CN116283261A - 一种高电阻率功率型的MnZn铁氧体材料及其制备方法 - Google Patents

一种高电阻率功率型的MnZn铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN116283261A
CN116283261A CN202111492399.6A CN202111492399A CN116283261A CN 116283261 A CN116283261 A CN 116283261A CN 202111492399 A CN202111492399 A CN 202111492399A CN 116283261 A CN116283261 A CN 116283261A
Authority
CN
China
Prior art keywords
percent
ferrite
ball milling
oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111492399.6A
Other languages
English (en)
Inventor
程寒
龙彬
杨建明
沈卫明
胡笛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Haobo Electronic Technology Co ltd
Original Assignee
Changshu Haobo Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Haobo Electronic Technology Co ltd filed Critical Changshu Haobo Electronic Technology Co ltd
Priority to CN202111492399.6A priority Critical patent/CN116283261A/zh
Publication of CN116283261A publication Critical patent/CN116283261A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供一种高电阻率功率型的MnZn铁氧体材料及其制备方法,涉及铁氧体材料技术领域。一种高电阻率功率型的MnZn铁氧体材料,包括以下质量百分比的原料:氧化铁50~60mol%、氧化锰30~40mol%、氧化锰5~10mol%、碳酸钙0.008~0.06wt%、五氧化二铌0.01~0.05wt%、氧化锡0.01~0.05wt%、二氧化锆0.01~0.08wt%、五氧化二钒0.01~0.03wt%、二氧化钛0.01~0.05wt%、氧化铋0.01~0.05wt%、氧化铜0.01~0.03wt%、二氧化硅0.01~0.03wt%,通过铁氧体粉料中的碳酸钙和二氧化硅混合物在高温烧结时将集中在晶粒边界上,而形成高电阻率的阻挡层,同时优化结烧工艺为基础同时配合上述配料进行组合掺杂,进一步提高晶界电阻率、降低功率损耗以及提高导磁率的效果,使得铁氧体的综合性能得到提升。

Description

一种高电阻率功率型的MnZn铁氧体材料及其制备方法
技术领域
本发明涉及铁氧体材料技术领域,具体为一种高电阻率功率型的MnZn铁氧体材料及其制备方法。
背景技术
软磁铁氧体材料是一种在较弱的磁场作用下,很容易被磁化和退磁的铁氧体材料,作为展早、种类多、用途广泛的材料,软磁铁氧体已经成为经济发展中较为重要的产品之一,近来,随着计算机网络技术、通信技术和电力技术等电子信息技术的发展,传统领域对性能优的软磁铁氧体材料的需求不断增加;软磁铁氧体的应用也不断延伸至其它的领域,业已成为种通信设备、计算机、家用电器、汽车电子、电源装置、仪器仪表、航天工业等不可缺少的种基础材料。
随着电子元器件向高性能化的方向发展,对与MnZn铁氧体材料的电阻率、功率损耗和磁导率提出了更为严格的要求,目前传统的MnZN铁氧体材料的电阻率性、功率损耗和磁导率已经无法应对更高的市场需求。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种高电阻率功率型的MnZn铁氧体材料及其制备方法,解决了传统一种高电阻率功率型的MnZn铁氧体材料的电阻率、功率损耗和磁导率无法应对更高的市场需求的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种高电阻率功率型的MnZn铁氧体材料,包括以下质量百分比的原料:氧化铁50~60mol%、氧化锰30~40mol%、氧化锰5~10mol%、碳酸钙0.008~0.06wt%、五氧化二铌0.01~0.05wt%、氧化锡0.01~0.05wt%、二氧化锆0.01~0.08wt%、五氧化二钒0.01~0.03wt%、二氧化钛0.01~0.05wt%、氧化铋0.01~0.05wt%、氧化铜0.01~0.03wt%、二氧化硅0.01~0.03wt%。
优选的,一种高电阻率功率型的MnZn铁氧体材料的制备方法,包括以下加工步骤:
S1.原料处理
选择纯度高、活性好的氧化铁、氧化锰和氧化锰原料,将选取好的原料按配比放入真空干燥箱内进行低温烘干,烘干温度为50~60℃,烘干时间为40~60min,再将干燥好的原料密封干燥保存备用;
S2.第一次球磨
将步骤S1中制备的原料加入行星式球磨机内进行球磨,球磨时间为2~2.5h,旋转速度为300~400r/min,其目的主要是使各粉料的化学活性升高,从而使混合更加均匀,增大不同原料颗粒间的接触面,促进后续预烧过程的固相反应;
S3.预烧
首先将步骤S2中第一次球磨制得的原料粉末加入马弗炉中,以200℃/h的升温速率加温至600~700℃,然后再以100℃/h的升温速率从600~700℃加温至900~1000℃,再以900~1000℃的温度保温2~2.5h,最后关闭设备,随炉冷却4~5h;
S4.掺杂
将碳酸钙、五氧化二铌、氧化锡、二氧化锆、五氧化二钒、二氧化钛、氧化铋、氧化铜、二氧化硅按比例加入到步骤S3中预烧之后的原料中混合搅拌均匀备用;
S5.第二次球磨
将步骤S4中制备的铁氧体粉料再次加入行星式球磨机内进行球磨,球磨时间为1.5~2.5h,旋转速度为400~500r/min,把包在反应层内部的原料暴露出来,并且让不同原料的颗粒相互接触,有利于在烧结过程中全部生成铁氧体,同时二次球磨使粉料的颗粒变细,细颗粒的粉料具有较高的烧结活性,从而促进了产品的致密化和晶粒生长;
S6.造粒
将步骤S5中二次球磨后的铁氧体粉料与胶水混合均匀,胶水与粉料的质量比是(8~9):(2~1),加入搅拌机以600~800r/min的转速拌和30~40min,然后加入干燥箱干燥使粉末形成球形颗粒,最后通过筛子筛成大小均匀的粗颗粒备用;
S7.压制成型
将步骤S6中造粒好的铁氧体粉料放入具有一定形状的磨腔中,外加一定的压力,将粉料压制成所需形状的铁氧体坯件;
S8.烧结
将S7中压制成型的铁氧体坯件放入真空炉中,以200℃/h的升温速率加温至1250~1350℃,然后以1250~1350℃的温度保温3~4h,再以200℃/h的降温速率降温至200~300℃,最后关停设备随着炉冷却4~5h,得到成品高电阻率功率型的MnZn铁氧体材料;
优选的,所述步骤S3在预烧的过程中,炉子内部应该有一定的空气流通,以保证杂质的挥发和铁氧体的吸氧。
优选的,所述步骤S6中胶水是用聚乙烯醇与水以(8~9):(2~1)的质量比配制而成,所述步骤S6中干燥箱的温度为80~90℃,烘干时间为1.5~2.5h。
优选的,所述步骤S4中混合设备的旋转速度为1500~2000r/min,混合时间为20~30min。
优选的,所述步骤S6中筛子的目数为60~70目。
(三)有益效果
本发明提供了一种高电阻率功率型的MnZn铁氧体材料及其制备方法。具备以下有益效果:
本发明通过铁氧体粉料中的碳酸钙和二氧化硅混合物在高温烧结时将集中在晶粒边界上,将使铁氧体晶粒边界增厚,从而形成高电阻率的阻挡层,使铁氧体的功率损耗大为降低,同时五氧化二钒形成液相烧结,具有细化晶粒,降低气孔率,提高起始磁导率的作用,氧化铋同样具有细化晶粒,降低气孔率,提高密度和起始磁导率,五氧化二铌具有使晶粒细化和均匀致密,防止锌离子挥发,降低功耗提高电阻率和起始磁导率的作用,二氧化钛具有对磁滞伸缩系数和磁晶各向异性常数进行补偿,减低涡流和磁滞损耗,提高起始磁导率并改善磁导率的温度系数,氧化铜起到降低结烧温度,使晶粒完整,组织致密,降低磁滞损耗,提高起始磁导率,改善磁导率的温度的特性,氧化锡起到促使晶粒均匀生长,降低比损耗因子,提高烧结密度的作用,二氧化钛则起到促使晶粒生长,提高饱和磁感应强度,降低功耗的作用,通过优化结烧工艺为基础同时配合上述配料进行组合掺杂,进一步提高晶界电阻率、降低功率损耗以及提高导磁率的效果,使得铁氧体的综合性能得到提升,以满足更高的市场需求。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
本发明实施例提供一种高电阻率功率型的MnZn铁氧体材料,包括以下质量百分比的原料:氧化铁50mol%、氧化锰30mol%、氧化锰5mol%、碳酸钙0.008wt%、五氧化二铌0.01wt%、氧化锡0.01wt%、二氧化锆0.01wt%、五氧化二钒0.01wt%、二氧化钛0.01wt%、氧化铋0.01wt%、氧化铜0.01wt%、二氧化硅0.01wt%。
一种高电阻率功率型的MnZn铁氧体材料的制备方法,包括以下加工步骤:
S1.原料处理
选择纯度高、活性好的氧化铁、氧化锰和氧化锰原料,将选取好的原料按配比放入真空干燥箱内进行低温烘干,烘干温度为50℃,烘干时间为40min,再将干燥好的原料密封干燥保存备用,制备高性能的铁氧体材料,需要严格地选择原料,选择原料的原则是在考虑成本因素的同时,有利于铁氧体生成反应的进行,有利于铁氧体内部组织结构的形成,有利于铁氧体各项性能的提高,对于原料的选;
S2.第一次球磨
将步骤S1中制备的原料加入行星式球磨机内进行球磨,球磨时间为2h,旋转速度为300r/min,其目的主要是使各粉料的化学活性升高,从而使混合更加均匀,增大不同原料颗粒间的接触面,促进后续预烧过程的固相反应,Mn-Zn功率铁氧体一般需要经过两次球磨,分别是一次和二次球磨,配料之后的球磨称为一次球磨,其目的主要是使各粉料的化学活性升高,从而使混合更加均匀,促进后续预烧过程的固相反应;
S3.预烧
首先将步骤S2中第一次球磨制得的原料粉末加入马弗炉中,以200℃/h的升温速率加温至600℃,然后再以100℃/h的升温速率从600℃加温至900℃,再以900℃的温度保温2h,最后关闭设备,随炉冷却4h,预烧的作用有如下几个方面:(1)预烧使原料混合物预先发生反应,使其部分生成铁氧体,这有利于烧结时晶粒的生长和密度的提高;(2)预烧改善了原料的松装和振实密度,提高了原料的成型性;(3)预烧使粉料获得高的毛坯密度,减少了烧结过程中的收缩和变形;(4)预烧避免了一次烧结时铁氧体材料内部成分和微观结构的不均匀性,从而提高了最终烧结产品的性能;
S4.掺杂
将碳酸钙、五氧化二铌、氧化锡、二氧化锆、五氧化二钒、二氧化钛、氧化铋、氧化铜、二氧化硅按比例加入到步骤S3中预烧之后的原料中混合搅拌均匀备用,铁氧体粉料中的碳酸钙和二氧化硅混合物在高温烧结时将集中在晶粒边界上,将使铁氧体晶粒边界增厚,从而形成高电阻率的阻挡层,使铁氧体的功率损耗大为降低,同时五氧化二钒形成液相烧结,具有细化晶粒,降低气孔率,提高起始磁导率的作用,氧化铋同样具有细化晶粒,降低气孔率,提高密度和起始磁导率,五氧化二铌具有使晶粒细化和均匀致密,防止锌离子挥发,降低功耗提高电阻率和起始磁导率的作用,二氧化钛具有对磁滞伸缩系数和磁晶各向异性常数进行补偿,减低涡流和磁滞损耗,提高起始磁导率并改善磁导率的温度系数,氧化铜起到降低结烧温度,使晶粒完整,组织致密,降低磁滞损耗,提高起始磁导率,改善磁导率的温度的特性,氧化锡起到促使晶粒均匀生长,降低比损耗因子,提高烧结密度的作用,二氧化钛则起到促使晶粒生长,提高饱和磁感应强度,降低功耗的作用,通过优化结烧工艺为基础同时配合上述配料进行组合掺杂,进一步提高晶界电阻率、降低功率损耗以及提高导磁率的效果;
S5.第二次球磨
将步骤S4中制备的铁氧体粉料再次加入行星式球磨机内进行球磨,球磨时间为1.5h,旋转速度为400r/min,把包在反应层内部的原料暴露出来,并且让不同原料的颗粒相互接触,有利于在烧结过程中全部生成铁氧体,同时二次球磨使粉料的颗粒变细,细颗粒的粉料具有较高的烧结活性,从而促进了产品的致密化和晶粒生长,由于固相反应不完全,其晶粒尺寸和分布不均匀,需要再进行一次球磨称为二次球磨,通过二次球磨可以使混合物再次被粉碎均匀,同时使部分被包裹在反应层内部的原料暴露出来,利于后续烧结过程中铁氧体的生成,通过二次球磨使粉料颗粒变细,具有高的烧结活性,促进了材料在烧结过程中的致密化以及晶粒的生长;
S6.造粒
将步骤S5中二次球磨后的铁氧体粉料与胶水混合均匀,胶水与粉料的质量比是8:2,加入搅拌机以600r/min的转速拌和30min,然后加入干燥箱干燥使粉末形成球形颗粒,最后通过筛子筛成大小均匀的粗颗粒备用,由于经过二次球磨后的铁氧体粉料的粒度较细,在成型时吸附作用大、流动性较差,所以不能均匀地填充模具的每个角落,从而难以获得均匀致密的压制坯件,MnZn功率铁氧体的造粒过程可以提高原料的可塑性,铁氧体粉料与胶水和塑化剂混合形成的粗颗粒,在外力作用下发生形变时,不会出现裂缝,在撤去外力后,压制坯件仍然能维持原先的形状,铁氧体粉料在造粒工艺中需要达到的颗粒质量要求主要是:(1)球形的颗粒形状,其流动性较好,可以得到均匀致密的压制,(2)采用粒径分布良好的颗粒料可以降低压制件的气孔率,从而提高压制件的密度,(3)颗粒料应具有一定的流动性,对于流动性较差的颗粒料,可以加入润滑剂(硬脂酸锌)来增加其流动性,(4)颗粒料应具有一定的含水率,并且其水份应均匀分布,颗粒料含水不均匀,局部过干或过湿,都会影响压制成型,并造成样品在烧结过程中出现变形;
S7.压制成型
将步骤S6中造粒好的铁氧体粉料放入具有一定形状的磨腔中,外加一定的压力,将粉料压制成所需形状的铁氧体坯件;为了使粉料经干压成型后得到合格的坯件,主要从以下六个方面进行控制:(1)均匀装料是获得均匀密度的前提条件;(2)根据坯件的密度,合理选择压制力;(3)根据坯件尺寸大小和形状的复杂程度,合理选择加压时间;(4)采用适当的方法如加润滑剂等方法,减少压制过程中的摩擦力,从而改善坯件密度的均匀性;(5)使粉料的松装密度在合理的范围,以保证制得的坯件密度更为均匀;(6)采用合理的压制方式如双向加压和二次加压等,改善坯件密度的均匀性
S8.烧结
将S7中压制成型的铁氧体坯件放入真空炉中,以200℃/h的升温速率加温至1250℃,然后以1250~℃的温度保温3h,再以200℃/h的降温速率降温至200℃,最后关停设备随着炉冷却4h,得到成品高电阻率功率型的MnZn铁氧体材料,烧结的目的主要是形成样品所需的晶体结构,获得均匀致密的微观结构,从而使样品呈现优良的性能,就MnZn功率铁氧体材料而言,由于其在烧结过程中需要控制氧含量以调控各金属离子化学价的变化,因此气氛烧结是其最重要的工艺环节,气氛烧结工艺对于低功耗MnZn铁氧体最终产品的磁性能和微观结构有着重要的影响,通过严格控制烧结温度、保温时间以及烧结气氛,可以使低功耗Mn-Zn铁氧体获得均匀致密的微观结构以及优良的磁性能,MnZn功率铁氧体的升温阶段可以细分为样品水分挥发、排胶和加热到最高温度三个阶段,其中样品水分的挥发一般在100~200℃范围内完成,样品的排胶在250~600℃范围内进行,大约在300℃时排胶速率达到最大,由于样品在保温阶段要经历晶粒的生长、尺寸的收缩、气孔的排出以及最终的固相反应并生成铁氧体,因此烧结温度和保温时间的选择至关重要,过低的烧结温度将导致样品固相反应不充分,晶粒尺寸小、气孔率高,从而使磁性能恶化,而过高的烧结温度又会使样品的晶粒生长异常,导致微观结构变得不均匀,成型后对于坯件的要求主要有三个:精确的形状和尺寸、准确的密度和均匀的密度分布和良好的机械强度。
步骤S3在预烧的过程中,炉子内部应该有一定的空气流通,以保证杂质的挥发和铁氧体的吸氧。
步骤S6中胶水是用聚乙烯醇与水以8:2的质量比配制而成,步骤S6中干燥箱的温度为80℃,烘干时间为1.5h。
步骤S4中混合设备的旋转速度为1500r/min,混合时间为20min。
步骤S6中筛子的目数为60目,通过筛处粒径规格统一的坯件,可以让制得的坯件密度更为均匀。
实施例二:
本发明实施例提供一种高电阻率功率型的MnZn铁氧体材料,包括以下质量百分比的原料:氧化铁60mol%、氧化锰40mol%、氧化锰10mol%、碳酸钙0.06wt%、五氧化二铌0.05wt%、氧化锡0.05wt%、二氧化锆0.08wt%、五氧化二钒0.03wt%、二氧化钛0.05wt%、氧化铋0.05wt%、氧化铜0.03wt%、二氧化硅0.03wt%。
一种高电阻率功率型的MnZn铁氧体材料的制备方法,包括以下加工步骤:
S1.原料处理
选择纯度高、活性好的氧化铁、氧化锰和氧化锰原料,将选取好的原料按配比放入真空干燥箱内进行低温烘干,烘干温度为60℃,烘干时间为60min,再将干燥好的原料密封干燥保存备用,制备高性能的铁氧体材料,需要严格地选择原料,选择原料的原则是在考虑成本因素的同时,有利于铁氧体生成反应的进行,有利于铁氧体内部组织结构的形成,有利于铁氧体各项性能的提高,对于原料的选;
S2.第一次球磨
将步骤S1中制备的原料加入行星式球磨机内进行球磨,球磨时间为2.5h,旋转速度为400r/min,其目的主要是使各粉料的化学活性升高,从而使混合更加均匀,增大不同原料颗粒间的接触面,促进后续预烧过程的固相反应,MnZn功率铁氧体一般需要经过两次球磨,分别是一次和二次球磨,配料之后的球磨称为一次球磨,其目的主要是使各粉料的化学活性升高,从而使混合更加均匀,促进后续预烧过程的固相反应,
S3.预烧
首先将步骤S2中第一次球磨制得的原料粉末加入马弗炉中,以200℃/h的升温速率加温至700℃,然后再以100℃/h的升温速率从700℃加温至1000℃,再以1000℃的温度保温2.5h,最后关闭设备,随炉冷却5h,预烧的作用有如下几个方面:(1)预烧使原料混合物预先发生反应,使其部分生成铁氧体,这有利于烧结时晶粒的生长和密度的提高;(2)预烧改善了原料的松装和振实密度,提高了原料的成型性;(3)预烧使粉料获得高的毛坯密度,减少了烧结过程中的收缩和变形;(4)预烧避免了一次烧结时铁氧体材料内部成分和微观结构的不均匀性,从而提高了最终烧结产品的性能;
S4.掺杂
将碳酸钙、五氧化二铌、氧化锡、二氧化锆、五氧化二钒、二氧化钛、氧化铋、氧化铜、二氧化硅按比例加入到步骤S3中预烧之后的原料中混合搅拌均匀备用,铁氧体粉料中的碳酸钙和二氧化硅混合物在高温烧结时将集中在晶粒边界上,将使铁氧体晶粒边界增厚,从而形成高电阻率的阻挡层,使铁氧体的功率损耗大为降低,同时五氧化二钒形成液相烧结,具有细化晶粒,降低气孔率,提高起始磁导率的作用,氧化铋同样具有细化晶粒,降低气孔率,提高密度和起始磁导率,五氧化二铌具有使晶粒细化和均匀致密,防止锌离子挥发,降低功耗提高电阻率和起始磁导率的作用,二氧化钛具有对磁滞伸缩系数和磁晶各向异性常数进行补偿,减低涡流和磁滞损耗,提高起始磁导率并改善磁导率的温度系数,氧化铜起到降低结烧温度,使晶粒完整,组织致密,降低磁滞损耗,提高起始磁导率,改善磁导率的温度的特性,氧化锡起到促使晶粒均匀生长,降低比损耗因子,提高烧结密度的作用,二氧化钛则起到促使晶粒生长,提高饱和磁感应强度,降低功耗的作用,通过优化结烧工艺为基础同时配合上述配料进行组合掺杂,进一步提高晶界电阻率、降低功率损耗以及提高导磁率的效果;
S5.第二次球磨
将步骤S4中制备的铁氧体粉料再次加入行星式球磨机内进行球磨,球磨时间为2.5h,旋转速度为500r/min,把包在反应层内部的原料暴露出来,并且让不同原料的颗粒相互接触,有利于在烧结过程中全部生成铁氧体,同时二次球磨使粉料的颗粒变细,细颗粒的粉料具有较高的烧结活性,从而促进了产品的致密化和晶粒生长,由于固相反应不完全,其晶粒尺寸和分布不均匀,需要再进行一次球磨称为二次球磨,通过二次球磨可以使混合物再次被粉碎均匀,同时使部分被包裹在反应层内部的原料暴露出来,利于后续烧结过程中铁氧体的生成,通过二次球磨使粉料颗粒变细,具有高的烧结活性,促进了材料在烧结过程中的致密化以及晶粒的生长;
S6.造粒
将步骤S5中二次球磨后的铁氧体粉料与胶水混合均匀,胶水与粉料的质量比是9:1,加入搅拌机以800r/min的转速拌和40min,然后加入干燥箱干燥使粉末形成球形颗粒,最后通过筛子筛成大小均匀的粗颗粒备用,由于经过二次球磨后的铁氧体粉料的粒度较细,在成型时吸附作用大、流动性较差,所以不能均匀地填充模具的每个角落,从而难以获得均匀致密的压制坯件,MnZn功率铁氧体的造粒过程可以提高原料的可塑性,铁氧体粉料与胶水和塑化剂混合形成的粗颗粒,在外力作用下发生形变时,不会出现裂缝,在撤去外力后,压制坯件仍然能维持原先的形状,铁氧体粉料在造粒工艺中需要达到的颗粒质量要求主要是:(1)球形的颗粒形状,其流动性较好,可以得到均匀致密的压制,(2)采用粒径分布良好的颗粒料可以降低压制件的气孔率,从而提高压制件的密度,(3)颗粒料应具有一定的流动性,对于流动性较差的颗粒料,可以加入润滑剂(硬脂酸锌)来增加其流动性,(4)颗粒料应具有一定的含水率,并且其水份应均匀分布,颗粒料含水不均匀,局部过干或过湿,都会影响压制成型,并造成样品在烧结过程中出现变形;
S7.压制成型
将步骤S6中造粒好的铁氧体粉料放入具有一定形状的磨腔中,外加一定的压力,将粉料压制成所需形状的铁氧体坯件;为了使粉料经干压成型后得到合格的坯件,主要从以下六个方面进行控制:(1)均匀装料是获得均匀密度的前提条件;(2)根据坯件的密度,合理选择压制力;(3)根据坯件尺寸大小和形状的复杂程度,合理选择加压时间;(4)采用适当的方法如加润滑剂等方法,减少压制过程中的摩擦力,从而改善坯件密度的均匀性;(5)使粉料的松装密度在合理的范围,以保证制得的坯件密度更为均匀;(6)采用合理的压制方式如双向加压和二次加压等,改善坯件密度的均匀性;
S8.烧结
将S7中压制成型的铁氧体坯件放入真空炉中,以200℃/h的升温速率加温至1350℃,然后以1350℃的温度保温4h,再以200℃/h的降温速率降温至300℃,最后关停设备随着炉冷却5h,得到成品高电阻率功率型的MnZn铁氧体材料,烧结的目的主要是形成样品所需的晶体结构,获得均匀致密的微观结构,从而使样品呈现优良的性能,就MnZn功率铁氧体材料而言,由于其在烧结过程中需要控制氧含量以调控各金属离子化学价的变化,因此气氛烧结是其最重要的工艺环节,气氛烧结工艺对于低功耗MnZn铁氧体最终产品的磁性能和微观结构有着重要的影响,通过严格控制烧结温度、保温时间以及烧结气氛,可以使低功耗MnZn铁氧体获得均匀致密的微观结构以及优良的磁性能,MnZn功率铁氧体的升温阶段可以细分为样品水分挥发、排胶和加热到最高温度三个阶段,其中样品水分的挥发一般在100~200℃范围内完成,样品的排胶在250~600℃范围内进行,大约在300℃时排胶速率达到最大,由于样品在保温阶段要经历晶粒的生长、尺寸的收缩、气孔的排出以及最终的固相反应并生成铁氧体,因此烧结温度和保温时间的选择至关重要,过低的烧结温度将导致样品固相反应不充分,晶粒尺寸小、气孔率高,从而使磁性能恶化,而过高的烧结温度又会使样品的晶粒生长异常,导致微观结构变得不均匀,成型后对于坯件的要求主要有三个:精确的形状和尺寸、准确的密度和均匀的密度分布和良好的机械强度。
步骤S3在预烧的过程中,炉子内部应该有一定的空气流通,以保证杂质的挥发和铁氧体的吸氧。
步骤S6中胶水是用聚乙烯醇与水以9:1的质量比配制而成,步骤S6中干燥箱的温度为90℃,烘干时间为2.5h。
步骤S4中混合设备的旋转速度为2000r/min,混合时间为30min。
步骤S6中筛子的目数为70目,通过筛处粒径规格统一的坯件,可以让制得的坯件密度更为均匀。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种高电阻率功率型的MnZn铁氧体材料,其特征在于:包括以下质量百分比的原料:氧化铁50~60mol%、氧化锰30~40mol%、氧化锰5~10mol%、碳酸钙0.008~0.06wt%、五氧化二铌0.01~0.05wt%、氧化锡0.01~0.05wt%、二氧化锆0.01~0.08wt%、五氧化二钒0.01~0.03wt%、二氧化钛0.01~0.05wt%、氧化铋0.01~0.05wt%、氧化铜0.01~0.03wt%、二氧化硅0.01~0.03wt%。
2.根据权利要求1所述的一种高电阻率功率型的MnZn铁氧体材料的制备方法,其特征在于:包括以下加工步骤:
S1.原料处理
选择纯度高、活性好的氧化铁、氧化锰和氧化锰原料,将选取好的原料按配比放入真空干燥箱内进行低温烘干,烘干温度为50~60℃,烘干时间为40~60min,再将干燥好的原料密封干燥保存备用;
S2.第一次球磨
将步骤S1中制备的原料加入行星式球磨机内进行球磨,球磨时间为2~2.5h,旋转速度为300~400r/min,其目的主要是使各粉料的化学活性升高,从而使混合更加均匀,增大不同原料颗粒间的接触面,促进后续预烧过程的固相反应;
S3.预烧
首先将步骤S2中第一次球磨制得的原料粉末加入马弗炉中,以200℃/h的升温速率加温至600~700℃,然后再以100℃/h的升温速率从600~700℃加温至900~1000℃,再以900~1000℃的温度保温2~2.5h,最后关闭设备,随炉冷却4~5h;
S4.掺杂
将碳酸钙、五氧化二铌、氧化锡、二氧化锆、五氧化二钒、二氧化钛、氧化铋、氧化铜、二氧化硅按比例加入到步骤S3中预烧之后的原料中混合搅拌均匀备用;
S5.第二次球磨
将步骤S4中制备的铁氧体粉料再次加入行星式球磨机内进行球磨,球磨时间为1.5~2.5h,旋转速度为400~500r/min,把包在反应层内部的原料暴露出来,并且让不同原料的颗粒相互接触,有利于在烧结过程中全部生成铁氧体,同时二次球磨使粉料的颗粒变细,细颗粒的粉料具有较高的烧结活性,从而促进了产品的致密化和晶粒生长;
S6.造粒
将步骤S5中二次球磨后的铁氧体粉料与胶水混合均匀,胶水与粉料的质量比是(8~9):(2~1),加入搅拌机以600~800r/min的转速拌和30~40min,然后加入干燥箱干燥使粉末形成球形颗粒,最后通过筛子筛成大小均匀的粗颗粒备用;
S7.压制成型
将步骤S6中造粒好的铁氧体粉料放入具有一定形状的磨腔中,外加一定的压力,将粉料压制成所需形状的铁氧体坯件;
S8.烧结
将S7中压制成型的铁氧体坯件放入真空炉中,以200℃/h的升温速率加温至1250~1350℃,然后以1250~1350℃的温度保温3~4h,再以200℃/h的降温速率降温至200~300℃,最后关停设备随着炉冷却4~5h,得到成品高电阻率功率型的MnZn铁氧体材料;
根据权利要求2所述的一种高电阻率功率型的MnZn铁氧体材料及其制备方法的制备方法,其特征在于:所述步骤S3在预烧的过程中,炉子内部应该有一定的空气流通,以保证杂质的挥发和铁氧体的吸氧。
3.根据权利要求2所述的一种高电阻率功率型的MnZn铁氧体材料及其制备方法的制备方法,其特征在于:所述步骤S6中胶水是用聚乙烯醇与水以(8~9):(2~1)的质量比配制而成,所述步骤S6中干燥箱的温度为80~90℃,烘干时间为1.5~2.5h。
4.根据权利要求1所述的一种高电阻率功率型的MnZn铁氧体材料及其制备方法的制备方法,其特征在于:所述步骤S4中混合设备的旋转速度为1500~2000r/min,混合时间为20~30min。
5.根据权利要求1所述的一种高电阻率功率型的MnZn铁氧体材料及其制备方法的制备方法,其特征在于:所述步骤S6中筛子的目数为60~70目。
CN202111492399.6A 2021-12-08 2021-12-08 一种高电阻率功率型的MnZn铁氧体材料及其制备方法 Pending CN116283261A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111492399.6A CN116283261A (zh) 2021-12-08 2021-12-08 一种高电阻率功率型的MnZn铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111492399.6A CN116283261A (zh) 2021-12-08 2021-12-08 一种高电阻率功率型的MnZn铁氧体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116283261A true CN116283261A (zh) 2023-06-23

Family

ID=86787398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111492399.6A Pending CN116283261A (zh) 2021-12-08 2021-12-08 一种高电阻率功率型的MnZn铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116283261A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864293A (zh) * 2023-08-02 2023-10-10 山东春光磁电科技有限公司 一种高频铁氧体材料制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864293A (zh) * 2023-08-02 2023-10-10 山东春光磁电科技有限公司 一种高频铁氧体材料制备工艺
CN116864293B (zh) * 2023-08-02 2024-05-24 山东春光磁电科技有限公司 一种高频铁氧体材料制备工艺

Similar Documents

Publication Publication Date Title
CN104529425B (zh) 一种宽温高磁导率MnZn铁氧体材料及其制造方法
CN110128129B (zh) 一种低损耗石榴石铁氧体材料的制备方法
CN103693952B (zh) 一种超低损耗MnZn功率铁氧体材料的制造方法
CN101236829B (zh) 一种锰锌软磁铁氧体磁芯的制造方法
CN113998999B (zh) 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法
CN103274677B (zh) 一种钛掺杂钡铁氧体陶瓷材料及其制备方法
CN110818402B (zh) 一种超细铁氧体粉末的制备方法
CN109941981B (zh) 一种制备高纯偏磷酸锂的方法
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN107857581A (zh) 一种低温烧结NiCuZn铁氧体材料及其制备方法
CN108395233A (zh) 大功率低功耗高频变压器用锰锌铁氧体材料及制备方法
CN116283261A (zh) 一种高电阻率功率型的MnZn铁氧体材料及其制备方法
CN112194482A (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN111116192A (zh) 一种微波铁氧体材料、制备方法及微波通信器件
CN114477995A (zh) 一种中饱和磁化强度功率型高介电常数石榴石材料及其制备方法
CN112592170A (zh) 锰锌铁氧体材料及其制备方法和应用
WO2024109951A1 (zh) 一种低频段应用的宽温材料及其制备方法
CN113121217A (zh) 一种软磁铁氧体材料及制备方法
CN104909747A (zh) 一种高介电常数、低介电损耗CaCu3Ti4-xZrxO12陶瓷的制备方法
CN116969752A (zh) 一种低损耗,高阻抗的锰锌铁氧体材料及其制备方法
CN116693285A (zh) 一种超顺电相钛酸铋钠基弛豫储能陶瓷材料及其制备方法
CN111517776A (zh) 一种锰锌软磁铁氧体材料的制备方法
CN109912302A (zh) 一种高性能NiZn铁氧体材料及其制备方法
CN112537958B (zh) 一种锆酸镧锂固态电解质及其制备方法
CN105884351B (zh) 一种微波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination