子电池负极材料的制备方法
CN103715430A (zh) 三维石墨烯网状结构负载碳包覆锡纳米材料及制备与应用
CN103078087B (zh) 一种钛酸锂/碳纳米管复合负极材料的制备方法
CN107146888B (zh) 一种聚合物修饰的三维有序介孔硅负极材料及其制备方法
CN107565103B (zh) 一种多孔硅/石墨烯复合材料及其制备方法和用途
CN111293308B (zh) 一种负极材料、负极、钾离子电池及制备方法
CN112850708A (zh) 高比表面积氮掺杂多孔碳材料的制备方法及应用
CN111883753A (zh) 一种分级壳核结构的MoS2-C复合多孔微球的负极活性材料
CN112072101A (zh) 一种硼掺杂MXene材料及其制备方法
CN106206078B (zh) 一种超级电容器的制作方法
CN105489885B (zh) 一种多孔微米棒状四氧化三钴及其制备方法与应用
CN114506836A (zh) 一种具有两段吸附特征的硬碳材料及其制备方法和应用
CN113644269B (zh) 氮掺杂硬碳材料的制备方法及其产品和应用
CN108598417B (zh) 一种导电炭黑修饰二氧化硅气凝胶负载硫复合正极材料及其制备方法
CN109473634B (zh) 固相共热合成二硒化钼/氮掺杂碳棒的方法
CN116885144B (zh) 一种用于锂电池负极材料的硅碳复合材料及其制备方法
CN110828819B (zh) 一种钾离子电池用磁黄铁矿型硫化铁负极材料及制备方法
CN117316651A (zh) 一种定向修饰功能化多孔碳材料及其制备方法和在超级电容器中的应用
CN115159476B (zh) 一种钠电用三维多孔Fe3N/碳复合材料的制备方法
CN115472803B (zh) 一种基于TMDs的锌离子电池正极材料的制备方法
CN114122371B (zh) 一种锂离子电池富孔硅碳负极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant