CN114438054B - 一种突变型RNase R及其制备方法和应用 - Google Patents

一种突变型RNase R及其制备方法和应用 Download PDF

Info

Publication number
CN114438054B
CN114438054B CN202210108730.8A CN202210108730A CN114438054B CN 114438054 B CN114438054 B CN 114438054B CN 202210108730 A CN202210108730 A CN 202210108730A CN 114438054 B CN114438054 B CN 114438054B
Authority
CN
China
Prior art keywords
rnase
leu
arg
glu
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210108730.8A
Other languages
English (en)
Other versions
CN114438054A (zh
Inventor
刘明
蔡秋杰
张婉君
张茂雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Bio Polytron Technologies Inc
Original Assignee
Guangzhou Bio Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Bio Polytron Technologies Inc filed Critical Guangzhou Bio Polytron Technologies Inc
Priority to CN202210108730.8A priority Critical patent/CN114438054B/zh
Publication of CN114438054A publication Critical patent/CN114438054A/zh
Priority to PCT/CN2022/144252 priority patent/WO2023142899A1/zh
Application granted granted Critical
Publication of CN114438054B publication Critical patent/CN114438054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于分子生物学技术领域,具体涉及一种突变型RNase R及其制备方法和应用。本发明提供的突变型RNase R被命名为RNase R__△M8,其氨基酸序列如SEQ ID NO.5所示,编码该氨基酸序列的核苷酸序列如SEQ ID NO.6所示。本发明提供的突变型RNase R_△M8的制备过程包括载体构建、载体转化、蛋白诱导表达、细菌收集、蛋白纯化及活性测定等过程。本发明提供的突变型RNase R,提高了RNase R表达产量及耐盐性,有利于满足多样化的RNA样本要求。

Description

一种突变型RNase R及其制备方法和应用
技术领域
本发明属于分子生物学领域,具体涉及一种突变型RNase R及其制备方法和应用。
背景技术
RNase R(Ribonuclease R)的分子量约为91.4kDa,是一种来源于大肠杆菌 RNR超家族的3’-5’核糖核酸外切酶,可从3’-5’方向将RNA逐步切割成二核苷酸和三核苷酸。RNase R能够消化几乎所有的线性RNA分子,但不易消化环状RNA(circRNA)、套索结构RNA(lariat RNA)、末端为双链的RNA。
目前RNase R常被用于circRNA的富集和鉴定研究。高通量测序是大批量发现circRNA最快捷的方法,但传统的全转录组测序只能发现丰度较高的 circRNA,对丰度稀少的circRNA则无能为力。而在全转录组测序的方法上再增加一步RNase R消化(RNase R+),则可以使circRNA相对富集,最终使circRNA 的junction reads相对于“RNase R-”样本有5-10倍的富集,大大提升了circRNA 的发现量。另外,随着RNA疫苗的兴起,circRNA也被各大生物医药公司列入为极具研究潜能的RNA疫苗候选分子,RNase R将有望成为circRNA规模化制备及纯化的重要原料之一。此外,RNase R也常被相关领域的研究者用于circRNA 和lariat RNA的鉴定。
RNase R的反应条件一般为37℃,10-30min,且反应体系要求较低的NaCl 浓度。当反应体系中NaCl的浓度>100mM时,RNase R的活性会明显受抑制。这种条件的限制对RNA样本纯度提出了更高的要求,同时增加了RNA的制备成本及损失量。
因此急需开发一种耐盐且蛋白表达产量高的RNase R突变体。
发明内容
针对现有技术普遍存在的缺陷,本发明提供了一种突变型RNase R及其制备方法和应用。本发明提供的突变型RNase R,提高了RNase R表达产量及耐盐性,有利于满足多样化的RNA样本要求。
为了达到上述目的,本发明采用的技术方案为:
一种突变型RNase R,氨基酸序列如SEQ ID NO.5所示。
优选地,编码所述突变型RNase R氨基酸序列的核苷酸序列如SEQ ID NO.6 所示。
优选地,所述氨基酸序列为E.coli来源的野生型RNase R的氨基酸序列定点突变所得;所述E.coli来源的野生型RNase R的氨基酸序列如SEQ ID NO.1所示。
优选地,编码所述E.coli来源的野生型RNase R的氨基酸序列的核苷酸序列如SEQID NO.2所示。
优选地,所述定点突变为将E.coli来源的野生型RNase R的氨基酸序列的 601至608号氨基酸截断突变所得。
本发明还提供了一种所述的突变型RNase R的制备方法,包括如下步骤:
S1、构建含有编码所述突变型RNase R的核苷酸序列的载体;
S2、将步骤S1获得的载体转化至表达菌株BL21大肠杆菌细胞中,获得表达菌株;
S3、将步骤S2获得的表达菌株扩大培养并进行蛋白诱导表达;
S4、收集扩大培养后的表达菌株,并进行洗涤及裂解;
S5、进行蛋白纯化;
S6、进行蛋白活性测定。
优选地,步骤S1所述构建载体的过程具体如下:
(1)将大肠杆菌来源的野生型RNase R与一株耐盐的Psychrobacter sp.strainANT206来源的RNase R进行氨基酸序列比对,确定对耐盐有重要影响的氨基酸残基,并对其进行截断突变,获得如SEQ ID NO.5所述的氨基酸序列;
(2)利用PCR技术对编码突变型RNase R的核苷酸序列进行扩增,分别以RNase R-F/RNase R_△M8-R和RNase R_△M8-F/RNase R-R为引物,以含有大肠杆菌来源的RNase R_WT基因的质粒为模板,获得PCR产物;
(3)将步骤(2)获得的PCR产物经琼脂糖凝胶电泳分离后,切胶纯化,得到两段DNA片段;
(4)将pET21a载体经NdeI/XhoI酶切后,与步骤(3)所得的DNA片段进行同源重组反应,反应液与克隆菌株Trans1-T1 Phage Resistant Chemically Competent Cell轻轻混匀,获得混合液;
(5)将步骤(4)获得的混合液置于低温冰盒中冰浴3min,42℃水浴热激 30s,立即冰浴2min,加入200μL LB培养液,涂布在含有氨苄青霉素的平板上; 37℃过夜培养,次日分别挑取3个单克隆,测序验证,即得。
优选地,步骤(1)中的RNase R-F引物序列如SEQ ID NO.9所示,RNase R _△M8-R的引物序列如SEQ ID NO.10所示;所述RNase R_△M8-F的引物序列如SEQ ID NO.11所示;所述RNase R-R的引物序列如SEQ ID NO.12所示。
优选地,步骤(5)中所述的低温为-20℃。
本发明还提供了一种所述突变型RNase R在circRNA和lariat RNA鉴定中的应用。
需要说明的是,由于同一氨基酸可能有多种不同的密码子来决定,所以编码上述突变型RNase R的核苷酸序列并不局限于SEQ NO.5所示序列,也可以是由与SEQ NO.5所示核苷酸序列进行密码子优化得到可编码相同氨基酸序列的核苷酸序列。
与现有技术相比,本发明具有如下技术优势:与野生型RNase R相比,本发明提供的突变型RNase R的蛋白表达量更高,可以耐受150mM的NaCl。
附图说明
图1为Escherichia coli来源的RNase R(WP_038432731,PDB ID:5XGU) 与Psychrobacter sp.ANT206来源的RNase R(MK624989)氨基酸比对图;
图2为RNase R_WT-pET21a(+)质粒图谱;
图3为SDS-PAGE蛋白电泳图检测RNase R表达及纯化结果图;
图4为BSA标准曲线图;
图5为RNase R_WT和RNase R_△M8耐盐性检测结果图。
具体实施方式
下面结合具体实施例对本发明作进一步解释,但是应当注意的是,以下实施例仅用以解释本发明,而不能用来限制本发明,所有与本发明相同或相近的技术方案均在本发明的保护范围之内。本实施例中未注明具体技术或条件者,按照本领域常规技术方法和仪器说明书内容进行操作;所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1突变型RNase R表达载体的构建
将大肠杆菌来源的野生型RNase R(氨基酸序列如SEQ.NO.1所示)与一株耐盐的Psychrobacter sp.strain ANT206来源的RNase R(氨基酸序列如SEQ.NO.3 所示)进行氨基酸序列比对(比对结果如图1所示)。确定可能对耐盐有重要影响的氨基酸残基,并对其进行截断突变,突变后的RNase R命名为RNase R_△M8,其氨基酸序列如SEQ.NO.5。
根据突变点进行引物设计,引物序列如下:
RNase R-F: TAACTTTAAGAAGGAGATATACATATGCATCATCATCATCATCATTCACAAG(SEQ.ID NO.9);
RNase R_△M8-R:TGCCGGTTTCAGTGGTGTTGCCCTG(SEQ.NO.10);
RNaseR_△M8-F: GCAACACCACTGAAACCGGCATGCTGCAACTGGGTCAGCAC(SEQ. NO.11);
RNase R-R: TCAGTGGTGGTGGTGGTGGTGCTCGAGTCACTCTGCCACTTTTTTCTTCG(SEQ.NO.12);
利用PCR对改造的RNase R_△M8基因(其基因序列如SEQ ID NO.6所示) 进行扩增,分别以引物RNase R-F/RNase R_△M8-R和RNase R_△M8-F/ RNase R-R以含有大肠杆菌来源的RNase R_WT基因的质粒(如图2所示)) 为模板,分别扩增1843bp片段和665bp片段。其中,PCR过程采用KOD OneTM PCR Master Mix-Blue(TOYOBO,货号KMM-201)试剂盒进行试剂配制,PCR扩增条件:98℃变性10s,58℃退火5s,68℃延伸2s,循环数为40。
上述PCR产物经琼脂糖凝胶电泳分离后,切胶纯化,具体过程为将含有目标DNA的凝胶切下后,使用琼脂糖凝胶DNA小量回收试剂盒(Magen,货号D2111-03)进行DNA纯化。纯化后得到的两段DNA片段与NdeI/XhoI酶切后的pET21a(+)载体通过Hieff
Figure SMS_1
Plus OneStep Cloning Kit(Yesean,货号 10911ES20)进行同源重组反应。其中,NdeI/XhoI酶切pET21a(+)载体的过程为配制酶切体系30μL:pET21a(+)质粒3μg、10X FastDigest GreenBuffer 3μL、 FastDigest NdeI 1.5μL、FastDigest XhoI 1.5μL、H2O补足至30μL;涡旋混匀后, 37℃反应2h。
10μL的反应液与50μL的克隆菌株Trans1-T1 Phage Resistant ChemicallyCompetent Cell(全式金,货号CD501-02)轻轻混匀,低温冰盒中冰浴3min,42℃水浴热激30s,立即冰浴2min,加入200μL LB培养液,涂布在含有氨苄青霉素的平板上。37℃过夜培养,次日分别挑取3个单克隆,测序验证。
将测序结果与SEQ NO.6吻合的克隆菌株命名为RNase R_△M8 (Trans1-T1),接种至500μL LA培养液中,37℃摇床培养5h后加500μL 50%无菌的甘油,混匀后置于-80℃保存。
接种10μL上述甘油菌至5mL LA培养液中,37℃过夜振荡,次日使用HiPurePlasmid EF Mini Kit(Magen,货号P1111-03)抽提质粒,获得的质粒即为RNase R_△M8-pET21a(+)载体。将100ng的RNase R_△M8-pET21a(+)质粒热激法转化大肠杆菌BL21(DE3),即获得蛋白表达菌株RNase R_△M8(BL21(DE3)),表达菌株以同样的方法加甘油保存。
实施例2蛋白表达
将实施例1获得的表达菌株RNase R_△M8(BL21(DE3))接种至5mL LA 培养液中,置于37℃,200rpm摇床中过夜震荡培养。
次日,将5mL过夜培养物接种于新的500mL LA培养液中,37℃,200rpm 摇床培养3h(OD值约0.5),加入500μL IPTG(1M)于培养液中(终浓度1mM), 37℃,200rpm摇床继续培养3h。10000g离心5min收集菌体,用5mL的无菌 PBS洗涤一次。
实施例3蛋白纯化
向实施例2中收集到的菌体中加入40mL平衡清洗buffer(50mM磷酸盐,500mMNaCl,20mM imidazole,0.05%Tween 20,10%Glycerol,pH 8.0),涡旋至菌体充分重悬,将离心管固定在冰水浴中,超声探头插入液面1-2cm液面下,超声至菌液澄清透明(75%功率,超声4s停歇6s,总时间10min),18000g,4℃离心60min,将上清液(即RNase R_△M8蛋白裂解液)转移至新的离心管。
利用蛋白纯化系统(Unique AutoPure,Inscinstech)进行蛋白提纯:
Ni-NTA柱纯化:以DEPC treated water冲洗系统管道和Ni-NTA柱(BBI,货号C600792,规格1mL)后,以平衡清洗buffer平衡柱子。以0.8mL/min的流速上样,以平衡清洗buffer清洗杂蛋白,最后用洗脱buffer(50mM磷酸盐, 500mM NaCl,500mM imidazole,0.05%Tween 20,10%Glycerol,pH 8.0)洗脱并收集目标蛋白。
超滤管浓缩:使用超滤管(Millipore,UFC805024,50K MWCO)和冷冻离心机将上述收集到的目标蛋白进行适当浓缩,至2mL。
脱盐柱脱盐:以DEPC treated water冲洗系统管道和脱盐柱(GE,货号 29048684,规格5mL)后,以无甘油的2×storage buffer(100mM Tris-HCl(pH 7.5), 200mM NaCl,0.2mM EDTA,2mM DTT,0.2%
Figure SMS_2
X-100)平衡柱子。用一次性注射器吸取样品,在“手动上样”模式下注入定量环中,之后以2mL/min 的流速过柱,当蛋白峰出现时收样,盐峰出现时停止收样。
将脱盐后的酶液加入等体积的甘油,轻轻颠倒混匀后,短暂离心后置于-20℃冰箱中保存。具体的RNase R表达及纯化情况见图3,其中,1)代表RNase R_WT 诱导前细胞裂解液;2)代表RNase R_WT经过IPTG诱导后细胞裂解液;3)代表经过Ni-NTA柱纯化后的RNaseR_WT蛋白;4)代表RNase R_△M8诱导前细胞裂解液;5)RNase R_△M8经过IPTG诱导后细胞裂解液;6)代表经过Ni-NTA 柱纯化后的RNase R_△M8蛋白。
实施例4蛋白定量
将获得的RNase R与不同质量的BSA同时进行SDS-PAGE电泳。电泳结束后采用考马斯亮蓝G250染色,脱色后拍照,采用Quantity One软件进行灰度分析。以灰度值为Y轴,以BSA上样质量为X轴,作出标准曲线(如图4所示)。根据BSA标准曲线计算RNase R酶液的浓度及产量(如表1所示)。将所得的酶液用Storage buffer稀释成1μg/μL,置于-20℃保存。
表1野生型RNase R与突变型RNase R的产量对比
Enzyme Yield(μg)
RNase R_WT 2020
RNase R_△M8 2735
实施例5反应底物的制备
1)利用基因合成的方法,合成PCR所需的引物,其序列如下:
Linear_RNA1/2-F:5'TAATACGACTCACTATAGGGAAAAAAGGAGGTTTTAGTCTAGGGAAAGTCATTCA 3'(SEQ NO.13);
Linear_RNA1-R:5'TTGAAAAAATCATGAGATTTTCTCTCTTA 3'(SEQ NO.14);
Linear_RNA2-R:5'GGGAAAAAATCATGAGATTTTCTCTCTTA 3'(SEQ NO.15);
2)利用PCR合成DNA模板。
以含有circ-ACE2 RNA序列的质粒为模板,采用Linear_RNA1/2-F(SEQ NO.13)和Linear_RNA1-R(SEQ NO.14)进行PCR扩增,PCR产物经过琼脂糖电泳分离后,割胶回收获得模板DNA1,此处的PCR扩增过程同样采用 KOD OneTM PCR Master Mix-Blue-(TOYOBO,货号KMM-201)试剂盒配制体系,扩增条件为98℃变性10s,58℃退火5s,68℃延伸1s,循环数为40。
以含有circ-ACE2 RNA序列的质粒为模板,利用采用Linear_RNA1/2-F(SEQNO.13)和Linear_RNA2-R(SEQ NO.15)进行PCR扩增(具体过程同DNA1), PCR产物经过琼脂糖电泳分离后,割胶回收获得模板DNA2。
1)利用T7 RNA聚合酶体外合成线性RNA
以DNA1为模板,利用TranscriptAid T7 High Yield Transcription Kit(ThermoScientific,货号K0441)体外转录合成两末端互补配对但3’端有2个碱基突出的Linear_RNA1(SEQ NO.7),作为RNase R特异性消化反应中的目标RNA。
以DNA2为模板,利用TranscriptAid T7 High Yield Transcription Kit(ThermoScientific,货号K0441)体外转录合成两末端完全互补配对的Linear_RNA2(SEQ NO.8),作为RNase R特异性消化反应中的对照RNA。
上述RNA合成及纯化的方法具体如下:
(1)体外转录合成RNA。以DNA1和DNA2为模板,分别合成Linear_RNA1 和Linear_RNA2。按照表2所示,按顺序配制反应体系,轻轻混匀后37℃反应 2h。
表2体外转录的反应体系
组分 用量
DEPC treated water 补足至20μL
5X TranscriptAid Reaction Buffer 4μL
ATP,Tris buffered 100mM* 2μL
UTP,Tris buffered 100mM* 2μL
GTP,Tris buffered 100mM* 2μL
CTP,Tris buffered 100mM* 2μL
DNA1或DNA2 1μg
TranscriptAid Enzyme Mix 2μL
(2)上述反应结束后,往20μL体系中添加2μL的DNase I(RNase-free, 1U/μLDNA),混匀后37℃反应15min,消化DNA模板。
(3)将步骤(2)所得的产物转移至一个RNase free的1.5mL离心管,加入 1mL的Trizol进行RNA纯化,后续操作同Trizol抽提细胞中的RNA。
(4)获得的RNA加适量DEPC treated water溶解,测定浓度后置于-80℃冰箱中保存。
实施例6RNase R活性及耐盐性测定
1)按照表3所示,配制不同浓度NaCl的10×reaction buffer
表3不同浓度NaCl的10×reaction buffer
Figure SMS_3
Figure SMS_4
2)按照表4所示,在20μL体系中,以3μg的Linear_RNA1或Linear_RNA2 为底物,分别加入不同NaCl浓度的反应buffer,最后加入突变型RNase R(RNase R_△M8),混匀后于37℃反应15min,70℃热失活10min,插入冰盒中。上述试验以野生型RNase R(RNase R_WT)为对照。分别取3μL反应液加入3μL 2 ×RNA Loading Dye(NEB,货号B0363A)进行1.5%的琼脂糖凝胶电泳。结果如图5所示,野生型RNase R(RNase R_WT)和突变型RNase R(RNase R_△M8) 对末端完全双链结构的RNA2基本不消化,可以消化3’有突出结构的RNA1。对比野生型RNase R(RNase R_WT),突变型RNase R(RNase R_△M8)的消化能力更强且能耐受终浓度为150mM的NaCl。
表4 RNase R反应体系
组分 用量
DEPC treated water 补足至20μL
RNA 3μg
10×buf1/2/3/4/5/6 2μL
RNase R(1μg/μL) 0.5μL
需要说明的是,尽管已经对上述各实施例进行了描述,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改,所以以上所述仅为本发明的实施例,并非因此限制本发明的专利保护范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围之内。
SEQUENCE LISTING
<110> 广州吉赛生物科技股份有限公司
<120> 一种突变型RNase R及其制备方法和应用
<130> 2022.1.28
<160> 15
<170> PatentIn version 3.3
<210> 1
<211> 813
<212> PRT
<213> E.coli来源的野生型RNase R的氨基酸序列(Amino acid sequence of wild-typeRNase R derived from E. coli)
<400> 1
Met Ser Gln Asp Pro Phe Gln Glu Arg Glu Ala Glu Lys Tyr Ala Asn
1 5 10 15
Pro Ile Pro Ser Arg Glu Phe Ile Leu Glu His Leu Thr Lys Arg Glu
20 25 30
Lys Pro Ala Ser Arg Asp Glu Leu Ala Val Glu Leu His Ile Glu Gly
35 40 45
Glu Glu Gln Leu Glu Gly Leu Arg Arg Arg Leu Arg Ala Met Glu Arg
50 55 60
Asp Gly Gln Leu Val Phe Thr Arg Arg Gln Cys Tyr Ala Leu Pro Glu
65 70 75 80
Arg Leu Asp Leu Val Lys Gly Thr Val Ile Gly His Arg Asp Gly Tyr
85 90 95
Gly Phe Leu Arg Val Glu Gly Arg Lys Asp Asp Leu Tyr Leu Ser Ser
100 105 110
Glu Gln Met Lys Thr Cys Ile His Gly Asp Gln Val Leu Ala Gln Pro
115 120 125
Leu Gly Ala Asp Arg Lys Gly Arg Arg Glu Ala Arg Ile Val Arg Val
130 135 140
Leu Val Pro Lys Thr Ser Gln Ile Val Gly Arg Tyr Phe Thr Glu Ala
145 150 155 160
Gly Val Gly Phe Val Val Pro Asp Asp Ser Arg Leu Ser Phe Asp Ile
165 170 175
Leu Ile Pro Pro Asp Gln Ile Met Gly Ala Arg Met Gly Phe Val Val
180 185 190
Val Val Glu Leu Thr Gln Arg Pro Thr Arg Arg Thr Lys Ala Val Gly
195 200 205
Lys Ile Val Glu Val Leu Gly Asp Asn Met Gly Thr Gly Met Ala Val
210 215 220
Asp Ile Ala Leu Arg Thr His Glu Ile Pro Tyr Ile Trp Pro Gln Ala
225 230 235 240
Val Glu Gln Gln Val Ala Gly Leu Lys Glu Glu Val Pro Glu Glu Ala
245 250 255
Lys Ala Gly Arg Val Asp Leu Arg Asp Leu Pro Leu Val Thr Ile Asp
260 265 270
Gly Glu Asp Ala Arg Asp Phe Asp Asp Ala Val Tyr Cys Glu Lys Lys
275 280 285
Arg Gly Gly Gly Trp Arg Leu Trp Val Ala Ile Ala Asp Val Ser Tyr
290 295 300
Tyr Val Arg Pro Ser Thr Pro Leu Asp Arg Glu Ala Arg Asn Arg Gly
305 310 315 320
Thr Ser Val Tyr Phe Pro Ser Gln Val Ile Pro Met Leu Pro Glu Val
325 330 335
Leu Ser Asn Gly Leu Cys Ser Leu Asn Pro Gln Val Asp Arg Leu Cys
340 345 350
Met Val Cys Glu Met Thr Val Ser Ser Lys Gly Arg Leu Thr Gly Tyr
355 360 365
Lys Phe Tyr Glu Ala Val Met Ser Ser His Ala Arg Leu Thr Tyr Thr
370 375 380
Lys Val Trp His Ile Leu Gln Gly Asp Gln Asp Leu Arg Glu Gln Tyr
385 390 395 400
Ala Pro Leu Val Lys His Leu Glu Glu Leu His Asn Leu Tyr Lys Val
405 410 415
Leu Asp Lys Ala Arg Glu Glu Arg Gly Gly Ile Ser Phe Glu Ser Glu
420 425 430
Glu Ala Lys Phe Ile Phe Asn Ala Glu Arg Arg Ile Glu Arg Ile Glu
435 440 445
Gln Thr Gln Arg Asn Asp Ala His Lys Leu Ile Glu Glu Cys Met Ile
450 455 460
Leu Ala Asn Ile Ser Ala Ala Arg Phe Val Glu Lys Ala Lys Glu Pro
465 470 475 480
Ala Leu Phe Arg Ile His Asp Lys Pro Ser Thr Glu Ala Ile Thr Ser
485 490 495
Phe Arg Ser Val Leu Ala Glu Leu Gly Leu Glu Leu Pro Gly Gly Asn
500 505 510
Lys Pro Glu Pro Arg Asp Tyr Ala Glu Leu Leu Glu Ser Val Ala Asp
515 520 525
Arg Pro Asp Ala Glu Met Leu Gln Thr Met Leu Leu Arg Ser Met Lys
530 535 540
Gln Ala Ile Tyr Asp Pro Glu Asn Arg Gly His Phe Gly Leu Ala Leu
545 550 555 560
Gln Ser Tyr Ala His Phe Thr Ser Pro Ile Arg Arg Tyr Pro Asp Leu
565 570 575
Thr Leu His Arg Ala Ile Lys Tyr Leu Leu Ala Lys Glu Gln Gly His
580 585 590
Gln Gly Asn Thr Thr Glu Thr Gly Gly Tyr His Tyr Ser Met Glu Glu
595 600 605
Met Leu Gln Leu Gly Gln His Cys Ser Met Ala Glu Arg Arg Ala Asp
610 615 620
Glu Ala Thr Arg Asp Val Ala Asp Trp Leu Lys Cys Asp Phe Met Leu
625 630 635 640
Asp Gln Val Gly Asn Val Phe Lys Gly Val Ile Ser Ser Val Thr Gly
645 650 655
Phe Gly Phe Phe Val Arg Leu Asp Asp Leu Phe Ile Asp Gly Leu Val
660 665 670
His Val Ser Ser Leu Asp Asn Asp Tyr Tyr Arg Phe Asp Gln Val Gly
675 680 685
Gln Arg Leu Met Gly Glu Ser Ser Gly Gln Thr Tyr Arg Leu Gly Asp
690 695 700
Arg Val Glu Val Arg Val Glu Ala Val Asn Met Asp Glu Arg Lys Ile
705 710 715 720
Asp Phe Ser Leu Ile Ser Ser Glu Arg Ala Pro Arg Asn Val Gly Lys
725 730 735
Thr Ala Arg Glu Lys Ala Lys Lys Gly Asp Ala Gly Lys Lys Gly Gly
740 745 750
Lys Arg Arg Gln Val Gly Lys Lys Val Asn Phe Glu Pro Asp Ser Ala
755 760 765
Phe Arg Gly Glu Lys Lys Thr Lys Pro Lys Ala Ala Lys Lys Asp Ala
770 775 780
Arg Lys Ala Lys Lys Pro Ser Ala Lys Thr Gln Lys Ile Ala Ala Ala
785 790 795 800
Thr Lys Ala Lys Arg Ala Ala Lys Lys Lys Val Ala Glu
805 810
<210> 2
<211> 2442
<212> DNA
<213> 编码E.coli来源的野生型RNase R的氨基酸序列的核苷酸序列(Nucleotidesequence encoding the amino acid sequence of E. coli-derived wild-type RNase R)
<400> 2
atgtcacaag atcctttcca ggaacgcgaa gctgaaaaat acgcgaatcc catccctagt 60
cgggaattta tcctcgaaca tttaaccaaa cgtgaaaaac cggccagccg tgatgagctg 120
gcggtagaac tgcacattga aggcgaagag cagcttgaag gcctgcgtcg ccgcctgcgc 180
gcgatggagc gcgatggtca actggtcttc actcgtcgtc agtgctatgc gctgccggaa 240
cgcctcgacc tggtgaaagg taccgttatt ggccaccgtg atggctacgg ctttctgcgg 300
gttgaagggc gtaaagatga tttgtatctc tccagcgagc agatgaaaac ctgcattcat 360
ggcgatcagg tgctggcgca gccgctgggc gctgaccgta aaggtcgtcg tgaagcgcgt 420
attgtccgcg tactggtgcc aaaaaccagc cagattgttg gtcgctactt tactgaagcg 480
ggcgtcggct ttgtggttcc tgacgatagc cgtctgagct tcgatatctt aatcccgccc 540
gatcagatca tgggcgcgag gatgggcttt gtggtcgtag tcgaactgac tcagcgtccg 600
actcgccgca ccaaagcggt gggtaaaatc gtcgaagtgc tgggcgacaa tatgggcacc 660
ggcatggcgg ttgatatcgc tctgcgtacc catgaaattc cgtacatctg gccgcaggct 720
gttgagcaac aggttgccgg gctgaaagaa gaagtgccgg aagaagcaaa agcgggccgt 780
gttgatctgc gcgatttacc gctggtcacc attgatggcg aagacgcccg tgactttgac 840
gatgcagttt actgcgagaa aaaacgcggc ggcggctggc gtttatgggt cgcgattgcc 900
gacgtcagct actatgtgcg tccgtcaacg ccgctggaca gagaagcgcg taaccgtggc 960
acgtcggtgt acttcccttc gcaggttatc ccgatgctgc cggaagtgct ctctaacggc 1020
ctgtgttcgc tcaacccgca ggtagaccgc ctgtgtatgg tgtgcgagat gacggtttcg 1080
tcgaaaggcc gcctgacggg ctacaaattc tacgaagcgg tgatgagctc tcacgcgcgt 1140
ctgacctaca ccaaagtctg gcatattctg cagggcgatc aggatctgcg cgagcagtac 1200
gccccgctgg ttaagcatct cgaagagttg cataacctct ataaagtgct ggataaagcc 1260
cgtgaagaac gcggtgggat ctcatttgag agcgaagaag cgaagttcat tttcaacgct 1320
gaacgccgta ttgaacgtat cgaacagacc cagcgtaacg acgcgcacaa attaattgaa 1380
gagtgcatga ttctggcgaa tatctcggcg gcgcgtttcg ttgagaaagc gaaagaaccg 1440
gcactgttcc gtattcacga caagccgagc accgaagcga ttacctcttt ccgttcagtg 1500
ctggcggagc tggggctgga actgccgggc ggtaacaagc cggaaccgcg tgactacgcg 1560
gagctgctgg agtcggttgc cgatcgtcct gatgcagaaa tgctgcaaac catgctgctg 1620
cgctcgatga aacaggcgat ttacgatcca gaaaaccgtg gtcactttgg cctggcattg 1680
cagtcctatg cgcactttac ttcgccgatt cgtcgttatc cagacctgac gctgcaccgc 1740
gccattaaat atctgctggc gaaagagcag gggcatcagg gcaacaccac tgaaaccggc 1800
ggctaccatt attcgatgga agagatgctg caactgggtc agcactgttc gatggcggaa 1860
cgtcgtgccg acgaagcaac gcgcgatgtg gctgactggc tgaagtgtga cttcatgctc 1920
gaccaggtag gtaacgtctt taaaggcgta atttccagcg tcactggctt tggcttcttc 1980
gtccgtctgg acgacttgtt cattgatggt ctggtccatg tctcttcgct ggacaatgac 2040
tactatcgct ttgaccaggt agggcaacgc ctgatggggg aatccagcgg ccagacttat 2100
cgcctgggcg atcgcgtgga agttcgcgtc gaagcggtta atatggacga gcgcaaaatc 2160
gactttagcc tgatctccag cgaacgcgca ccgcgcaacg tcggtaaaac ggcgcgcgag 2220
aaagcgaaaa aaggcgatgc aggtaaaaaa ggcggcaagc gtcgtcaggt cggtaaaaag 2280
gtaaactttg agccagacag cgccttccgc ggtgagaaaa aaacgaagcc gaaagcggcg 2340
aagaaagacg cgagaaaagc gaaaaagcca tcggcgaaaa cgcagaaaat agctgcagcg 2400
accaaagcga agcgtgcggc gaagaaaaaa gtggcagagt ga 2442
<210> 3
<211> 770
<212> PRT
<213> Psychrobacter sp. strain ANT206来源的RNase R的氨基酸序列(Amino acidsequence of RNase R derived from Psychrobacter sp. strain ANT206)
<400> 3
Met Ser Trp Asn Asp Pro Asn Ala Ser Ser Glu Ala Gln Lys Tyr Asp
1 5 10 15
Asn Pro Ile Pro Ser Arg Glu Leu Ile Leu Ser Thr Ile Asn Glu His
20 25 30
Gly Glu Ile Thr His Gln Gln Leu Ala Lys Ala Phe Asn Ile Ala Asp
35 40 45
Pro Asp Gln Phe Asp Ala Leu Gly Asn Arg Leu Lys Ala Met Thr Arg
50 55 60
Asp Gly Gln Val Asn Arg Asp Gly Arg Pro Tyr Arg Tyr Arg Thr Val
65 70 75 80
Thr Gln His Asp Ile Val Thr Gly Thr Val Thr Ala His Pro Lys Gly
85 90 95
Phe Gly Phe Val Leu Leu Ser Asp Met Pro Asp Leu Phe Leu His Glu
100 105 110
Lys Gln Met Arg Trp Val Phe Asn Gly Asp Thr Val Glu Ala Val Gly
115 120 125
Thr Ser Thr Asp Asn Arg Gly Arg Thr Glu Gly Arg Ile Val Asp Val
130 135 140
Val Glu Arg Arg Gln Asn His Phe Ile Gly Thr Leu Ala His Asp Glu
145 150 155 160
Asp Gly Tyr Cys Val Glu Leu Gly Ser Pro Asn Asn His Gln Pro Ile
165 170 175
Thr Val Thr Glu Asp Asn Val Gln Ala Phe Asn Ala Lys Gln Gly Ser
180 185 190
Pro Val Lys Val Asp Ile Ile Asp Trp Pro Asn Gln His Glu Phe Ala
195 200 205
Thr Gly Lys Ile Val Glu Val Met Asp Asp Asp Asn Asp Arg Glu Val
210 215 220
Ile Ile Glu Thr Thr Leu Tyr Asn Tyr Asp Ile Pro His Glu Phe Gly
225 230 235 240
Ala Ala Thr Leu Glu Gln Ala Ala Ser Tyr Lys Glu Pro Thr Glu Lys
245 250 255
Asp Phe Lys Asn Arg Thr Asp Leu Arg Gln Leu Pro Leu Val Thr Ile
260 265 270
Asp Gly Glu Asp Ser Arg Asp Phe Asp Asp Ala Val Tyr Ala Glu Lys
275 280 285
Arg Thr Gly Gly Asn Tyr Arg Val Val Val Ala Ile Ser Asp Val Ser
290 295 300
His Tyr Val Thr Pro Gln Ser Pro Leu Asp His Glu Ala Tyr Glu Arg
305 310 315 320
Gly Thr Ser Val Tyr Phe Pro His His Val Val Pro Met Leu Pro Glu
325 330 335
Val Leu Ser Asn Gly Leu Cys Ser Leu Lys Pro Gly Val Asp Arg Leu
340 345 350
Cys Met Val Ala Asp Ile Lys Val Ser Arg Thr Gly Lys Ile Thr Ser
355 360 365
Tyr Glu Phe Tyr Pro Ser Val Met His Ser Gln Ala Arg Leu Thr Tyr
370 375 380
Asn Gln Val Asn Asp Tyr Phe Val Asp Pro Thr Asp Glu Ser Val Pro
385 390 395 400
Asp Glu Leu Thr Arg Asn Lys Asp Val Lys Lys Ser Ile Asp Thr Met
405 410 415
Phe Gln Leu Tyr Glu Val Leu Asp Lys Lys Arg Glu Gln Arg Asn Ala
420 425 430
Met Glu Phe Glu Thr Pro Glu Thr Tyr Ile Lys Phe Asp Glu Glu Gly
435 440 445
Asp Ile Asp Asp Ile Val Lys Arg Thr Arg Gly Asp Ser His Lys Leu
450 455 460
Ile Glu Glu Met Met Leu Leu Ala Asn Thr Cys Ala Ala Asn Phe Ser
465 470 475 480
Leu Lys His Glu Leu Pro Val Leu Tyr Arg Asn His Asp Lys Pro Asp
485 490 495
Asp Glu Lys Ser Arg Ile Leu His Glu Tyr Val Lys Asn Phe Gly Leu
500 505 510
Pro Phe Pro Gln Glu Ser Pro Thr His Glu Asp Tyr Lys Arg Ile Ile
515 520 525
Glu Ala Thr Lys Glu Arg Pro Asp Ala Val Ser Ile His Ser Met Leu
530 535 540
Leu Arg Ser Met Met Gln Ala Asn Tyr Ser Pro Asp Asn Ile Gly His
545 550 555 560
Phe Gly Leu Ala Tyr Asp Glu Tyr Ser His Phe Thr Ser Pro Ile Arg
565 570 575
Arg Tyr Pro Asp Leu Met Leu His Arg Ala Ile Lys Ala Lys Val Thr
580 585 590
Asn Ala Lys Gln Pro Val Met Asp Phe Ser Leu Glu Gly Ala Gly Met
595 600 605
Gln Thr Ser Asp Thr Glu Arg Arg Ala Glu Lys Ala Ser Arg Tyr Val
610 615 620
Glu Ser Trp Leu Lys Cys His Tyr Met Lys Asp His Val Gly Glu Glu
625 630 635 640
Phe Asp Gly Val Val Thr Thr Val Thr Asn Phe Gly Leu Phe Ile Thr
645 650 655
Leu Thr Asp Leu Tyr Ile Asp Gly Leu Val His Ile Ser Asn Val Gly
660 665 670
Asp Asp Phe Phe Val Tyr Asp Glu Gln Gln Gln Gln Leu Ile Gly Lys
675 680 685
Asp Arg Gly Thr Val Phe Gly Leu Gly Asp Leu Val Lys Val Lys Val
690 695 700
Ala Gly Val Asn Met Asp Leu Leu Gln Ile Asp Phe Gly Leu Gln Ala
705 710 715 720
Lys Leu Gln Ser Ser Lys Met Asn Gln Thr Lys Lys Asp His Ser Asn
725 730 735
Ser Ser Gln Pro Asn Arg Ser Ser Thr Ser Lys Asp Gln Pro Lys Lys
740 745 750
Ser Pro Ala Lys Arg Ser Gly Ser Arg Gly Gly Arg Gly Ser Ser Lys
755 760 765
Lys Ser
770
<210> 4
<211> 2313
<212> DNA
<213> 编码ANT206来源的RNase R氨基酸序列的核苷酸序列(Nucleotide sequenceencoding amino acid sequence of RNase R derived from ANT206)
<400> 4
atgagttgga atgatccaaa cgcctcaagt gaggcacaaa aatatgataa cccgattcct 60
agtcgcgagc ttatattaag cacgattaat gaacacggtg aaatcaccca tcagcaattg 120
gcaaaagcct ttaatattgc tgatcccgat cagtttgacg ctttaggcaa ccgcctaaaa 180
gcgatgacac gcgatggaca agtcaatcgt gacggtcgcc cttatcgcta tcgtacggtc 240
actcagcacg acatcgtcac cggtacagta acagcccatc caaagggctt tggctttgta 300
ttattaagtg atatgcctga cctattcttg catgaaaaac aaatgcgttg ggtctttaat 360
ggcgatacag tagaagccgt tggcacgtca acagacaacc gcggtcgtac tgaaggtcgt 420
atcgttgatg tcgttgagcg tcgtcaaaat cattttatcg gtacgctggc tcatgatgaa 480
gacggttact gcgttgagct tggtagccca aataaccatc agccgattac cgttacagaa 540
gacaatgtac aggctttcaa tgctaagcaa ggctcgccgg taaaagttga tattattgat 600
tggccaaatc agcatgaatt tgccacgggc aaaatcgttg aagtcatgga tgatgacaat 660
gatcgcgaag taatcattga gactacgtta tataattatg atattccaca tgagttcggt 720
gccgcgactc tcgagcaagc agcttcgtat aaagagccga ctgaaaaaga tttcaaaaat 780
cgtactgact tacgtcaatt gccattagtg acgatcgatg gtgaagattc ccgtgacttt 840
gatgatgctg tgtatgcaga aaagcgtaca ggtggtaatt atcgcgtcgt ggtagcgatt 900
agtgatgtca gtcattatgt gacaccgcag tcgccacttg atcacgaagc ctacgagcgt 960
ggtacgtcag tatatttccc gcatcatgtg gtgcctatgt tgcctgaagt actgtctaat 1020
ggtctctgtt cgctgaagcc tggcgtcgat cgcctctgta tggttgctga tattaaggta 1080
tcacgtacag gtaaaatcac cagttatgag ttttatccta gtgtcatgca ctcgcaagcg 1140
cgcttgactt acaatcaagt gaacgattat tttgtagatc caactgacga gagcgttcca 1200
gacgaattga caagaaataa agacgtcaaa aaatctatag ataccatgtt ccaactgtat 1260
gaggtactcg ataaaaagcg tgaacaacgt aacgcgatgg agtttgagac cccagaaact 1320
tatattaagt tcgatgaaga aggtgatatc gatgatatcg taaagcgtac gcgcggtgat 1380
tcacataagc ttatcgaaga gatgatgttg cttgccaata cctgtgcagc aaacttttca 1440
ctaaaacacg agctgcctgt gttatatcgt aatcatgata agcctgatga tgaaaagtcg 1500
agaattttac atgaatatgt caaaaacttt ggtctaccct tcccacagga aagtcctact 1560
cacgaggatt ataaacgtat cattgaagca actaaagagc gaccggatgc ggttagcatt 1620
catagcatgc tgcttcgttc gatgatgcaa gcgaactatt cacctgacaa tatcggtcac 1680
tttggtttgg cttacgatga gtatagtcat tttacctcgc cgattcgtcg ttatcctgac 1740
ttaatgttgc atcgtgcgat caaggcgaaa gtgacaaatg ccaaacagcc tgtgatggat 1800
ttttcattag aaggtgctgg catgcaaacc tcagatactg agcgccgtgc tgaaaaggct 1860
tcacgctacg tagaatcatg gctcaaatgt cattatatga aagatcatgt cggcgaagag 1920
ttcgatggtg tcgtaactac cgtcacaaac tttggtttat ttattactct gacggatttg 1980
tatatcgatg gtttggtgca tatctcaaac gttggtgacg atttctttgt ttatgatgag 2040
cagcagcaac agcttatcgg taaagataga ggcacagtgt ttgggctggg cgatttggtt 2100
aaagttaaag tagctggcgt taatatggat ctgctacaaa ttgactttgg tttacaagca 2160
aagctgcaat ctagtaaaat gaatcaaact aagaaagatc attcaaactc tagtcagcca 2220
aaccgcagct ccacaagcaa agatcagcca aagaaatcac ctgcgaagag aagcggcagt 2280
cgtggtggta gaggcagtag taaaaagagc taa 2313
<210> 5
<211> 805
<212> PRT
<213> RNase R_△M8的氨基酸序列(Amino acid sequence of RNase R_△M8)
<400> 5
Met Ser Gln Asp Pro Phe Gln Glu Arg Glu Ala Glu Lys Tyr Ala Asn
1 5 10 15
Pro Ile Pro Ser Arg Glu Phe Ile Leu Glu His Leu Thr Lys Arg Glu
20 25 30
Lys Pro Ala Ser Arg Asp Glu Leu Ala Val Glu Leu His Ile Glu Gly
35 40 45
Glu Glu Gln Leu Glu Gly Leu Arg Arg Arg Leu Arg Ala Met Glu Arg
50 55 60
Asp Gly Gln Leu Val Phe Thr Arg Arg Gln Cys Tyr Ala Leu Pro Glu
65 70 75 80
Arg Leu Asp Leu Val Lys Gly Thr Val Ile Gly His Arg Asp Gly Tyr
85 90 95
Gly Phe Leu Arg Val Glu Gly Arg Lys Asp Asp Leu Tyr Leu Ser Ser
100 105 110
Glu Gln Met Lys Thr Cys Ile His Gly Asp Gln Val Leu Ala Gln Pro
115 120 125
Leu Gly Ala Asp Arg Lys Gly Arg Arg Glu Ala Arg Ile Val Arg Val
130 135 140
Leu Val Pro Lys Thr Ser Gln Ile Val Gly Arg Tyr Phe Thr Glu Ala
145 150 155 160
Gly Val Gly Phe Val Val Pro Asp Asp Ser Arg Leu Ser Phe Asp Ile
165 170 175
Leu Ile Pro Pro Asp Gln Ile Met Gly Ala Arg Met Gly Phe Val Val
180 185 190
Val Val Glu Leu Thr Gln Arg Pro Thr Arg Arg Thr Lys Ala Val Gly
195 200 205
Lys Ile Val Glu Val Leu Gly Asp Asn Met Gly Thr Gly Met Ala Val
210 215 220
Asp Ile Ala Leu Arg Thr His Glu Ile Pro Tyr Ile Trp Pro Gln Ala
225 230 235 240
Val Glu Gln Gln Val Ala Gly Leu Lys Glu Glu Val Pro Glu Glu Ala
245 250 255
Lys Ala Gly Arg Val Asp Leu Arg Asp Leu Pro Leu Val Thr Ile Asp
260 265 270
Gly Glu Asp Ala Arg Asp Phe Asp Asp Ala Val Tyr Cys Glu Lys Lys
275 280 285
Arg Gly Gly Gly Trp Arg Leu Trp Val Ala Ile Ala Asp Val Ser Tyr
290 295 300
Tyr Val Arg Pro Ser Thr Pro Leu Asp Arg Glu Ala Arg Asn Arg Gly
305 310 315 320
Thr Ser Val Tyr Phe Pro Ser Gln Val Ile Pro Met Leu Pro Glu Val
325 330 335
Leu Ser Asn Gly Leu Cys Ser Leu Asn Pro Gln Val Asp Arg Leu Cys
340 345 350
Met Val Cys Glu Met Thr Val Ser Ser Lys Gly Arg Leu Thr Gly Tyr
355 360 365
Lys Phe Tyr Glu Ala Val Met Ser Ser His Ala Arg Leu Thr Tyr Thr
370 375 380
Lys Val Trp His Ile Leu Gln Gly Asp Gln Asp Leu Arg Glu Gln Tyr
385 390 395 400
Ala Pro Leu Val Lys His Leu Glu Glu Leu His Asn Leu Tyr Lys Val
405 410 415
Leu Asp Lys Ala Arg Glu Glu Arg Gly Gly Ile Ser Phe Glu Ser Glu
420 425 430
Glu Ala Lys Phe Ile Phe Asn Ala Glu Arg Arg Ile Glu Arg Ile Glu
435 440 445
Gln Thr Gln Arg Asn Asp Ala His Lys Leu Ile Glu Glu Cys Met Ile
450 455 460
Leu Ala Asn Ile Ser Ala Ala Arg Phe Val Glu Lys Ala Lys Glu Pro
465 470 475 480
Ala Leu Phe Arg Ile His Asp Lys Pro Ser Thr Glu Ala Ile Thr Ser
485 490 495
Phe Arg Ser Val Leu Ala Glu Leu Gly Leu Glu Leu Pro Gly Gly Asn
500 505 510
Lys Pro Glu Pro Arg Asp Tyr Ala Glu Leu Leu Glu Ser Val Ala Asp
515 520 525
Arg Pro Asp Ala Glu Met Leu Gln Thr Met Leu Leu Arg Ser Met Lys
530 535 540
Gln Ala Ile Tyr Asp Pro Glu Asn Arg Gly His Phe Gly Leu Ala Leu
545 550 555 560
Gln Ser Tyr Ala His Phe Thr Ser Pro Ile Arg Arg Tyr Pro Asp Leu
565 570 575
Thr Leu His Arg Ala Ile Lys Tyr Leu Leu Ala Lys Glu Gln Gly His
580 585 590
Gln Gly Asn Thr Thr Glu Thr Gly Met Leu Gln Leu Gly Gln His Cys
595 600 605
Ser Met Ala Glu Arg Arg Ala Asp Glu Ala Thr Arg Asp Val Ala Asp
610 615 620
Trp Leu Lys Cys Asp Phe Met Leu Asp Gln Val Gly Asn Val Phe Lys
625 630 635 640
Gly Val Ile Ser Ser Val Thr Gly Phe Gly Phe Phe Val Arg Leu Asp
645 650 655
Asp Leu Phe Ile Asp Gly Leu Val His Val Ser Ser Leu Asp Asn Asp
660 665 670
Tyr Tyr Arg Phe Asp Gln Val Gly Gln Arg Leu Met Gly Glu Ser Ser
675 680 685
Gly Gln Thr Tyr Arg Leu Gly Asp Arg Val Glu Val Arg Val Glu Ala
690 695 700
Val Asn Met Asp Glu Arg Lys Ile Asp Phe Ser Leu Ile Ser Ser Glu
705 710 715 720
Arg Ala Pro Arg Asn Val Gly Lys Thr Ala Arg Glu Lys Ala Lys Lys
725 730 735
Gly Asp Ala Gly Lys Lys Gly Gly Lys Arg Arg Gln Val Gly Lys Lys
740 745 750
Val Asn Phe Glu Pro Asp Ser Ala Phe Arg Gly Glu Lys Lys Thr Lys
755 760 765
Pro Lys Ala Ala Lys Lys Asp Ala Arg Lys Ala Lys Lys Pro Ser Ala
770 775 780
Lys Thr Gln Lys Ile Ala Ala Ala Thr Lys Ala Lys Arg Ala Ala Lys
785 790 795 800
Lys Lys Val Ala Glu
805
<210> 6
<211> 2418
<212> DNA
<213> 编码RNase R △M8氨基酸序列的核苷酸序列(Nucleotide sequence encodingthe amino acid sequence of RNase R ΔM8)
<400> 6
atgtcacaag atcctttcca ggaacgcgaa gctgaaaaat acgcgaatcc catccctagt 60
cgggaattta tcctcgaaca tttaaccaaa cgtgaaaaac cggccagccg tgatgagctg 120
gcggtagaac tgcacattga aggcgaagag cagcttgaag gcctgcgtcg ccgcctgcgc 180
gcgatggagc gcgatggtca actggtcttc actcgtcgtc agtgctatgc gctgccggaa 240
cgcctcgacc tggtgaaagg taccgttatt ggccaccgtg atggctacgg ctttctgcgg 300
gttgaagggc gtaaagatga tttgtatctc tccagcgagc agatgaaaac ctgcattcat 360
ggcgatcagg tgctggcgca gccgctgggc gctgaccgta aaggtcgtcg tgaagcgcgt 420
attgtccgcg tactggtgcc aaaaaccagc cagattgttg gtcgctactt tactgaagcg 480
ggcgtcggct ttgtggttcc tgacgatagc cgtctgagct tcgatatctt aatcccgccc 540
gatcagatca tgggcgcgag gatgggcttt gtggtcgtag tcgaactgac tcagcgtccg 600
actcgccgca ccaaagcggt gggtaaaatc gtcgaagtgc tgggcgacaa tatgggcacc 660
ggcatggcgg ttgatatcgc tctgcgtacc catgaaattc cgtacatctg gccgcaggct 720
gttgagcaac aggttgccgg gctgaaagaa gaagtgccgg aagaagcaaa agcgggccgt 780
gttgatctgc gcgatttacc gctggtcacc attgatggcg aagacgcccg tgactttgac 840
gatgcagttt actgcgagaa aaaacgcggc ggcggctggc gtttatgggt cgcgattgcc 900
gacgtcagct actatgtgcg tccgtcaacg ccgctggaca gagaagcgcg taaccgtggc 960
acgtcggtgt acttcccttc gcaggttatc ccgatgctgc cggaagtgct ctctaacggc 1020
ctgtgttcgc tcaacccgca ggtagaccgc ctgtgtatgg tgtgcgagat gacggtttcg 1080
tcgaaaggcc gcctgacggg ctacaaattc tacgaagcgg tgatgagctc tcacgcgcgt 1140
ctgacctaca ccaaagtctg gcatattctg cagggcgatc aggatctgcg cgagcagtac 1200
gccccgctgg ttaagcatct cgaagagttg cataacctct ataaagtgct ggataaagcc 1260
cgtgaagaac gcggtgggat ctcatttgag agcgaagaag cgaagttcat tttcaacgct 1320
gaacgccgta ttgaacgtat cgaacagacc cagcgtaacg acgcgcacaa attaattgaa 1380
gagtgcatga ttctggcgaa tatctcggcg gcgcgtttcg ttgagaaagc gaaagaaccg 1440
gcactgttcc gtattcacga caagccgagc accgaagcga ttacctcttt ccgttcagtg 1500
ctggcggagc tggggctgga actgccgggc ggtaacaagc cggaaccgcg tgactacgcg 1560
gagctgctgg agtcggttgc cgatcgtcct gatgcagaaa tgctgcaaac catgctgctg 1620
cgctcgatga aacaggcgat ttacgatcca gaaaaccgtg gtcactttgg cctggcattg 1680
cagtcctatg cgcactttac ttcgccgatt cgtcgttatc cagacctgac gctgcaccgc 1740
gccattaaat atctgctggc gaaagagcag gggcatcagg gcaacaccac tgaaaccggc 1800
atgctgcaac tgggtcagca ctgttcgatg gcggaacgtc gtgccgacga agcaacgcgc 1860
gatgtggctg actggctgaa gtgtgacttc atgctcgacc aggtaggtaa cgtctttaaa 1920
ggcgtaattt ccagcgtcac tggctttggc ttcttcgtcc gtctggacga cttgttcatt 1980
gatggtctgg tccatgtctc ttcgctggac aatgactact atcgctttga ccaggtaggg 2040
caacgcctga tgggggaatc cagcggccag acttatcgcc tgggcgatcg cgtggaagtt 2100
cgcgtcgaag cggttaatat ggacgagcgc aaaatcgact ttagcctgat ctccagcgaa 2160
cgcgcaccgc gcaacgtcgg taaaacggcg cgcgagaaag cgaaaaaagg cgatgcaggt 2220
aaaaaaggcg gcaagcgtcg tcaggtcggt aaaaaggtaa actttgagcc agacagcgcc 2280
ttccgcggtg agaaaaaaac gaagccgaaa gcggcgaaga aagacgcgag aaaagcgaaa 2340
aagccatcgg cgaaaacgca gaaaatagct gcagcgacca aagcgaagcg tgcggcgaag 2400
aaaaaagtgg cagagtga 2418
<210> 7
<211> 307
<212> RNA
<213> Linear_RNA1
<400> 7
gggaaaaaag gagguuuuag ucuagggaaa gucauucagu ggaugugauc uuggcucaca 60
ggggacgaug ucaagcucuu ccuggcuccu ucucagccuu guugcuguaa cugcugcuca 120
guccaccauu gaggaacagg ccaagacauu uuuggacaag uuuaaccacg aagccgaaga 180
ccuguucuau caaaguucac uugcuucuug gaauuauaac accaauauua cugaagagaa 240
uguccaaaac augcgcccaa cccaaguuca aaggcugaua agagagaaaa ucucaugauu 300
uuuucaa 307
<210> 8
<211> 307
<212> RNA
<213> Linear_RNA2
<400> 8
gggaaaaaag gagguuuuag ucuagggaaa gucauucagu ggaugugauc uuggcucaca 60
ggggacgaug ucaagcucuu ccuggcuccu ucucagccuu guugcuguaa cugcugcuca 120
guccaccauu gaggaacagg ccaagacauu uuuggacaag uuuaaccacg aagccgaaga 180
ccuguucuau caaaguucac uugcuucuug gaauuauaac accaauauua cugaagagaa 240
uguccaaaac augcgcccaa cccaaguuca aaggcugaua agagagaaaa ucucaugauu 300
uuuuccc 307
<210> 9
<211> 52
<212> DNA
<213> RNase R-F
<400> 9
taactttaag aaggagatat acatatgcat catcatcatc atcattcaca ag 52
<210> 10
<211> 25
<212> DNA
<213> RNase R _△M8-R
<400> 10
tgccggtttc agtggtgttg ccctg 25
<210> 11
<211> 41
<212> DNA
<213> RNase R_△M8-F
<400> 11
gcaacaccac tgaaaccggc atgctgcaac tgggtcagca c 41
<210> 12
<211> 50
<212> DNA
<213> RNase R -R
<400> 12
tcagtggtgg tggtggtggt gctcgagtca ctctgccact tttttcttcg 50
<210> 13
<211> 55
<212> DNA
<213> Linear_RNA1/2-F
<400> 13
taatacgact cactataggg aaaaaaggag gttttagtct agggaaagtc attca 55
<210> 14
<211> 29
<212> DNA
<213> Linear_RNA1-R
<400> 14
ttgaaaaaat catgagattt tctctctta 29
<210> 15
<211> 29
<212> DNA
<213> Linear_RNA2-R
<400> 15
gggaaaaaat catgagattt tctctctta 29

Claims (6)

1.一种突变型RNase R,其特征在于,其氨基酸序列如SEQ ID NO.5所示。
2.一种编码权利要求1所述突变型RNase R的核酸,其特征在于,其核苷酸序列如SEQID NO.6所示。
3.一种如权利要求1所述的突变型RNase R的制备方法,其特征在于,包括如下步骤:
S1、构建含有编码所述突变型RNase R的核苷酸序列的载体;
S2、将步骤S1获得的载体转化至BL21大肠杆菌细胞中,获得表达菌株;
S3、将步骤S2获得的表达菌株扩大培养并进行蛋白诱导表达;
S4、收集扩大培养后的表达菌株,并进行洗涤及裂解;
S5、进行蛋白纯化;
S6、进行蛋白活性测定。
4.如权利要求3所述的制备方法,其特征在于,步骤S1所述构建载体的过程具体如下:
(1)将大肠杆菌来源的野生型RNase R与一株耐盐的嗜冷杆菌(Psychrobacter sp.)菌株ANT206来源的RNase R进行氨基酸序列比对,确定对耐盐有重要影响的氨基酸残基,并对其进行截断突变,获得如SEQ ID NO.5所述的氨基酸序列;
(2)利用PCR技术对编码突变型RNase R的核苷酸序列进行扩增,分别以RNase R - F/RNase R _△M8-R和RNase R _△M8-F/RNase R -R为引物,以含有大肠杆菌来源的RNaseR_WT基因的质粒为模板,获得PCR产物;
(3)将步骤(2)获得的PCR产物经琼脂糖凝胶电泳分离后,切胶纯化,得到两段DNA片段;
(4)将pET21a载体经NdeI/XhoI酶切后,与步骤(3)所得的DNA片段进行同源重组反应,反应液与克隆菌株Trans1-T1 PhageResistant Chemically Competent Cell轻轻混匀,获得混合液;
(5)将步骤(4)获得的混合液置于低温冰盒中冰浴3min,42℃水浴热激30s,立即冰浴2min,加入200μL LB培养液,涂布在含有氨苄青霉素的平板上;37 ℃过夜培养,次日分别挑取3个单克隆,测序验证,即得;步骤(2)中的RNase R- F的引物序列如SEQID NO.9所示,RNase R _△M8-R的引物序列如SEQ ID NO.10所示;所述RNase R _△M8-F的引物序列如SEQ ID NO.11所示;所述RNase R - R的引物序列如SEQ ID NO.12所示。
5.如权利要求4所述的制备方法,其特征在于,步骤(5)中所述的低温为-20℃。
6.一种如权利要求1所述的突变型RNase R在circRNA和lariat RNA鉴定中的应用。
CN202210108730.8A 2022-01-28 2022-01-28 一种突变型RNase R及其制备方法和应用 Active CN114438054B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210108730.8A CN114438054B (zh) 2022-01-28 2022-01-28 一种突变型RNase R及其制备方法和应用
PCT/CN2022/144252 WO2023142899A1 (zh) 2022-01-28 2022-12-30 一种突变型RNase R及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210108730.8A CN114438054B (zh) 2022-01-28 2022-01-28 一种突变型RNase R及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114438054A CN114438054A (zh) 2022-05-06
CN114438054B true CN114438054B (zh) 2023-03-28

Family

ID=81371370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210108730.8A Active CN114438054B (zh) 2022-01-28 2022-01-28 一种突变型RNase R及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114438054B (zh)
WO (1) WO2023142899A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438054B (zh) * 2022-01-28 2023-03-28 广州吉赛生物科技股份有限公司 一种突变型RNase R及其制备方法和应用
CN117402854A (zh) * 2022-12-14 2024-01-16 江苏耀海生物制药有限公司 一种突变的核糖核酸酶r及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL415883A1 (pl) * 2016-01-22 2017-07-31 Międzynarodowy Instytut Biologii Molekularnej I Komórkowej RNazy MiniIII, sposoby zmiany specyficzności cięcia sekwencji RNA przez RNazy MiniIII oraz ich zastosowania
CN110616209A (zh) * 2018-06-19 2019-12-27 金普诺安生物科技(苏州)有限公司 一种突变型RNAseA及其在酵母细胞的表达和纯化方法
CN110923217B (zh) * 2019-12-11 2021-05-04 南京大学 可识别2’-o-甲基化修饰rna的核糖核酸酶r及其应用
CN114438054B (zh) * 2022-01-28 2023-03-28 广州吉赛生物科技股份有限公司 一种突变型RNase R及其制备方法和应用

Also Published As

Publication number Publication date
CN114438054A (zh) 2022-05-06
WO2023142899A1 (zh) 2023-08-03

Similar Documents

Publication Publication Date Title
CN114438054B (zh) 一种突变型RNase R及其制备方法和应用
CN107828755B (zh) 热启动TaqDNA聚合酶及其制备方法与应用
CN111484987B (zh) 一种具有高扩增活性的耐热dna聚合酶突变体
CN113073089B (zh) 一种提高NMN生物合成酶Nampt的酶活的创新方法
CN114262697B (zh) 融合Bsu DNA聚合酶和Bsu DNA聚合酶突变体及其基因、质粒、基因工程菌
CN112899253B (zh) 具有dna聚合酶活性的多肽、重组载体及其制备方法与应用
CN112661820B (zh) 天山根瘤菌转录调控蛋白MsiR突变蛋白及其在刀豆氨酸生物传感器中的应用
JP5394928B2 (ja) サーマス・エガートソニイ(thermuseggertssonii)dnaポリメラーゼ
CN114561374A (zh) 一种新型嗜热核酸内切酶突变体及其制备方法和应用
CN112574969A (zh) G6pdh突变体及其应用
CN112175980B (zh) 通过定点突变提高聚合酶大片段活性的方法及应用
CN114645033B (zh) 一种三磷酸核苷水解酶及其纯化方法和应用
CN112029744A (zh) Dna聚合酶及其编码基因、制备方法和pcr应用
CN114774399B (zh) 一种人工改造脱氨酶辅助的dna中5-羟甲基胞嘧啶修饰单碱基分辨率定位分析方法
CN114921436A (zh) 末端脱氧核苷酸转移酶突变体、其编码基因、重组表达质粒和基因工程菌
CN114592043A (zh) 一种等温核酸检测酶组合物、试剂盒及其用途和检测方法
KR102152142B1 (ko) Cas10/Csm4를 이용한 사이클릭 올리고아데닐레이트 제조방법
CN113564141B (zh) 单细胞基因组扩增酶突变体及其应用
CN114395571B (zh) 三角褐指藻zep1基因、蛋白及应用
CN107266540A (zh) 一种结核分枝杆菌延伸因子EF‑Tu蛋白的制备方法
CN114381442A (zh) 一种可快速延伸的高保真dna聚合酶及其制备方法和应用
CN117568304A (zh) 测序用重组dna聚合酶
CN116497001A (zh) 一种Taq DNA聚合酶突变体
CN115975975A (zh) 一种室温条件下具有扩增活性的dna聚合酶及其应用
CN114561456A (zh) 一种等温核酸检测酶组合物、试剂盒及其用途和检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant