CN114920281A - 一种球形纳米氧化锌的制备方法 - Google Patents

一种球形纳米氧化锌的制备方法 Download PDF

Info

Publication number
CN114920281A
CN114920281A CN202210586170.7A CN202210586170A CN114920281A CN 114920281 A CN114920281 A CN 114920281A CN 202210586170 A CN202210586170 A CN 202210586170A CN 114920281 A CN114920281 A CN 114920281A
Authority
CN
China
Prior art keywords
zinc oxide
spherical nano
solution
zinc salt
nano zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210586170.7A
Other languages
English (en)
Inventor
余焕焕
姜兰兰
张娟
李思源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangrao Normal University
Original Assignee
Shangrao Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangrao Normal University filed Critical Shangrao Normal University
Priority to CN202210586170.7A priority Critical patent/CN114920281A/zh
Publication of CN114920281A publication Critical patent/CN114920281A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明一种球形纳米氧化锌的制备方法是在可溶性锌盐溶液中,加入醇类表面活性剂,混合均匀,形成可溶性锌盐的混合溶液,其中可溶性锌盐溶液与醇类表面活性剂的体积比为7∶8;将可溶性锌盐的混合溶液水浴加热至90°C,滴入沉淀剂溶液,搅拌加热反应3 h后冷却至室温,再分别经离心分离、洗涤、干燥、研磨和煅烧,得到球形纳米氧化锌,其粒径分布均匀,直径约为20 nm。本发明方法无需使用高温高压设备,工艺简便,氧化锌形貌规整可控,产率高,后处理容易,杂质少,分散度高,应用于有机染料的工业废水催化降解,降解率高,可见光照射1h 20min后,对废水的降解率是锐钛矿相二氧化钛对废水降解率的2倍。

Description

一种球形纳米氧化锌的制备方法
技术领域
本技术涉及一种球形纳米氧化锌的制备方法,具体属于纳米材料技术领域。
背景技术
氧化锌因其较宽的带隙(3.37eV)、较大的激发结合能(60 meV)和优越的物理和化学性质而得到了广泛研究。ZnO作为重要的半导体材料,其比表面积大、生物安全性高,广泛应用于光催化杀菌、环境净化、有机污染物降解等,是一种优良的光催化材料。然而,电子-空穴对的高复合率和较低的日光利用率限制了氧化锌在有机染料降解中的实际应用。其形貌的控制对其活性有重要影响,对ZnO颗粒的形貌进行设计是控制其光催化活性的重要参数。通过改变形貌可以提高比表面积,是光催化反应过程中的一个重要因素。例如,光降解实验结果表明,亚微球(ZOHS)的光降解率高于商业氧化锌纳米颗粒,因为ZOHS的纳米颗粒的平均尺寸更小。([1] Yefei Guo, Xiaonan Fu, Ruijie Liu, et al.. Effificientgreen photocatalyst of Ag/ZnO nanoparticles for methylene bluephotodegradation[J]. J Mater Sci: Mater Electron (2022) 33:2716-2728. [2]Haitham Mohammad Abdelaala, Ahmed Shaikjeeb, Mohamed Esmat. High performingphotocatalytic ZnO hollow sub-micro-spheres fabricated by microwave inducedself-assembly approach[J]. Ceramics International, 2020, 46(12): 19815-19821.)
球形ZnO纳米颗粒通常具有高度对称性结构、独特光响应特性、比表面积较大的优点,在光催化降解有机染料领域应用广泛。球形的氧化锌一般需定向的制备方法,例如水热法、固相法、液相法和气相法、直接沉淀法等。但这些制备方法或均需复杂的反应过程,例如高温反应,或者所得样品粒径分布宽,分散性差,导致光催化活性差。“锌离子-硫氰酸根”体系用于合成形态可控的氧化锌纳米材料。这种合成方法采用超声辅助法,成本低,所得氧化锌形貌可控。([3]徐伟;王涛;笪仕旭;徐琳绮.形态可控氧化锌纳米材料的绿色制备方法.发明专利申请号: CN201910359373.0)。而采用超声辅助法通常也会对材料的磁性及光学性能有影响,难以控制氧化锌纳米材料的光催化活性。
本发明采用简单的沉淀法,以乙二醇为表面活性剂制备球形纳米氧化锌,具有制备过程绿色简单、成本低的优点,所得产品粒径分布均匀,分散性良好,光催化降解亚甲基蓝活性高,优于锐钛矿相二氧化钛颗粒。
发明内容
本发明的目的在于提供一种制备工艺简单,形貌可控的氧化锌制备方法,无需使用高温高压设备,具有产率高和反应易处理的特点,成功地解决了产品中易有杂质,难清洁,形貌不规整的问题。
本发明一种球形纳米氧化锌的制备方法具体步骤为:
步骤1:在0.1 mol/L的可溶性锌盐溶液中,加入醇类表面活性剂,混合均匀,形成可溶性锌盐的混合溶液;所述的可溶性锌盐溶液与醇类表面活性剂的体积比为7∶8;
步骤2:将上述可溶性锌盐的混合溶液水浴加热至90°C,并滴入0.1 mol/L的沉淀剂溶液,搅拌加热反应3 h;
步骤3:步骤2的反应产物冷却至室温,其后进行离心分离、洗涤、干燥、研磨和煅烧,得到球形纳米氧化锌。
所述的可溶性锌盐的混合溶液与沉淀剂溶液的体积比为1∶1。
所述的可溶性锌盐为硫酸锌。
所述的沉淀剂为碳酸铵。
所述的醇类表面活性剂为乙二醇。
所述的洗涤的过程为:先用水洗至pH为7.0,其后再用甲醇洗涤2次。
所述的煅烧温度为500℃。
本发明的有益效果:本发明制备方法无需使用高温高压设备,工艺简便,氧化锌形貌规整可控,产率高,产物后处理容易,杂质少,分散度高,应用于有机染料的工业废水催化降解,降解率高,可见光照射1h 20min 后,对废水的降解率是锐钛矿相二氧化钛对废水降解率的2倍。
附图说明
图1为本发明纳米球形氧化锌的XRD谱图;
图2为本发明纳米球形氧化锌的SEM谱图;
图3为本发明纳米球形氧化锌的光催化降解亚甲基蓝活性曲线图;
图4为锐钛矿相TiO2的光催化降解亚甲基蓝活性曲线图。
具体实施方式
实施例1
室温下量取35 mL浓度为0.1 mol/L的ZnSO4溶液于烧杯中,再加入40 mL乙二醇,将混合溶液搅拌30 min,形成混合溶液A。将35 mL浓度为0.1 mol/L的(NH4)2CO3溶液缓慢滴加到混合溶液A中,90 ℃水浴加热持续搅拌3 h,冷却后将生成白色沉淀用蒸馏水洗涤5次,至pH为7.0,其后再用甲醇洗涤2次,再于80 ℃烘箱中烘干,然后研磨成粉末,再于马弗炉中500 ℃煅烧3 h,冷却至室温后研磨,所得样品即为纳米氧化锌,其形貌为球形颗粒,分布均匀,直径约为20 nm。制备的纳米球形氧化锌应用于降解染料废水:在300 W氙灯模拟可见光照射1小时20 min后,对5 mg/L亚甲基蓝的降解率为88.64%。
实施例2
室温下量取35 mL浓度为0.1mol/L的ZnSO4溶液于烧杯中,再加入40 mL乙二醇,将混合溶液搅拌30 min,形成溶液A。将35 mL浓度为0.1 mol/L的(NH4)2CO3溶液缓慢滴加到溶液A中,90 ℃水浴加热持续搅拌5 h,冷却后将生成白色沉淀用蒸馏水洗涤5次,再于80 ℃烘箱中烘干,然后研磨成粉末,再于马弗炉中500 ℃煅烧3 h,冷却至室温后研磨,所得样品即为ZnO-9。其形貌为球形颗粒组成的纳米棒,分散均匀,长约为100 nm,宽约20 nm,300 W氙灯模拟可见光照射1小时20 min后,对5 mg/L亚甲基蓝的降解率为68.64%。
实施例3
锐钛矿相二氧化钛降解亚甲基蓝的对比试验
室温下量取20.0mL无水乙醇于烧杯中,搅拌10min,然后缓慢滴加6mL钛酸四丁酯,搅拌混合均匀。继续滴加浓盐酸0.6mL,用pH试纸测得pH=3,搅拌至形成凝胶,再将凝胶置于80℃干燥箱中烘干,然后研磨成粉末,再于电阻炉中煅烧3h,所的样品即为锐钛矿相TiO2。300 W氙灯模拟可见光照射3小时后,亚甲基蓝的降解率为78.44%,在1h 30min内对5 mg/L亚甲基蓝的降解率为42.20%。对比可知,本发明所制备的球形纳米氧化锌的对废水的降解率1h 20min后是锐钛矿相TiO2的对废水的降解率的2倍。

Claims (8)

1.一种球形纳米氧化锌的制备方法,其特征在于:所述的制备方法具体步骤为:
步骤1:在0.1 mol/L的可溶性锌盐溶液中,加入醇类表面活性剂,混合均匀,形成可溶性锌盐的混合溶液;所述的可溶性锌盐溶液与醇类表面活性剂的体积比为7∶8;
步骤2:将上述可溶性锌盐的混合溶液水浴加热至90°C,并滴入0.1 mol/L的沉淀剂溶液,搅拌加热反应3 h;
步骤3:步骤2的反应产物冷却至室温,其后进行离心分离、洗涤、干燥、研磨和煅烧,得到球形纳米氧化锌。
2.根据权利要求1所述的一种球形纳米氧化锌的制备方法,其特征在于:所述的可溶性锌盐的混合溶液与沉淀剂溶液的体积比为1∶1。
3.根据权利要求1所述的一种球形纳米氧化锌的制备方法,其特征在于:所述的可溶性锌盐为硫酸锌。
4.根据权利要求1所述的一种球形纳米氧化锌的制备方法,其特征在于:所述的沉淀剂为碳酸铵。
5.根据权利要求1所述的一种球形纳米氧化锌的制备方法,其特征在于:所述的醇类表面活性剂为乙二醇。
6.根据权利要求1所述的一种球形纳米氧化锌的制备方法,其特征在于:所述的洗涤的过程为:先用水洗至pH为7.0,其后再用甲醇洗涤2次。
7.根据权利要求1所述的一种球形纳米氧化锌的制备方法,其特征在于:所述的干燥温度为80℃。
8.根据权利要求1所述的一种球形纳米氧化锌的制备方法,其特征在于:所述的煅烧温度为500℃。
CN202210586170.7A 2022-05-27 2022-05-27 一种球形纳米氧化锌的制备方法 Pending CN114920281A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210586170.7A CN114920281A (zh) 2022-05-27 2022-05-27 一种球形纳米氧化锌的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210586170.7A CN114920281A (zh) 2022-05-27 2022-05-27 一种球形纳米氧化锌的制备方法

Publications (1)

Publication Number Publication Date
CN114920281A true CN114920281A (zh) 2022-08-19

Family

ID=82811614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210586170.7A Pending CN114920281A (zh) 2022-05-27 2022-05-27 一种球形纳米氧化锌的制备方法

Country Status (1)

Country Link
CN (1) CN114920281A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616354A (zh) * 2003-11-14 2005-05-18 湘潭大学 配位均匀沉淀法制备纳米氧化锌的方法
CN101734709A (zh) * 2008-11-12 2010-06-16 中国科学院宁波材料技术与工程研究所 一种纳米氧化锌粉体的可控制备方法
WO2010149646A1 (de) * 2009-06-24 2010-12-29 Basf Se Modifizierte zno-nanopartikel
CN102101692A (zh) * 2010-11-26 2011-06-22 西安理工大学 基于醇水体系的化学合成氧化锌纳米晶的方法
CN103771490A (zh) * 2014-01-04 2014-05-07 东华理工大学 一种简易室温搅拌制备微/纳米氧化锌的方法
CN105236467A (zh) * 2014-08-01 2016-01-13 阜阳师范学院 一种大量制备纳米氧化锌的工艺及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616354A (zh) * 2003-11-14 2005-05-18 湘潭大学 配位均匀沉淀法制备纳米氧化锌的方法
CN101734709A (zh) * 2008-11-12 2010-06-16 中国科学院宁波材料技术与工程研究所 一种纳米氧化锌粉体的可控制备方法
WO2010149646A1 (de) * 2009-06-24 2010-12-29 Basf Se Modifizierte zno-nanopartikel
CN102101692A (zh) * 2010-11-26 2011-06-22 西安理工大学 基于醇水体系的化学合成氧化锌纳米晶的方法
CN103771490A (zh) * 2014-01-04 2014-05-07 东华理工大学 一种简易室温搅拌制备微/纳米氧化锌的方法
CN105236467A (zh) * 2014-08-01 2016-01-13 阜阳师范学院 一种大量制备纳米氧化锌的工艺及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭小芹主编: "无机材料性能学基础", 重庆大学出版社, pages: 66 *

Similar Documents

Publication Publication Date Title
CN106492854B (zh) 利用两步法制备具有光催化性能的复合型纳米Ag3PO4/TiO2材料及方法和应用
CN107935039B (zh) 一种二氧化钛水性溶胶的制备方法
CN108855131B (zh) 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用
CN113713823B (zh) 一种CoTiO3/BiVO4复合光催化剂的制备方法及应用
CN107381632B (zh) 一种三维花状二氧化钛纳米材料的制备方法
CN110152711A (zh) 一种CeO2@MoS2/g-C3N4三元复合光催化剂及其制备方法
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN105540640A (zh) 一种花状纳米氧化锌的制备方法
CN110589886A (zh) 一种碳酸氧铋的制备方法
CN110743522B (zh) 一种高指数晶面二氧化钛纳米催化剂及其制备方法
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN108816267A (zh) 一种黄土负载氮掺杂氧化锌光催化剂及其制备方法
CN112844425A (zh) 一种C/ZnO/BiOI三元复合光催化材料
CN112456556A (zh) 一种制备氧化钽纳米球的方法
CN110227458B (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN109999859B (zh) 一种微球状ZnO-BiOI复合材料的制备方法
CN110026170B (zh) 一种光催化降解罗丹明B的TiO2光催化剂及其制备方法
CN109529951B (zh) 一种小粒径稳定分散纳米二氧化钛合成方法
CN114920281A (zh) 一种球形纳米氧化锌的制备方法
CN108067277B (zh) 高掺氮量单晶TiO2介孔材料的制备方法
CN114029062B (zh) 一种富氧空位多价态钴原位掺杂ZnO花状微球复合光催化剂的制备方法
CN115301225A (zh) 一种中空微球结构的铋/二氧化钛光催化降解材料的制备方法及其应用
CN110116014A (zh) 一种具有空心结构的N-TiO2光催化剂制备方法
CN107570161A (zh) 一种Co掺杂的ZnO光催化剂的制备方法
CN111744467A (zh) 一种CaTiO3/CaO/TiO2复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination