CN1150799C - 与数字放大器结合的高保真和高效率的模拟放大器 - Google Patents

与数字放大器结合的高保真和高效率的模拟放大器 Download PDF

Info

Publication number
CN1150799C
CN1150799C CNB988001721A CN98800172A CN1150799C CN 1150799 C CN1150799 C CN 1150799C CN B988001721 A CNB988001721 A CN B988001721A CN 98800172 A CN98800172 A CN 98800172A CN 1150799 C CN1150799 C CN 1150799C
Authority
CN
China
Prior art keywords
amplifier
digital
voltage
output
analogue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB988001721A
Other languages
English (en)
Other versions
CN1217864A (zh
Inventor
丁南声
曹圭亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of CN1217864A publication Critical patent/CN1217864A/zh
Application granted granted Critical
Publication of CN1150799C publication Critical patent/CN1150799C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2173Class D power amplifiers; Switching amplifiers of the bridge type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/301Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a coil
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/432Two or more amplifiers of different type are coupled in parallel at the input or output, e.g. a class D and a linear amplifier, a class B and a class A amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供了一种与数字放大器组合的音频模拟放大器,它既有优良的线性度又有高效率。模拟—数字组合放大器包括一用作独立电压源的A类、B类或AB类的模拟放大器,以及一用作其从属电流源的D类数字放大器,其中的模拟放大器与数字放大器是相互连接的。

Description

与数字放大器结合的高保真和高效率的模拟放大器
本发明涉及一种放大器,更具体地涉及一种与数字放大器结合的既有优良的线性度又有高效率的音频模似放大器。
按照线性电路的技术,诸如A类、B类或是AB类的常规音频模拟放大器都有极佳的失真特性,但表现出相当低的效率和庞大的体积。而在另一方面,D类的数字放大器,它采用了一脉宽调制(PWM)开关,却有高效率和小的体积但其保真度较差。
到了目前所谓绿色环境的年代,特别在包括单频放大器在内的电子产品中,为降低能量消耗需要开发更高效率的技术。
在常规情况下,在对功耗并非特别重视或有技术困难的情况下,都是把线性度作为音频放大器产品设计的重要困素,而不是效率。其结果是,迄今几乎用于音频放大器的所有放大器都是建立在具有优良失真特性的模拟线性电路基础上的。
然而,尽管采用A类、B类或AB类电路的音频放大器具有上述的优良线性特性,但它不可避免地在高功率的放大器中产生大量的功耗。因而,在典型的模拟音频放大器中,由于除转换成音频的声音能量之外的大部分输出都转换成热能并耗散,这就造成由双极晶体管、场效应晶体管等等组成的功率晶体管群的温度增高,需有由铝、铜等一类金属制成的苯重的散热片或是带有噪声的冷却扇用于冷却,这样就不情愿地去增大功率放大器系统的尺寸和重量。人所共知的是,由于A类放大器经常工作在有源区,它同时具有最佳失真特性和最差效率的优点和缺点。
这样,就希望能提供一种既有优良的线性度又有高效率的放大器,但却难以兼备。为了解决这一问题,迄今已经研究过由所谓推挽电路组成的B类放大器。推挽电路包括以发射极跟随方式相互连接的一对晶体管,它对节约能源非常有用。从理论上可以获得高达78.5%的高效率,但在小信号的级别中在两个晶体管之间仍然存在不符合要求的交叉失真问题。此外,尽管在B类放大器中通过加一适当的负反馈可以改进一些小信号级别中的交叉失真,但在加高压和流过大电流的情况下它很难消除全部的谐波失真(即THD)。其原因在于构成B类放大器的两个晶体管是交替地开启和关闭的,从而使得在小信号级别中易于进行开启和关闭的转换,但当有大量电流流过时,由于晶体管中的电荷储存效应使得难以进行快速的开关运行,造成全部谐波失真退化。
另一方面,AB类放大器有处于A类和B类之间的负载曲线,它在即使未加信号时也能流过少量电流。这一电流量比A类放大器的量小,但显著大于B类放大器的量。在AB类放大器中,当增大偏置电流时,它的线性特性向A类趋近,而当减小偏置电流时,就向B类趋近。
参照图1,将对加上负反馈的一简单音频模拟放大器进行说明。
人们共知的是在A、B或AB类的放大器中,约21.5%至约75%的提供的能量是作为热能耗散掉的,这样就需有大的铝散热片或具有噪声的冷却扇装入在其中装有各种器件的壳体中用于冷却。因而,这样的放大器不仅具有A、B或AB类放大器所特有的相当低效率和庞大体积的缺点,而且在开动冷却风扇时还招致噪声。特别是,当将这样的放大器运用在如运载工具之类的封闭空间内时,包括功率晶体管在内的各种器件的特性就会因壳内的散热不良而变坏,缩短音频装置的寿命期。
因而,这就强烈要求音频放大器既要有高的保真度,又要有高的效率。
这一要求通过本发明提供的与高效率和小体积D类数字放大器混合的模拟放大器能够得到解决。
D类数字放大器采用脉冲宽度调制(PWM)的开关方案,它通过不是线性运作的开关运作实现放大功能。人们都知道D类数字放大器具有高效率和小体积,但保真度较差。在D类数字放大器中,用作控制脉冲的功率晶体管的栅信号是通过对锯齿波的截波信号与音频信号的误差信号的控制基准信号进行比较产生的。在D类数字放大器中不可避免地产生的失真所造成的非线性度要经过精确的负反馈技术进行校正以满足音频设备的音响保真要求。D类数字放大器的工作原理与开关调节器或脉宽调制(PWM)转换器的相同,只是与开关调节器或PWM转换器相比,音频设备的D类数字放大器具有约20Hz至20KHz覆盖声频带的更宽频带范围。
D类放大器通常设有作为功率开关器件的高功率效率场效应晶体管(FET),而且在理论上可能获得100%的效率,但由于有与开关频率成正比产生的热损耗以及各种控制电路的功耗,实际的效率约为90%。
由于这种D类放大器的失真特性很差,为确保音频设备中必备的声音质量,就必需设计精密的负反馈电路。在一般情况下,在用D类放大器设置的音频设备中,利用PWM型开关进行放大运作的数字电路块是与模拟电路块混合的,这在电路中产生大量的开关噪音。这样,就难以设计有充分稳定性的负反馈电路。此外,在对负反馈电路作出错误设计的情况下,就可能引起不符合要求的振荡,往往对电路块造成关键性的损伤。
作为去除D类放大器中这一缺点的现有技术中的一例,有由本发明人提供的已知的“三重环路负反馈音频放大器”  (韩国专利申请号No.96-37905)。这种三重环路负反馈音频放大器与常规的D类放大器相比,它在保持高效率与高功率的同时表现出约0.1%的很低的失真特性。
不幸的是,发展至今的音频放大器都是根据它们的用途构成只有高保真的高效率中的一种特性。
于是,就需要有同时具备优良失真特性和高效率的音频放大器。
本发明的一般目的就是要提供一种借助于数字放大器而同时具有高保真与高效率的模拟放大器。
为了实现上述目的,本发明的模拟—数字组合放大器包括一用作独立电压源的A类、B类或AB类的模拟放大器以及一用作其从属电流源的D类数字放大器,这两个放大器的输出端是相互连接的。
按照本发明的一项实施例,模拟—数字组合放大器还包括一从模拟放大器读出小量电流输出并产生一使数字放大器能够提供大量电流的读出电压的读出电路。
按照本发明的另一实施例,所述模拟放大器包括一基本放大器;一控制晶体管运作的基极驱动器;一对构成推挽级的晶体管;以及一由无源元件组成用以确定整个系统闭环增益的反馈装置。
按照本发明的又一实施例,所述数字放大器包括一比较器;确定所述比较器的滞后电压的多个电阻和一拉升电阻;一栅驱动器;一对构成输出级的高功率开关;以及一电感器。
按照本发明的又一实施例,所述电感器具有约10μH至约500μH范围内的数值。
按照本发明又一实施例,所述读出电路包括一用以读出由模拟放大器提供或被其吸收的电流并转换成电压成分的电阻;以及一用以放大由所述电阻读出的电压的放大器。
按照本发明的又一实施例,所述读出电阻具有约0.01Ω至约10Ω范围内的数值。
图1示出一常规模拟放大器的方框图。
图2示出本发明一项实施例与数字放大器组合的模拟放大器的一音频放大器的方框图。
图3为图2中所示音频放大器的具体电路图。
图4示出本发明的音频放大器的模拟结果的曲线。
图5a至5c示出图2中所示模拟—数字组合音频放大器的输入/输出波形图。
图6a和图6b分别示出本发明组合音频放大器的全部谐波失真特性的曲线。
图7a和图7b分别示出本发明组合音频放大器的效率特性的曲线。
图8a和图8b分别示出本发明组合音频放大器的频率响应特性曲线。
按照本发明,具有高效率特性的数字放大器被描述成与图1中所示具有优良失真特性的常规音频模拟放大器相结合,以获取既有优良的失真特性又有高的效率。
下面将参照附图对本发明的模拟—数字组合音频放大器进行说明。
参阅图2,本发明的模拟/数字组合放大器由四个电路部分组成,即,一用作独立电压源的模拟放大器10、一用作其从属电流源的数字放大器20、一用于读出由模拟放大器10提供的小量电流ia。并产生一读出电压Vs使数字放大器20能够提供大量电流id的读出电路30以及一产生音频声响的扬声器40。
如图3所示模拟放大器10包括一基本放大器11、一用以控制共同构成一推挽级的Q1和Q2晶体管对的运作的基极驱动器12、以及一由无源元件Z1和Z2组成用以确定整个系统封闭环路增益的反馈装置15。
在另一方面,数字放大器20包括一比较器21,,用以确定所述比较器21的滞后电压的电阻R1、R2和拉升电阻R3,一栅驱动器22、一对构成输出级的高功率开关M1和M2,以及一电感器L。
读出电路30有一用以读出由模拟放大器10提供或被其吸收的电流并转换成电压Vs′的电阻Rs;以及一将由所述电阻读出的电压Vs′放大成一放大的电压Vs的放大器31。
下面将对本发明的模拟/数字组合放大器的运行进行说明。
模拟放大器10起着独立电压源的作用,而且只产生波纹电流以抵消由数字放大器20所引起的失真以确保高的保真度。
这样,即使模拟放大器是由B类电路组成的,由于模拟放大器10流往杨声器40的电流相对地小于要提供全部电流的常规B类放大器,由本发明的B类放大器10引起的失真就显著低于常规的B类放大器。
数字放大器20起着从属电流源的作用并提供扬声器40中所需电流io的大部分电流id,从而通过这一数字放大器20能够获得更高的效率特性。要注意到由于数字放大器20是一单个的第一级系统,不存在系统的稳定性问题。
为了迅速吸收数字放大器20中的电感器L所产生的波纹电流,最好要使模拟放大器10的带宽尽可能地宽。
按照本发明,由于模拟放大器10和数字放大器20分别用作独立的电压源与从属的电流源,在模拟放大器10和数字放大器20之间的并联连接不存在问题。
本发明的基本原理在于,当从模拟放大器10向扬声器40流出电流ia时,它有优良的失真特性但却表现出低效率,扬声器40中所需电流io的大部分电流id是由具有高效率的数字放大器20提供的,而模拟放大器10仅提供少量的波纹电流或是迅速吸收过量的电流ia,使得能够同时获取高保真与高效率。
现在,将参照图2对从相应的放大器流入扬声器40的电流进行说明。
在图2中,标号io表示流入扬声器40的电流;ia为模拟放大器10的输出电流;id为数字放大器20的输出电流;gd为数字放大器20的增益;Aa为模拟放大器10中的基本放大器11的增益;而AR则为读出电路30的增益。
从图2可以得到以下各式:
io=ia+id                   (1)
id=gdVs                   (2)
Vs=ARia                   (3)
将(3)代入(2),使得
id=gdARia                (4)
再将(4)代入(1)得到
io=(1+gdAR)ia            (5)
由于模拟放大器的效率低于数字放大器,为确保高效率需在上式中降低电流ia而增加电流id。从上式可明显看出,当从式5中获得一定的电流io,通过增大gd和AR以降低电流ia就能获得高效率。
当对式5进行推理研究时,随着gd和AR增大,ia可以降低几乎为零,但实际上还存在着物理极限。在式(5)中,当gdAR大到远大于1时,就可能接近于式(6)。
io≈gdARia                   (6)
按照本发明,gdAR的数值有可能大到几至几十。通过改变AR、读出电阻Rs及电感器L的值就能很容易调节gdAR
当增加读出电阻Rs的数值时,加到扬声器上的电压就下降。因此,读出电阻Rs最好有较小的数值,但此值太小又可能产生噪音。于是,本发明中的读出电阻值在0.01Ω至10Ω的范围内。
当电感器的数值太小时,就有大量电流突然流过,这样就可能损坏高功率开关或晶体管Q1和Q2,但当电感值过大接近无穷大时,数字放大器20的作用就可能被忽略掉。于是,在本发明的该实施例中,电感器L的数值约在10uH至约500uH的范围内。
参照图2,将对确定电压增益的过程进行描述。
在下列方程中,V1和Vo表示输入和输出信号;Vo′接近Vo的值;f为向输入一侧反馈电压Vf的转换因子;Ve为Vi和Vf之间的差动电压。要注意在读出电路30中进入和流出的电流相同。为了便于分析,假设跨于读出电路30上的电压降可予忽略,接着就有
Vo≈Vo′                 (1)
从图2中得到
Vo=AaVe                 (8)
Vf=fVo                  (9)
Ve=Vi-Vf                (10)
将(9)代和(10),使得
Ve=Vi-fVo               (11)
将(11)代入(8),得到
Vo=AaVi-AafVo           (12)
从(12)得到
Vo/Vi=A=Aa/(1+Aaf)     (13)
其中A就是所谓封闭环路增盖,是以上负反馈系统中的全部增益,而T则为环路增益,表示为
T=Aaf                                (14)
将(14)代入(13),便得
Vo/Vi=A=Aa/(1+T)=(1/f)(T/(1+T))    (15)
若是T>1,从(15)中可将全部增益表示为
A=1/f                                (16)
对于高值的环路增益T,全部增盖只由反馈转换因子f确定。
由于如图3中所示加上串接的反馈电压,全部电压增益可用下式(17)以反馈装置15的阻抗Z1和Z2表示。
A≈1+Z1/Z2                            (17)
接着,参照图3将对本发明的音频放大器的工作情况进行研究。
数字放大器20有两种开关模式。在第一种模式中,由P沟道金属氧化物半导体(PMOS)制成的一高功率开关M1开启,而由N沟道金属氧化物半导体(NMOS)制成的一高功率开关M2则关闭。而在第二种模式中,高功率开关M1关闭,高功率开关M2却开启。
首先,让我们假设提供给模拟放大电路10的一输入信号是正弦波形,并且此时为正增长。当Vi升高时,从模拟放大器10输出的电流ia也随输入信号Vi成正比地升高。
由于电流ia是经读出电路30中的电阻Rs送往场声器40的,ia的升高在电阻Rs的两端产生电压降Vs′。电阻Rs两端的电压降Vs被放大器31放大成电压Vs,然后将电压Vs输往数字放大器20中的比较器21的倒转输入端。随着输入电压Vi增高,当读出电路30的输出电压Vs达到R2(+Vdd)/(R1+R2)=VT(H)时,比较器21的输出从Vdd改变为-Vdd。这样,比较器21的非倒转输入端也改变为R2(-Vdd)/(R1+R2)=VT(L)。比较器的输出-Vdd为低电平,而通过栅驱动器22的电压也保持为低电平,而通过栅驱动器22的电压也保持为低电平。这样,高功率开关M1开启而M2关闭。这样开关状态称为第一开关模式。
当处于第一开关模式状态时,电感器电流id以约为(+Vdd-Vo(t))/L的斜率线性升高。其中的Vo(t)代表在瞬时t的输出电流。当经电感器L由数字放大器20向扬声器40输入的电流id增大时,由模拟放大器10提供的电流ia就减小。由数字放大器20提供的电流id保持增长并沿着为扬声器40所需电流io的同一方向流入负载,直至电流ia达到零时为止。这就意味着场声器40中所需的全部电流均由数字放大器20提供。
在由模拟放大器提供的电流ia达到零之后,由数字放大器提供的过量电流开始流入模拟放大器并沿与电流ia相反的方向产生负电流-ia。负电流-ia经电阻Rs流入模拟放大器,从而由负电流-ia在电阻Rs的两端产生电压降产生负的读出电压-Vs′。这样就由读出电压-Vs′在读出电路30的放大器31的输出中产生负电压-Vs′,并加到比较器21的倒转输入端。
在此条件下,由于滞后电压VT保持在R·(-Vdd)/(R1+R2)=VT(L),当加到比较器21的倒转输入端的负电压-Vs变成小于非倒转输入端中的R2·(-Vdd)/(R1+R2)=VT(L)时,比较器21的输出就从-Vdd改变成+Vdd,使比较器21的输出改变为高电平,因此开关M1关闭而开关M2开启。
现在,结束第一开关模式并开始第二开关模式。在处于第二开关模式的状态中,通过电感器L的电流id以(-Vdd-Vo(t)/L的斜率下降,从而由模拟放大器10提供的电流ia还增加。其结果是,从放大器31测出正的读出电压+Vs′,当此+Vs电压达到VT(H)时,比较器21的输出改变为低电平(-Vdd),并结束第二开关模式而且再度开始第一开关模式。
于是,通过上述的两种开关模式就能保证既有高的保真度又有高的效率。
图4示出由模拟放大器10提供的电流ia、由数字放大器20提供的电流id、以及流向场声器40的电流io的几个模拟波形。如图4中所示,几乎扬声器40中所需电流io的全部电流id是由数字放大器20提供的,而模拟放大器10只是提供或是吸收了少量波纹电流。
下面将对本发明所产生的音频放大器的性能进行描述。
将电源电压±Vdd设在直流±22Vdc并对通常的50W输出使用4Ω的负载。由于将输入电压Vi设置成最大为1Vp,为获得50W的输出 ( = ( 20 / 2 ) 2 / 4 ) 就需有20Vp的输出电压。这样,闭环增益就设在20左右。而且,数字放大器20的开关频率处于不向输入端提供信号的空载条件,达到250KHz左右。决定开关频率的重要元件为:电感器L、电阻R1和R2、以及附加在数字放大器20中的栅驱动器上的空载时间;模拟放大器10中的阻抗Z1和Z2;读出电路30中的读出电阻Rs和放大器31的增益等等。
图5a至图5c示出数字放大器20的输出波形VL以及在输入信号Vi为0.5Vp的正弦波形分别为1KHz、10KHz和20KHz的条件下的输出波形Vo。
图6a示出在1KHz中额定输出电压与全部谐波失真(THD)之间的关系,而图6b则示出分别在1W、10W和50W的额定输出中频率和全部谐波失真(THD)之间的关系。
由于在低电平输出时噪音严重影响着信号,低电平输出时的全部谐波失真比中等电平输出时更差。同样由于若是输出信号Vo太大以致覆盖电源电压±Vdd,就会突然出现因受±Vdd的限制而使输出信号箝制的问题,因而在极高电平输出时THD也是较差的。从图6a和图6b中可以清楚看出,在0.5W至50W时的THD约为0.01%,而在覆盖整个声频频带的500Hz至5KHz的范围内THD表现出最优良的特性。
图7a示出在额定输出功率和全部功耗之间的关系,而图7b则示出在额定功率和效率之间的关系。计算功率效率的公式为
η(x)=Po(x)/Pdd(x)                  (18)
其中,Po(x)、Pdd(x)和x分别为扬声器的输出功率、全部供电功率和任意的输出电平。从图7a和图7b中可以了解到,本发明的音频放大器在50W有90%左右的最佳功率特性,它特别有利于高功率的应用。
图8a和图8b示出了频率响应特性,它们分别由图8a示出幅度响应,由图8b示出相位响应。
从图8a和图8b中可以清楚看出,在20Hz至20KHz的声音频率范围内幅度响应是非常平坦的,而3dB的带宽的带宽则位于40KHz左右。
如前所述,本发明的模拟音频放大器既有优良的线性度又有高效率。
特别是,通过使用高效的数字放大器与模拟放大器相结合,本发明提供了非凡的节能效果。在50W功率放大器的情况下,常规的A类放大器只有约20%的较差的效率,表明约有200W的功率损耗。但本发明的功率放大器却有90%以上的效率,这就使它只有约5W的功率损耗。
上述本发明的模拟—数字组合的放大器是供音频应用的装置,但它不受此限制。例如,本发明的放大器可以用于供电的电压源。
当参照特定的实施例对本发明进行说明的同时,这种说明就意味着构成一种限制的意义。依据这种说明,对于专业技术人员来说,对公开的实施例的各种各样的修改以及本发明的其它实施例,都会是显而易见的。因而期待着所附的权利要求及其法定的等同体将会覆盖落入本发明范围内的任何这类修改或实施列。

Claims (6)

1.一种模拟—数字组合放大器,其特征在于,它包括:
一用作独立的电压源的A类、B类或AB类的模拟放大器;
一用作其从属的电流源的D类数字放大器;以及
一读出电路;
其中所述模拟放大器的输出端和所述数字放大器的输出端是相互连接的,并且所述读出电路从所述模拟放大器读出小电流并产生读出电压,使所述数字放大器能提供大电流。
2.按照权利要求1所述的模拟—数字组合放大器,其特征在于,所述的模拟放大器包括一基本放大器;一用于根据所述基本放大器的输出信号控制一对晶体管运行的基极驱动器,所述晶体管构成推挽级;以及一反馈装置,它由无源元件组成,并将所述模拟放大器的输出反馈到所述基本放大器的输入端,用以确定整个系统的封闭环路。
3.按照权利要求1所述的模拟—数字组合放大器,其特征在于,所述的数字放大器包括一比较器,它取所述读出电路的输出信号作为输入信号;用于确定所述比较器的滞后电压的多个电阻和一拉升电阻,一栅驱动器,用以根据所述比较器的输出信号控制一对构成输出级的高功率开关的工作,以及一电感器,它与所述高功率开关的输出一侧相连。
4.按照权利要求3所述的模拟—数字组合放大器,其特征在于,所述的电感器具有在约10μH至约500μH范围内的数值。
5.按照权利要求1所述的模拟—数字组合放大器,其特征在于,所述的读出电路包括一用于读出由模拟放大器提供或被其吸收的电流并将其转换成电压成分的电阻,以及一用于放大由所述电阻读出的电压的放大器。
6.按照权利要求5所述的模拟—数字组合放大器,其特征在于,所述的读出电阻具有在约0.01Ω至约10Ω范围内的数值。
CNB988001721A 1997-02-24 1998-02-16 与数字放大器结合的高保真和高效率的模拟放大器 Expired - Fee Related CN1150799C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1997/5529 1997-02-24
KR1019970005529A KR100226226B1 (ko) 1997-02-24 1997-02-24 혼합형 증폭기

Publications (2)

Publication Number Publication Date
CN1217864A CN1217864A (zh) 1999-05-26
CN1150799C true CN1150799C (zh) 2004-05-19

Family

ID=19497753

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988001721A Expired - Fee Related CN1150799C (zh) 1997-02-24 1998-02-16 与数字放大器结合的高保真和高效率的模拟放大器

Country Status (8)

Country Link
US (1) US6396933B1 (zh)
EP (1) EP0962120B8 (zh)
JP (1) JPH10242779A (zh)
KR (1) KR100226226B1 (zh)
CN (1) CN1150799C (zh)
AU (1) AU6122298A (zh)
DE (1) DE69822135T2 (zh)
WO (1) WO1998037731A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103004083A (zh) * 2010-03-02 2013-03-27 帝瓦雷公司 极高保真度的音频放大器

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300826B1 (en) * 2000-05-05 2001-10-09 Ericsson Telefon Ab L M Apparatus and method for efficiently amplifying wideband envelope signals
DE10111913C2 (de) * 2001-03-13 2003-07-31 Semikron Elektronik Gmbh Schaltender Spannungsumformer
US7200187B2 (en) * 2001-07-26 2007-04-03 O'brien Thomas J Modulator for digital amplifier
DE10308946B4 (de) * 2003-02-28 2006-02-16 Infineon Technologies Ag Leitungstreiber
JP2005348239A (ja) * 2004-06-04 2005-12-15 Agilent Technol Inc 電力増幅装置
FR2873872B1 (fr) * 2004-07-30 2006-10-20 Avise Sarl E Amplificateur audio classe ad
WO2006018750A1 (en) * 2004-08-12 2006-02-23 Koninklijke Philips Electronics N.V. Dual mode audio amplifier
US7106135B2 (en) * 2004-08-26 2006-09-12 Creative Technology Ltd Amplifier system and method
US7382184B2 (en) * 2004-10-22 2008-06-03 Creative Technology Ltd Amplifier system and method
US8015590B2 (en) 2004-12-30 2011-09-06 Mondo Systems, Inc. Integrated multimedia signal processing system using centralized processing of signals
US7653447B2 (en) * 2004-12-30 2010-01-26 Mondo Systems, Inc. Integrated audio video signal processing system using centralized processing of signals
US7825986B2 (en) * 2004-12-30 2010-11-02 Mondo Systems, Inc. Integrated multimedia signal processing system using centralized processing of signals and other peripheral device
US8880205B2 (en) 2004-12-30 2014-11-04 Mondo Systems, Inc. Integrated multimedia signal processing system using centralized processing of signals
CN100417017C (zh) * 2005-02-17 2008-09-03 普诚科技股份有限公司 D类音频放大器的异步式桥接负载
US7315204B2 (en) 2005-07-08 2008-01-01 National Semiconductor Corporation Class AB-D audio power amplifier
US7279973B1 (en) 2005-09-23 2007-10-09 Ami Semiconductor Belgium Bvba H-bridge utilizing intermediate switching phase(s)
US7525376B2 (en) * 2006-07-10 2009-04-28 Asterion, Inc. Power amplifier with output voltage compensation
GB2440772B (en) * 2006-08-08 2011-11-30 Asahi Chemical Micro Syst Envelope modulator
CN100566160C (zh) * 2006-12-21 2009-12-02 扬智科技股份有限公司 音讯放大装置及其防止爆音的方法
KR100855685B1 (ko) * 2007-04-02 2008-09-03 주식회사 디엠비테크놀로지 다이렉트 디지털 d급 증폭기를 이용한 오디오 시스템
CN101796117A (zh) * 2007-04-12 2010-08-04 加利福尼亚大学董事会 用于无线通信和无线电传输的碳纳米管
GB0722730D0 (en) * 2007-11-20 2007-12-27 Melexis Nv Output driver and method of operation thereof
JP5081612B2 (ja) * 2007-12-26 2012-11-28 株式会社日立国際電気 電源回路並びにそれを用いた電力増幅器及び基地局装置
DE102008006077B4 (de) * 2008-01-18 2013-01-31 Austriamicrosystems Ag Verstärkeranordnung und Verfahren
US8413961B2 (en) * 2009-01-09 2013-04-09 Belkin International Inc. Cable pulling cap, method of manufacture, and method of use
CN101800924B (zh) * 2010-02-05 2012-09-19 卢立立 用于高清晰音响的高清晰电路及蚂蚁电路
CH703161A2 (fr) * 2010-05-17 2011-11-30 Etel Sa Circuit electronique a amplificateur lineaire assiste par un amplificateur a mode commute.
US8497734B2 (en) * 2010-06-14 2013-07-30 Harman International Industries, Incorporated High efficiency audio amplifier system
US8482346B2 (en) 2010-06-14 2013-07-09 Harman International Industries, Incorporated High efficiency balanced output amplifier system
KR101675139B1 (ko) * 2010-09-15 2016-11-10 현대모비스 주식회사 하이브리드 차량용 오디오 시스템 및 오디오 신호 증폭 방법
CN102611964B (zh) * 2012-04-05 2014-09-03 四川和芯微电子股份有限公司 功率放大电路
CN102946578B (zh) * 2012-11-26 2016-03-02 成都锐成芯微科技有限责任公司 一种免开关pop声的音频耳机放大器
FR3023088B1 (fr) * 2014-06-25 2016-07-22 Devialet Amplificateur audio
JP6506623B2 (ja) * 2015-05-29 2019-04-24 株式会社ズーム デジタルシグナルプロセッサ及び音響機器
FR3055173B1 (fr) * 2016-08-22 2019-08-16 Devialet Dispositif d'amplification comprenant un circuit de compensation
US11095264B2 (en) * 2017-12-20 2021-08-17 Dolby Laboratories Licensing Corporation Configurable modal amplifier system
CN109905809A (zh) * 2019-03-27 2019-06-18 深圳市火乐科技发展有限公司 一种有源音箱
US11205999B2 (en) * 2019-10-22 2021-12-21 Mediatek Inc. Amplifier with signal dependent mode operation
KR102112253B1 (ko) 2019-12-24 2020-05-18 가락전자 주식회사 전원 증폭기와 음향 증폭기가 일체화된 고효율 음향 증폭 장치
US11552609B2 (en) * 2021-03-02 2023-01-10 Cirrus Logic, Inc. Amplifier circuitry

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107619A (en) * 1977-12-20 1978-08-15 Threshold Corporation Constant voltage - constant current high fidelity amplifier
NL8203428A (nl) * 1982-09-02 1984-04-02 Philips Nv Inrichting voor het omzetten van een elektrisch signaal in een akoestisch signaal.
US4600891A (en) * 1984-08-21 1986-07-15 Peavey Electronics Corporation Digital audio amplifier having a high power output level and low distortion
US5031500A (en) * 1988-06-21 1991-07-16 Yamaha Corporation Keyboard instrument
DE3836745A1 (de) * 1988-10-28 1990-05-03 Standard Elektrik Lorenz Ag Verfahren und vorrichtung zur linearisierung des frequenzganges eines lautsprechersystems
DE4007660A1 (de) * 1990-03-10 1991-09-12 Ant Nachrichtentech Hochgenauer digital/analog-umsetzer
US5070308A (en) * 1990-09-25 1991-12-03 Gyula Padi Working point adjusting circuit for a power amplifier
US5278977A (en) * 1991-03-19 1994-01-11 Bull Hn Information Systems Inc. Intelligent node resident failure test and response in a multi-node system
US5389829A (en) * 1991-09-27 1995-02-14 Exar Corporation Output limiter for class-D BICMOS hearing aid output amplifier
US5218315A (en) * 1992-01-06 1993-06-08 Infinity Systems, Inc. Switching amplifier
US5625698A (en) * 1992-09-29 1997-04-29 Barbetta; Anthony T. Loudspeaker and design methodology
US5451949A (en) * 1993-02-16 1995-09-19 Dolby Laboratories Licensing Corporation One-bit analog-to-digital converters and digital-to-analog converters using an adaptive filter having two regimes of operation
US5363102A (en) * 1993-03-26 1994-11-08 Analog Devices, Inc. Offset-insensitive switched-capacitor gain stage
US5302912A (en) * 1993-05-10 1994-04-12 Grant Alan M Push-pull audio amplifier with crossover distortion compensation
US5410592A (en) * 1993-06-04 1995-04-25 Harris Corporation Class `D` audio speaker amplifier circuit with state variable feedback control
GB2297443B (en) * 1995-01-26 1999-09-08 Sony Uk Ltd Amplifier
US5764781A (en) * 1995-12-12 1998-06-09 Ding; Chih-Shun Speaker and amplifier system
US5923217A (en) * 1997-06-27 1999-07-13 Motorola, Inc. Amplifier circuit and method for generating a bias voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103004083A (zh) * 2010-03-02 2013-03-27 帝瓦雷公司 极高保真度的音频放大器

Also Published As

Publication number Publication date
EP0962120B1 (en) 2004-03-03
WO1998037731A1 (en) 1998-08-27
KR100226226B1 (ko) 1999-10-15
US6396933B1 (en) 2002-05-28
CN1217864A (zh) 1999-05-26
EP0962120B8 (en) 2004-07-21
DE69822135D1 (de) 2004-04-08
EP0962120A1 (en) 1999-12-08
DE69822135T2 (de) 2005-03-03
JPH10242779A (ja) 1998-09-11
KR19980068755A (ko) 1998-10-26
AU6122298A (en) 1998-09-09

Similar Documents

Publication Publication Date Title
CN1150799C (zh) 与数字放大器结合的高保真和高效率的模拟放大器
US7339425B2 (en) Class-D audio amplifier with half-swing pulse-width-modulation
JP3129456U (ja) 自励発振を行う能力を有する音声増幅器
Gong et al. A comparative study of multicell amplifiers for AC-power-source applications
US7456686B2 (en) Class AD audio amplifier
CN1388643A (zh) 信号放大方法,信号放大器以及与其相关的装置)
EP3821532A1 (en) Self-boosting amplifier
CN1582527A (zh) 有失真补偿的功率放大器模块
US7889875B2 (en) Class-D driving method for stereo load
CN100336299C (zh) 参数扬声器的功率放大
JP3942479B2 (ja) 高周波電力増幅モジュール
TWI334268B (en) Class-d audio amplifier with half-swing pulse-width-modulation
KR100972155B1 (ko) 2중 부궤환 d급 증폭기
US7368984B2 (en) Switching class A-B amplifier
US7579907B2 (en) Switching amplifier
KR100453708B1 (ko) 고효율 스위칭 증폭기
Iversen et al. A high power switch-mode power audio amplifier
JP2009005301A (ja) D級アンプ装置
Petersen et al. High Power Density for Class-D Audio Power Amplifiers Equipped with eGaNFETs
JP4027276B2 (ja) ディジタルアンプ及びこれを用いたオーディオ再生装置
Kao et al. Switching power amplifier with feedback for improving total harmonic distortion
JPH11220342A (ja) 電力増幅回路におけるトランジスタの可変バイアス回路
Reddy et al. A High Gain Medium Power Audio Amplifier Circuit
US20170207750A1 (en) Very high fidelity audio amplifier
Furuya et al. Speaker system with 100-W high output power and 0.17% THD using 9-V power supply with digitally direct-driven technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee