CN114394818B - 一种大长径比ito管状靶材的制备方法及制作模具 - Google Patents
一种大长径比ito管状靶材的制备方法及制作模具 Download PDFInfo
- Publication number
- CN114394818B CN114394818B CN202210124957.1A CN202210124957A CN114394818B CN 114394818 B CN114394818 B CN 114394818B CN 202210124957 A CN202210124957 A CN 202210124957A CN 114394818 B CN114394818 B CN 114394818B
- Authority
- CN
- China
- Prior art keywords
- ito
- biscuit
- powder
- tubular
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种大长径比ITO管状靶材的制备方法及制作模具,涉及ITO管状靶材制备方法技术领域,包括以下步骤:步骤一,将氧化铟粉末和氧化锡粉末按照重量百分比90:10的方式进行均匀混合;步骤二,将混合后的粉末进行焙烧,形成形成ITO混合粉末;通过带有锥度的钢制内芯,使得ITO管状素坯上下端内径具有自然锥度,可以降低烧结过程因ITO管状素坯与承烧板的摩擦产生的由下端至上端收缩率不一致而导致的上下端内径偏差,同时应用与ITO管状素坯不发生反应的高圆度氧化锆球作为承烧板,可以利用氧化锆球的相对自由滑动或错动来减少ITO管状素坯由下至上产生的烧结时收缩受阻,实现对大长径比管靶上下端内径的均匀一致性收缩。
Description
技术领域
本发明属于ITO管状靶材制备方法技术领域,具体涉及一种大长径比ITO管状靶材的制备方法及制作模具。
背景技术
ITO(氧化铟锡)薄膜是一种n型半导体材料,具有优异的透明导电特性,ITO薄膜是以ITO靶材为原料,通过磁控溅射等方式制备,具有透光率高、导电性好,有优良的化学稳定性、热稳定性和刻蚀性等优点。已广泛应用于制造平板液晶显示器(TFT-LCD)、电致发光器件(OLED)、触摸屏、太阳能电池等。
ITO透明导电薄膜制备主要工艺是使用磁控溅射技术。随着平面显示技术向高世代的发展,ITO薄膜基板尺寸日趋大型化(TFT-LCD 10.5G基板规格已达3370mm×2940)。相对于常规平面形制的ITO靶材,管状旋转靶材具有:靶材利用率高,可达75-80%(平面靶材约25-35%);溅射速率高(通常是平面靶材的1-2倍);有效减少打弧(Arc)和靶面结瘤,可以消除平面靶较易形成的再沉积区和镀膜表面颗粒,保证了镀膜工艺的长期稳定性;管状靶材可实现快速便捷的换靶操作,节省时间意味着产能的提升。因管状旋转靶材具有的高性能镀膜特性和经济性,目前国内外已普遍应用管状靶材进行磁控溅射大面积镀膜,在平面显示领域(TP、TFT-LCD、OLED)逐渐替代平面靶材,成为大面积、大功率高速溅射制备TCO薄膜发展方向。
成品旋转靶材是由单节串联与背管焊接至所需长度,如果单节靶材长径比较小(靶材标准内径135mm倍数),则焊缝增多,在大功率高速溅射镀膜过程中易于出现焊缝处打弧,严重时可导致靶材碎裂。但大长径比管状靶材难点在于烧结过程中由于素坯收缩率大、素坯自重导致底端与承烧板摩擦力增大,上下端收缩不均匀,而易于产生烧结变形喇叭口、烧结体开裂、密度偏低等问题,致使成品率低,生产成本高。
发明内容
本发明提供一种大长径比ITO管状靶材的制备方法及制作模具,解决了现有的技术问题。
为解决上述技术问题,本发明提供的一种大长径比ITO管状靶材的制备方法,包括以下步骤:
步骤一,将氧化铟粉末和氧化锡粉末按照重量百分比90:10的方式进行均匀混合;
步骤二,将混合后的粉末进行焙烧,形成形成ITO混合粉末;
步骤三,将ITO混合粉末以电导率≥10MΩ的去离子水为分散介质,并加入聚丙烯铵做为分散剂、PVA作为粘结剂,并以Φ3-5mm钇稳定氧化锆球作为研磨介质,球磨20-60hr;
步骤四,将经过步骤三处理后的ITO混合粉末进行团化造粒处理,造粒后的ITO粉末振实密度为2.0-3.5g/cm3,水分含量为0.5-2.5%;
步骤五,将团化造粒后的ITO粉末装入ITO管状素坯成型模具中,以300-450MPa进行冷等静压成型,制得中空管状素坯,然后将中空管状素坯放入温度500-1000℃环境中持续10-20hr进行脱脂、脱水处理;
步骤六,将处理后的中空管状素坯于氧气流通气氛中,以1500℃-1650℃保温烧结10-30hr,之后缓慢降温,制得ITO管状靶材,在保温烧结过程中,中空管状素以氧化锆球为承烧板,中空管状素坯垂直摆放氧化锆球上,ITO管状靶材相对密度≥99.5%,长径比大于6,抗弯强度≥130MPa,热膨胀系数(1×10-6/℃)≤8.0。
优选的,所述氧化铟粉末的比表面积为15-25m2/g;所述氧化锡粉末的比表面积为10-20m2/g。
优选的,步骤二的焙烧温度为1000-1250℃,焙烧时间为1-10hr,气氛为氧气,焙烧后ITO粉末的比表面积为3-8m2/g。
优选的,步骤四的团化造粒方式为喷雾造粒、滚动造粒、挤压造粒中的一种或几种的组合。
优选的,所述中空管状素坯的相对密度为60-70%。
优选的,所述氧化锆球Φ0.1-2.5mm。
优选的,步骤六的烧结环境为常压纯氧气流通气氛,其中O2流量50-300L/min;在升温过程中,室温-1000℃阶段,升温速率为10-200℃/hr,1000-1500℃阶段,升温速率为10-120℃/hr;在降温时,降温速率为50-100℃/hr,待至中空管状素坯降温至500℃后,再自然降温。
一种大长径比ITO管状靶材的制备模具,包括ITO管状素坯成型模具,所述ITO管状素坯成型模具是由钢制内芯、聚氨酯柔性包套、聚氨酯环形塞组成的组合模具,所述钢制内芯设置于聚氨酯柔性包套的内部中心位置,所述聚氨酯环形塞设置为两个并分别设置于钢制内芯与聚氨酯柔性包套之间的上部和下部,所述钢制内芯、聚氨酯柔性包套和聚氨酯环形塞三者围成的空间为装粉末空间。
优选的,所述钢制内芯的锥度是1:2-1:8。
本发明相比现有技术具有以下优点:
1.通过带有锥度的钢制内芯,使得ITO管状素坯上下端内径具有自然锥度,可以降低烧结过程因ITO管状素坯与承烧板的摩擦产生的由下端至上端收缩率不一致而导致的上下端内径偏差,同时应用与ITO管状素坯不发生反应的高圆度氧化锆球作为承烧板,可以利用氧化锆球的相对自由滑动或错动来减少ITO管状素坯由下至上产生的烧结时收缩受阻,实现对大长径比管靶上下端内径的均匀一致性收缩;
2.ITO混合粉末焙烧处理后,形成部分锡固溶相变,有助于消除常规粉末体因烧结过程固相反应相变而产生的收缩速率剧烈变化、收缩应力集中导致的变形开裂,同时易于团化处理成高振实密度成型的粉末体,ITO管状素坯的相对密度达到65-70%,相对于低密度素坯,降低了烧结收缩率,有助于减少烧结体变形,保证几何形状良好及得到高致密度烧结体。
附图说明
图1为本发明的ITO管状素坯成型模具内部结构示意图;
图中标号:1、装粉末空间;2、聚氨酯柔性包套;3、聚氨酯环形塞;4、钢制内芯。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种大长径比ITO管状靶材的制备方法,包括以下步骤:
步骤一,将氧化铟粉末和氧化锡粉末按照重量百分比90:10的方式通过V型混料机、三维混料机等设备进行均匀混合;
步骤二,将混合后的粉末进行焙烧,形成形成ITO混合粉末;
步骤三,将ITO混合粉末以电导率≥10MΩ的去离子水为分散介质,并加入聚丙烯铵做为分散剂、PVA聚乙烯醇作为粘结剂,并以Φ3-5mm钇稳定氧化锆球作为研磨介质,球磨20-60hr;
步骤四,将经过步骤三处理后的ITO混合粉末进行团化造粒处理,造粒后的ITO粉末振实密度为2.0-3.5g/cm3,水分含量为0.5-2.5%;
步骤五,将团化造粒后的ITO粉末装入ITO管状素坯成型模具中,以300-450MPa进行5-60min的冷等静压成型,制得中空管状素坯,然后将中空管状素坯放入温度500-1000℃环境中持续10-20hr进行脱脂、脱水处理;
步骤六,将中空管状素坯于氧气流通气氛中,以1500℃-1650℃保温烧结10-30hr,之后缓慢降温,制得ITO管状靶材,在保温烧结过程中,中空管状素以氧化锆球为承烧板,中空管状素坯垂直摆放氧化锆球上,ITO管状靶材相对密度≥99.5%,长径比大于6,抗弯强度≥130MPa,热膨胀系数1×10-6/℃≤8.0。
进一步,优选的,氧化铟粉末的比表面积为15-25m2/g;氧化锡粉末的比表面积为10-20m2/g。
进一步,优选的,步骤二的焙烧温度为1000-1250℃,焙烧时间为1-10hr,气氛为氧气,焙烧后ITO粉末的比表面积为3-8m2/g。
进一步,优选的,步骤四的团化造粒方式为喷雾造粒、滚动造粒、挤压造粒中的一种或几种的组合。
进一步,优选的,中空管状素坯的相对密度为60-70%。
进一步,优选的,氧化锆球Φ0.1-2.5mm。
进一步,优选的,步骤六的烧结环境为常压纯氧气流通气氛,其中O2流量50-300L/min;在升温过程中,室温-1000℃阶段,升温速率为10-200℃/hr,1000-1500℃阶段,升温速率为10-120℃/hr;在降温时,降温速率为50-100℃/hr,待至中空管状素坯降温至500℃后,再自然降温。
一种大长径比ITO管状靶材的制备模具,包括ITO管状素坯成型模具,ITO管状素坯成型模具是由钢制内芯4、聚氨酯柔性包套2、聚氨酯环形塞3组成的组合模具,钢制内芯4设置于聚氨酯柔性包套2的内部中心位置,聚氨酯环形塞3设置为两个并分别设置于钢制内芯4与聚氨酯柔性包套2之间的上部和下部,钢制内芯4、聚氨酯柔性包套2和聚氨酯环形塞3三者围成的空间为装粉末空间1。
进一步,优选的,钢制内芯的锥度是1:2-1:8。
实施例1,一种大长径比ITO管状靶材的制备方法,包括以下步骤:
步骤一,将比表面积为22.5m2/g的氧化铟粉末与比表面积11m2/g的氧化锡粉末,按照90:10(wt%)比例进行配料,并使用三维混料机混合12hr;
步骤二,将混合后的粉末于1250℃、氧气气氛下焙烧3.5hr,得到比表面积5.5m2/g的ITO混合粉末;
步骤三,将ITO混合粉末以电导率≥10MΩ的去离子水为分散介质,并加入聚丙烯铵做为分散剂、PVA聚乙烯醇作为粘结剂,并以Φ5mm钇稳定氧化锆球作为研磨介质,球磨60hr;
步骤四,将球磨后的ITO混合粉末进行团化造粒处理,造粒后的ITO粉末振实密度为2.75g/cm3,水分含量为0.5%;
步骤五,将团化造粒后的ITO粉末装入ITO管状素坯成型模具中,以400MPa进行45min的冷等静压成型,制得相对密度为67%的中空管状素坯,其中钢制内芯4的锥度为1:6,然后将中空管状素坯放入温度500-1000℃环境中持续10-20hr进行脱脂、脱水处理;
步骤六,将脱脂、脱水处理后的中空管状素坯垂直置放于Φ1.0mm氧化锆承烧板上,在O2流量为200L/min的气氛中,以室温-1000℃,升温速率为100℃/hr,1000-1500℃,升温速率为50℃/hr的升温方式进行升温,之后保持1500-1650℃烧结20hr,之后以降温速率为100℃/hr的方式降温至500℃,然后自然降温,得到上下端内径公差<1.0mm的ITO管状靶材;
步骤七,对ITO管状靶材进行切割、研磨、抛光处理,得到内径高度H960mm的管状靶材,靶材相对密度99.58%(理论密度7.156g/cm3),抗弯强度135MPa,热膨胀系数7.8(1×10-6/℃)。
实施例2,一种大长径比ITO管状靶材的制备方法,包括以下步骤:
步骤一,将比表面积为22.5m2/g的氧化铟粉末与比表面积11m2/g的氧化锡粉末,按照90:10(wt%)比例进行配料,并使用三维混料机混合12hr
步骤二,将混合后的粉末于1050℃、氧气气氛下焙烧3.5hr,得到比表面积7.6m2/g的ITO混合粉末;
步骤三,将ITO混合粉末以电导率≥10MΩ的去离子水为分散介质,并加入聚丙烯铵做为分散剂、PVA聚乙烯醇作为粘结剂,并以Φ5mm钇稳定氧化锆球作为研磨介质,球磨60hr;
步骤四,将球磨后的ITO混合粉末进行团化造粒处理,造粒后的ITO粉末振实密度为2.3g/cm3,水分含量为2.5%;
步骤五,将团化造粒后的ITO粉末装入ITO管状素坯成型模具中,以450MPa进行60min的冷等静压成型,制得相对密度为68%的中空管状素坯,其中钢制内芯4的锥度为1:5,然后将中空管状素坯放入温度500-1000℃环境中持续10-20hr进行脱脂、脱水处理;
步骤六,将脱脂、脱水处理后的中空管状素坯垂直置放于Φ1.5mm氧化锆承烧板上,在O2流量为200L/min的气氛中,以室温-1000℃,升温速率为100℃/hr,1000-1500℃,升温速率为50℃/hr的升温方式进行升温,之后保持1500-1650℃烧结20hr,之后以降温速率为100℃/hr的方式降温至500℃,然后自然降温,得到上下端内径公差<0.8mm的ITO管状靶材;
步骤七,对ITO管状靶材进行切割、研磨、抛光处理,得到内径高度H1050mm的管状靶材,靶材相对密度99.53%(理论密度7.156g/cm3),抗弯强度133MPa,热膨胀系数7.9(1×10-6/℃)。
工作原理:通过带有锥度的钢制内芯,使得ITO管状素坯上下端内径具有自然锥度,可以降低烧结过程因ITO管状素坯与承烧板的摩擦产生的由下端至上端收缩率不一致而导致的上下端内径偏差,同时应用与ITO管状素坯不发生反应的高圆度氧化锆球作为承烧板,可以利用氧化锆球的相对自由滑动或错动来减少ITO管状素坯由下至上产生的烧结时收缩受阻,实现对大长径比管靶上下端内径的均匀一致性收缩;
ITO混合粉末焙烧处理后,形成部分锡固溶相变,有助于消除常规粉末体因烧结过程固相反应相变而产生的收缩速率剧烈变化、收缩应力集中导致的变形开裂,同时易于团化处理成高振实密度成型的粉末体,ITO管状素坯的相对密度达到65-70%,相对于低密度素坯,降低了烧结收缩率,有助于减少烧结体变形,保证几何形状良好及得到高致密度烧结体。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下。由语句“包括一个......限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素”。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (2)
1.一种大长径比ITO管状靶材的制备方法,其特征在于,包括以下步骤:
步骤一,将氧化铟粉末和氧化锡粉末按照重量百分比90:10的方式进行均匀混合;
步骤二,将混合后的粉末进行焙烧,形成形成ITO混合粉末;
步骤三,将ITO混合粉末以电导率≥10MΩ的去离子水为分散介质,并加入聚丙烯铵做为分散剂、PVA作为粘结剂,并以Φ3-5mm钇稳定氧化锆球作为研磨介质,球磨20-60hr;
步骤四,将经过步骤三处理后的ITO混合粉末进行团化造粒处理,造粒后的ITO粉末振实密度为2.0-3.5g/cm3,水分含量为0.5-2.5%;
步骤五,将团化造粒后的ITO粉末装入ITO管状素坯成型模具中,以300-450MPa进行冷等静压成型,制得中空管状素坯,然后将中空管状素坯放入温度500-1000℃环境中持续10-20hr进行脱脂、脱水处理;
步骤六,将处理后的中空管状素坯于氧气流通气氛中,以1500℃-1650℃保温烧结10-30hr,之后缓慢降温,制得ITO管状靶材,在保温烧结过程中,中空管状素坯以氧化锆球为承烧板,中空管状素坯垂直摆放氧化锆球上,ITO管状靶材相对密度≥99.5%,长径比大于6,抗弯强度≥130MPa,热膨胀系数(1×10-6/℃)≤8.0;
所述氧化铟粉末的比表面积为15-25m2/g;所述氧化锡粉末的比表面积为10-20m2/g;
步骤二的焙烧温度为1000-1250℃,焙烧时间为1-10hr,气氛为氧气,焙烧后ITO粉末的比表面积为3-8m2/g;
步骤四的团化造粒方式为喷雾造粒、滚动造粒、挤压造粒中的一种或几种的组合;
所述中空管状素坯的相对密度为60-70%;
所述氧化锆球Φ0.1-2.5mm;
步骤六的烧结环境为常压纯氧气流通气氛,其中O2流量50-300L/min;在升温过程中,室温-1000℃阶段,升温速率为10-200℃/hr,1000℃-1500℃阶段,升温速率为10-120℃/hr;在降温时,降温速率为50-100℃/hr,待至中空管状素坯降温至500℃后,再自然降温。
2.根据权利要求1所述的一种大长径比ITO管状靶材的制备方法,其特征在于,所述ITO管状素坯成型模具是由钢制内芯(4)、聚氨酯柔性包套(2)、聚氨酯环形塞(3)组成的组合模具,所述钢制内芯(4)设置于聚氨酯柔性包套(2)的内部中心位置,所述聚氨酯环形塞(3)设置为两个并分别设置于钢制内芯(4)与聚氨酯柔性包套(2)之间的上部和下部,所述钢制内芯(4)、聚氨酯柔性包套(2)和聚氨酯环形塞(3)三者围成的空间为装粉末空间(1);
所述钢制内芯的锥度是1:2-1:8。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210124957.1A CN114394818B (zh) | 2022-02-10 | 2022-02-10 | 一种大长径比ito管状靶材的制备方法及制作模具 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210124957.1A CN114394818B (zh) | 2022-02-10 | 2022-02-10 | 一种大长径比ito管状靶材的制备方法及制作模具 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114394818A CN114394818A (zh) | 2022-04-26 |
CN114394818B true CN114394818B (zh) | 2022-10-18 |
Family
ID=81232317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210124957.1A Active CN114394818B (zh) | 2022-02-10 | 2022-02-10 | 一种大长径比ito管状靶材的制备方法及制作模具 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114394818B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115229947B (zh) * | 2022-06-16 | 2023-12-05 | 先导薄膜材料(广东)有限公司 | 一种cip工艺模具及氧化陶瓷靶材的生产工艺 |
CN115894009B (zh) * | 2022-11-14 | 2024-07-19 | 先导薄膜材料(广东)有限公司 | 一种ito平面靶快速烧结脱脂方法及其使用的承托板 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6123787A (en) * | 1995-08-31 | 2000-09-26 | Innovative Sputtering Technology | Process for manufacturing ITO alloy articles |
CN102603285A (zh) * | 2012-02-23 | 2012-07-25 | 西北稀有金属材料研究院 | 一种氧化锌基管状旋转靶材的制备方法 |
JP2016151043A (ja) * | 2015-02-17 | 2016-08-22 | 三井金属鉱業株式会社 | セラミックス製ターゲット材の製造方法および円筒形スパッタリングターゲット |
CN105917022A (zh) * | 2014-08-22 | 2016-08-31 | 三井金属矿业株式会社 | 溅射靶用靶材的制造方法以及爪部件 |
CN107244911A (zh) * | 2017-01-13 | 2017-10-13 | 昆明理工大学 | 一种ito管状靶材的制备方法 |
CN107538598A (zh) * | 2017-09-07 | 2018-01-05 | 韶关市欧莱高新材料有限公司 | 一种筒形靶材注浆成型模具 |
CN111423229A (zh) * | 2020-04-30 | 2020-07-17 | 中国船舶重工集团公司第七二五研究所 | 管状ito靶材坯体烧结用同步收缩衬管及其制备方法 |
CN112063981A (zh) * | 2020-07-31 | 2020-12-11 | 洛阳高新四丰电子材料有限公司 | 一种镍钼合金挤压管靶的制备方法 |
-
2022
- 2022-02-10 CN CN202210124957.1A patent/CN114394818B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6123787A (en) * | 1995-08-31 | 2000-09-26 | Innovative Sputtering Technology | Process for manufacturing ITO alloy articles |
CN102603285A (zh) * | 2012-02-23 | 2012-07-25 | 西北稀有金属材料研究院 | 一种氧化锌基管状旋转靶材的制备方法 |
CN105917022A (zh) * | 2014-08-22 | 2016-08-31 | 三井金属矿业株式会社 | 溅射靶用靶材的制造方法以及爪部件 |
JP2016151043A (ja) * | 2015-02-17 | 2016-08-22 | 三井金属鉱業株式会社 | セラミックス製ターゲット材の製造方法および円筒形スパッタリングターゲット |
CN107244911A (zh) * | 2017-01-13 | 2017-10-13 | 昆明理工大学 | 一种ito管状靶材的制备方法 |
CN107538598A (zh) * | 2017-09-07 | 2018-01-05 | 韶关市欧莱高新材料有限公司 | 一种筒形靶材注浆成型模具 |
CN111423229A (zh) * | 2020-04-30 | 2020-07-17 | 中国船舶重工集团公司第七二五研究所 | 管状ito靶材坯体烧结用同步收缩衬管及其制备方法 |
CN112063981A (zh) * | 2020-07-31 | 2020-12-11 | 洛阳高新四丰电子材料有限公司 | 一种镍钼合金挤压管靶的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114394818A (zh) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114394818B (zh) | 一种大长径比ito管状靶材的制备方法及制作模具 | |
CN108516818B (zh) | 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法 | |
CN107445609B (zh) | 一种高致密度ito旋转靶的烧结方法 | |
CN106631049B (zh) | 一种用于触摸屏和太阳能电池领域的ito旋转靶材的常压烧结方法 | |
CN110157934B (zh) | 一种钨或钼基二氧化铀燃料芯块的制造方法 | |
CN108002428B (zh) | 一种蒸镀用ito颗粒的制备方法及由该方法制备的ito颗粒 | |
CN112110721A (zh) | 氧化铟锡钽靶材的制备方法 | |
CN114057471A (zh) | 靶材制备方法和靶材 | |
CN101428856B (zh) | 钽铌酸银纳米粉体的制备方法 | |
CN111018351B (zh) | 热电池用钛与可伐合金封接玻璃材料及制备方法和应用 | |
JP2008214169A (ja) | 真空蒸着用ITiO焼結体およびその製造方法 | |
CN113754436B (zh) | 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法 | |
CN115959897A (zh) | 一种砂磨工艺制备蒸镀用低密度ito靶材的方法 | |
CN113636833B (zh) | 一种氧化铬陶瓷材料及其制备方法以及一种氧化铬陶瓷材料烧结用保温装置 | |
CN102544543A (zh) | 一种具有反射膜的陶瓷基板及其制造方法 | |
CN113072375A (zh) | 一种高世代tft-lcd用ito靶材的常压气氛烧结方法 | |
CN113045310B (zh) | 一种am凝胶注模成型工艺制备锆酸镧钆透明陶瓷的方法 | |
CN112694331B (zh) | 采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法 | |
CN114057481B (zh) | 氧化锌靶材制备方法和氧化锌靶材 | |
CN108585832A (zh) | 氧化铟锡靶材的制备方法 | |
CN116283261A (zh) | 一种高电阻率功率型的MnZn铁氧体材料及其制备方法 | |
WO2016136088A1 (ja) | 円筒形ターゲット材の製造方法、円筒形スパッタリングターゲットおよび焼成用治具 | |
CN103819177A (zh) | 一种ITiO靶材的制备方法 | |
JP4252054B2 (ja) | 超伝導セラミックス薄膜の形成方法 | |
CN107324778A (zh) | 一种高密度、高导电性ito靶材的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |