CN112194482A - 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用 - Google Patents

一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用 Download PDF

Info

Publication number
CN112194482A
CN112194482A CN202011180786.1A CN202011180786A CN112194482A CN 112194482 A CN112194482 A CN 112194482A CN 202011180786 A CN202011180786 A CN 202011180786A CN 112194482 A CN112194482 A CN 112194482A
Authority
CN
China
Prior art keywords
ferrite
mnzn ferrite
temperature
mnzn
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011180786.1A
Other languages
English (en)
Other versions
CN112194482B (zh
Inventor
王修炜
李庆
陈小林
赵光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ma'anshan Xinkangda Magnetic Industry Co ltd
Original Assignee
Nanjing New Conda Magnetic Industrial Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing New Conda Magnetic Industrial Co ltd filed Critical Nanjing New Conda Magnetic Industrial Co ltd
Priority to CN202011180786.1A priority Critical patent/CN112194482B/zh
Publication of CN112194482A publication Critical patent/CN112194482A/zh
Application granted granted Critical
Publication of CN112194482B publication Critical patent/CN112194482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用,属于5G通讯领域。包括主晶相和掺杂晶相,其中主晶相为具有单相尖晶石结构的MnZn铁氧体;所述MnZn铁氧体化学成分为:
Figure 100004_DEST_PATH_IMAGE002
;其中0.75<x<0.83,0.10<y<0.20,0.005<z<0.01,0.05<δ<0.15;掺杂晶相包括:CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O;本发明通过加入CeO2,使此材料晶粒内部高电阻化,从而降低最低损耗密度。而且Ce4+的存在,会使得亚铁离子的含量增加,这样会导致MnZn铁氧体的最低损耗点向低温移动更为平滑,可以通过控制CeO2的含量可优化最低损耗点与最低损耗密度之间的关系。

Description

一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯 领域应用
技术领域
本发明属于5G通讯领域,尤其是一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用。
背景技术
锰锌铁氧体材料是MnZn铁氧体是一类广泛应用于现代通讯、计算机、广播电视、汽车电子以及国防科技等领域中的软磁材料。近年来,随着5G通讯的高速发展,5G通讯电源的效率成为各厂商追求的目标,这就需要相应的锰锌铁氧体材料在特定温度下具备超低的损耗。近十年来,以TDK公司PC95材料为代表的国内外一系列宽温低功耗铁氧体材料获得了广泛的应用,但是这一类材料的最低损耗温度点往往在80℃,而且最低损耗密度仅可以做到300kW/m3
但是,大多数软磁铁氧体功率损耗的功率损耗与损耗温度呈正的温度系数,而且功率损耗增长幅度大。随着5G的推广和应用,市场迫切需要一种针对5G电源应用,最低损耗点为60℃,最低损耗密度可以降低到250kW/m3的新一代超低损耗宽温功率MnZn铁氧体材料。
发明内容
发明目的:提供一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用,以解决背景技术中所涉及的问题。
技术方案:一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用,包括:
主晶相,为具有单相尖晶石结构的MnZn铁氧体;所述MnZn铁氧体化学成分为:
Figure DEST_PATH_IMAGE001
其中0.75<x<0.83,0.10<y<0.20,0.005<z<0.01,0.05<δ<0.15;
掺杂晶相,包括:CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O;所述掺杂晶相中各组分占主晶相质量的百分含量分别为:CaO:0.20~0.35%、SiO2:0.10~0.18%、Nb2O5:0.01~0.10%、ZrO2:0.01~0.08%、Co2O3:0.20~0.50%、Li2O:0.01~0.08%。
优选地,所述MnZn铁氧体的颗粒平均尺寸为0.5~0.7μm、偏差为小于14.5%。
优选地,所述CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O氧化物的纳米晶粒平均尺寸分别为42~46nm、32~35nm、33~36nm、45~50nm、17~20nm、以及26~30nm。
本发明还提供一种超低损耗的宽温功率MnZn铁氧体的制备方法,其特征在于,包括如下步骤:
步骤1、MnZn铁氧体材料的制备:
以Fe2O3、MnCO3、CeO2和ZnO为原料,按照
Figure 377220DEST_PATH_IMAGE002
进行各组分原料的计量配料,经分别研磨与混合过程得到粒度合适与均匀的混合粉料;进而,将混合粉料压成料块,在氮气中进行预烧,合成得到单相尖晶石结构MnZn铁氧体粉料;
步骤2、纳米氧化物颗粒的复合掺杂:
将预烧合成的物料在乙醇介质中进行碾碎和二次球磨,并通过流体旋流器对二次球磨粉体颗粒进行分选,得到颗粒尺寸均一的铁氧体浆料;进而,将CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O氧化物纳米粉引入铁氧体浆料,并进行混合与均化,通过喷雾干燥过程得到均匀掺杂铁氧体粉料;
步骤3、成型:
将掺杂铁氧体粉料装入模具,在单轴压力下压制成铁氧体素坯;
步骤4、烧结:
将压制成型的铁氧体素坯置于气氛电炉中进行烧结,制得超低高频损耗功率MnZn铁氧体材料。
优选地,所述Fe2O3、MnCO3、CeO2和ZnO的平均颗粒尺寸为0.6~0.9μm;
优选地,所述预烧温度为800~1000℃,合成时间2~5小时。
优选地,所述铁氧体浆料的颗粒平均尺寸为0.5~0.7μm、偏差为小于14.5%。
优选地,所述掺杂铁氧体粉料为平均粒径为10~1.2mm的球形颗粒粉料;
优选地,所述铁氧体素坯的成型压力为300Mpa,保压时间为5分钟;
优选地,所述铁氧体素坯为内径为15mm、外径为25mm和高为10mm的圆环形。
优选地,所述烧结过程包括如下步骤:
步骤41、升温阶段:25℃-290℃,升温速率1.0℃/min,氧分压PO2=0.21atm;290℃保温40分钟,氧分压PO2=0.30atm;290-1290℃,升温速率2.5℃/min,采用平衡氧分压;
步骤42、烧结阶段:1290℃保温4小时,氧分压PO2=0.10atm;
步骤43、冷却阶段:1290℃-1000℃,冷却速率3℃/min,氧分压PO2=0.05atm;1100℃保温1小时,氧分压PO2=0.02atm;1100℃-室温,随炉冷却,采用平衡氧分压进行。
本发明还提供一种超低损耗的宽温功率MnZn铁氧体在5G通讯领域的应用,所述MnZn铁氧体在60℃具备超低损耗的宽温功率。
有益效果:本发明涉及一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用,在多次试验过程中发现,所述单相尖晶石结构的MnZn铁氧体,在配料时Fe2O3含量的提高,所得的MnZn铁氧体的最低损耗点向低温移动;MnZn铁氧体在高温烧结会形成正反混合型尖晶石铁氧体晶粒,然而由于随着Fe2O3添加量的增多,正反混合型尖晶石铁氧体晶粒在烧结过程中,其内部的某种异相会发生塌陷,导致在烧结体中的畴壁的移动被抑制,进而导致损耗的增大,使得Mn-Zn铁氧体的损耗将会增加;本发明通过加入CeO2,使此材料晶粒内部高电阻化,从而降低最低损耗密度。而且Ce4+的存在,会使得亚铁离子的含量增加,这样会导致MnZn铁氧体的最低损耗点向低温移动更为平滑,可以通过控制CeO2的含量可优化最低损耗点与最低损耗密度之间的关系。
另外,发明还具有如下优点:通过在N2中预烧合成单相尖晶石结构铁氧体粉料,并通过颗粒尺寸的旋流分选,可实现对铁氧体晶粒尺寸大小及其分散性的精致调控,有利于缩小铁氧体磁化高频共振带宽;通过引入和优化纳米氧化物颗粒的复合掺杂,在实现对铁氧体晶粒磁晶各向异性系数、磁致伸缩系数、铁氧体中晶粒生长与材料致密化过程调控的同时,对磁畴状态和晶界结构与组分达到了有效调控,有利于提高材料截止频率和减小功率损耗密度;纳米氧化物颗粒的使用促进了铁氧体材料晶内掺杂和晶界掺杂的均匀性,可有效改善铁氧体材料的烧结动力学过程,实现铁氧体微结构的细致调控及其磁性能的提高。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
大多数软磁铁氧体功率损耗的功率损耗与损耗温度呈正的温度系数,而且功率损耗增长幅度大。随着5G的推广和应用,市场迫切需要一种针对5G电源应用,最低损耗点为60℃,最低损耗密度可以降低到250kW/m3的新一代超低损耗宽温功率MnZn铁氧体材料。
申请人在多次试验过程中发现,所述单相尖晶石结构的MnZn铁氧体,在配料时Fe2O3含量的提高,所得的MnZn铁氧体的最低损耗点向低温移动;MnZn铁氧体在高温烧结会形成正反混合型尖晶石铁氧体晶粒,然而由于随着Fe2O3添加量的增多,正反混合型尖晶石铁氧体晶粒在烧结过程中,其内部的某种异相会发生塌陷,导致在烧结体中的畴壁的移动被抑制,进而导致损耗的增大,使得Mn-Zn铁氧体的损耗将会增加;本发明通过加入CeO2,使此材料晶粒内部高电阻化,从而降低最低损耗密度。而且Ce4+的存在,会使得亚铁离子的含量增加,这样会导致MnZn铁氧体的最低损耗点向低温移动更为平滑,可以通过控制CeO2的含量可优化最低损耗点与最低损耗密度之间的关系。
另外,在MnZn铁氧体的制备过程中,掺杂有CaO、SiO2、Nb2O5、ZrO2和Co2O3;上述辅助成分的添加虽然能在一定程度上降低最低损耗密度,但是随着添加量增多或者晶粒尺寸过大,在烧结过程中,会导致晶相析出,导致形成畸形晶粒,导致基体材料性能弱化,进而影响基体材料致密化和磁性能。通过引入和优化纳米氧化物颗粒的复合掺杂,将所述掺杂晶相进行调整,所述掺杂晶相中各组分占主晶相质量的百分含量分别为:CaO:0.20~0.35%、SiO2:0.10~0.18%、Nb2O5:0.01~0.10%、ZrO2:0.01~0.08%、Co2O3:0.20~0.50%。在实现对铁氧体晶粒磁晶各向异性系数、磁致伸缩系数、铁氧体中晶粒生长与材料致密化过程调控的同时,对磁畴状态和晶界结构与组分达到了有效调控,有利于减小功率损耗密度。其中,通过添加微量的Li2O纳米氧化物颗粒,可以促进晶粒长大、加快基体材料致密化进程的作用,促进铁氧体材料晶内掺杂和晶界掺杂的均匀性,可有效改善铁氧体材料的烧结动力学过程,实现铁氧体微结构的细致调控及其磁性能的提高。
精准的烧结工艺是制备高性能的MnZn铁氧体的关键要素,其中,温度对晶粒的生长情况起到决定性作用,一般而言,烧结温度过高,则会导致晶粒生长较大,反之,则会导致,晶粒生长过慢。而且,升温速率也会对晶粒生长产生重要作用,通过实验发现,当升温速率过快时,会导致多数晶粒棱角变得不分明,出现了晶界聚合、颗粒生长连接成片的趋势,极可能出现晶粒过大,进而形成畸形晶粒。其次,气氛参数中的氧分压需要与温度参数相适应,过低的氧气分压,会导致部分金属离子挥发,使得烧结体成分发生改变,影响对MnZn铁氧体的基本理化指标,过高的氧气分压,则会导致亚铁离子重新被氧化,导致最低损耗点在此向低温发生突变,因此对工艺参数的要求较高,可操作性较差。
下面结合实施例,对本发明作进一步说明,所述的实施例的示例旨在解释本发明,而不能理解为对本发明的限制。
实施例11
利用本发明提供方法,制备高频超低损耗MnZn功率铁氧体环形磁芯,其制备步骤如下:
步骤1:以高纯Fe2O3、MnCO3和ZnO为原料,按照
Figure 996420DEST_PATH_IMAGE003
进行组分原料的计量配料,其中x=0.74, y=0.10, δ=0.15首先对Fe2O3、MnCO3和ZnO等原料先进行单独研磨,直至其平均颗粒尺寸达到0.8μm,然后经2.5小时球磨过程得到均匀混合粉料。进而,将混合粉料在在空气炉中进行预烧,预烧温度为950℃,合成时间2小时,预烧产物经XRD测定为单相尖晶石结构MnZn铁氧体;
步骤2:将预烧合成的物料在乙醇介质中进行碾碎和二次湿法球磨,并通过流体旋流器对二次球磨粉体颗粒进行分选,得到颗粒平均尺寸为0.70μm、偏差为14.5%的铁氧体浆料。进而,将CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O氧化物纳米粉料通过搅拌与超声分散配成PEG-乙醇基悬浮液,其中各组分氧化物纳米晶粒平均尺寸分别为46nm、35nm、36nm、50nm、20nm、以及30nm,配入量以铁氧体质量为基准分别为:CaO:0.25wt%、SiO2:0.10wt%、Nb2O5:0.04wt%、ZrO2:0.08wt%、Co2O3:0.35wt%、Li2O:0.06wt%;PEG加入量为1.0wt%。然后,通过喷雾干燥得到平均粒径为1.2mm的球形颗粒粉料。
步骤3:将掺杂铁氧体粉料装入环形模具,在单轴压力下压制成内径为15mm,外径为25mm和高为10mm的圆环形铁氧体素坯,成型压力为300Mpa,保压时间为5分钟。
步骤4:将压制成型的铁氧体圆环素坯置于气氛电炉中进行烧结,以完成铁氧体晶粒生长、晶格掺杂、晶界形成以及显微组织结构致密化等过程。其烧结过程气氛与温度调控按如下三个主要阶段设置:
步骤41:升温阶段: 25℃-290℃,升温速率1.0℃/min,氧分压PO2=0.21atm;290℃保温40分钟,氧分压PO2=0.30atm;290-1150℃,升温速率2.5℃/min,采用平衡氧分压;
步骤42:烧结阶段:1150℃保温5小时,氧分压PO2=0.10atm;
步骤43:冷却阶段:1150℃-1000℃,冷却速率10℃/min,氧分压PO2=0.05atm;1000℃保温1小时,氧分压PO2=0.02atm;1000℃-室温,随炉冷却,采用平衡氧分压进行。
实施例12~实施例19
基于实施例11的工艺,改变Fe2O3的添加量,然后对所得到MnZn铁氧体环形磁芯进行磁导率频谱和功率损耗密度(100kHz/200mT)等性能测试,其性能参数如表1所示。
表1:
Figure 529032DEST_PATH_IMAGE004
基于实施例11至实施例19,从表1的实验数据可以看出:所述单相尖晶石结构的MnZn铁氧体,在配料时Fe2O3含量的提高,所得的MnZn铁氧体的最低损耗点向低温移动,然而由于随着Fe2O3添加量的增多,会导致损耗的增大,使得Mn-Zn铁氧体的损耗将会增加;当所述Fe2O3含量为0.79~0.81时,所得到单相尖晶石结构的MnZn铁氧体的效果最佳。
实施例21~实施例23
在实施例11的基础上,在制备单相尖晶石结构MnZn铁氧体时,引入CeO2颗粒。具体为:以高纯Fe2O3、MnCO3、ZnO和CeO2为原料,按照
Figure 14416DEST_PATH_IMAGE002
进行组分原料的计量配料,其中x=0.80,y=0.15,z=0.008,δ=0.10。首先对Fe2O3、MnCO3和ZnO等原料先进行单独研磨,直至其平均颗粒尺寸达到0.8μm,然后经2.5小时球磨过程得到均匀混合粉料。进而,将混合粉料在在空气炉中进行预烧,预烧温度为950℃,合成时间2小时,预烧产物经XRD测定为单相尖晶石结构MnZn铁氧体。
其它工艺和参数同实施例11。然后对所得到MnZn铁氧体环形磁芯进行磁导率频谱和功率损耗密度(100kHz/200mT)等性能测试,其性能参数如表2所示。
表2:
Figure 948874DEST_PATH_IMAGE005
从表2的实验数据可以看出:通过加入CeO2,可以降低最低损耗密度。而且其最低损耗点向低温移动更为平滑,可以通过控制CeO2的含量可优化最低损耗点与最低损耗密度之间的关系。
实施例31
在实施例22的基础上,CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O氧化物的纳米晶粒平均尺寸分别为80nm、70nm、70nm、90nm、40nm、以及50nm。其它参数和步骤同实施例1。
实施例32
在实施例22的基础上,将Li2O氧化物替换为Na2O氧化物,其它参数和步骤同实施例1。其它参数和步骤同实施例1。
然后对所得到MnZn铁氧体环形磁芯进行磁导率频谱和功率损耗密度(100kHz/200mT)等性能测试,其性能参数如表3所示。
表3:
Figure 207817DEST_PATH_IMAGE006
通过表3可以看出:通过引入和优化纳米氧化物颗粒的复合掺杂,在实现对铁氧体晶粒磁晶各向异性系数、磁致伸缩系数、铁氧体中晶粒生长与材料致密化过程调控的同时,对磁畴状态和晶界结构与组分达到了有效调控,有利于提高材料截止频率和减小功率损耗密度。其中,通过添加微量的Li2O纳米氧化物颗粒,可以促进晶粒长大、加快基体材料致密化进程的作用,促进铁氧体材料晶内掺杂和晶界掺杂的均匀性,可有效改善铁氧体材料的烧结动力学过程,实现铁氧体微结构的细致调控及其磁性能的提高。
实施例41~实施例49
在实施例22的基础上,对烧结参数进行调整,然后对所得到MnZn铁氧体环形磁芯进行磁导率频谱和功率损耗密度(100kHz/200mT)等性能测试,其性能参数如表4所示。
表4:
Figure 758884DEST_PATH_IMAGE007
从表4中可以看出:温度、升温速率、氧分压均对MnZn铁氧体的功率损耗密度有明显影响。当温度过高、升温速率过快、氧气分压过高时,均会导致最低损耗点在此向低温发生突变,并一定程度上加大功率损耗密度。需要说明的是,其它阶段氧分压也对最低损耗点和功率损耗密度有影响,在实施例22中即为最优值,不再一一列出。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (9)

1.一种超低损耗的宽温功率MnZn铁氧体,其特征在于,包括:
主晶相,为具有单相尖晶石结构的MnZn铁氧体;所述MnZn铁氧体化学成分为:
Figure DEST_PATH_IMAGE002
其中0.75<x<0.83,0.10<y<0.20,0.005<z<0.01,0.05<δ<0.15;
掺杂晶相,包括:CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O;所述掺杂晶相中各组分占主晶相质量的百分含量分别为:CaO:0.20~0.35%、SiO2:0.10~0.18%、Nb2O5:0.01~0.10%、ZrO2:0.01~0.08%、Co2O3:0.20~0.50%、Li2O:0.01~0.08%。
2.根据权利要求1所述的超低损耗的宽温功率MnZn铁氧体,其特征在于,所述MnZn铁氧体的颗粒平均尺寸为0.5~0.7μm、偏差为小于14.5%。
3.根据权利要求1所述的超低损耗的宽温功率MnZn铁氧体,其特征在于,所述CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O氧化物的纳米晶粒平均尺寸分别为42~46nm、32~35nm、33~36nm、45~50nm、17~20nm、以及26~30nm。
4.一种基于权利要求1至3任一项所述的超低损耗的宽温功率MnZn铁氧体的制备方法,其特征在于,包括如下步骤:
步骤1、MnZn铁氧体材料的制备:
以Fe2O3、MnCO3、CeO2和ZnO为原料,按照
Figure 92968DEST_PATH_IMAGE002
进行各组分原料的计量配料,经分别研磨与混合过程得到粒度合适与均匀的混合粉料;进而,将混合粉料压成料块,在氮气中进行预烧,合成得到单相尖晶石结构MnZn铁氧体粉料;
步骤2、纳米氧化物颗粒的复合掺杂:
将预烧合成的物料在乙醇介质中进行碾碎和二次球磨,并通过流体旋流器对二次球磨粉体颗粒进行分选,得到颗粒尺寸均一的铁氧体浆料;进而,将CaO、SiO2、Nb2O5、ZrO2、Co2O3和Li2O氧化物纳米粉引入铁氧体浆料,并进行混合与均化,通过喷雾干燥过程得到均匀掺杂铁氧体粉料;
步骤3、成型:
将掺杂铁氧体粉料装入模具,在单轴压力下压制成铁氧体素坯;
步骤4、烧结:
将压制成型的铁氧体素坯置于气氛电炉中进行烧结,制得超低高频损耗功率MnZn铁氧体材料。
5.根据权利要求4所述的超低损耗的宽温功率MnZn铁氧体的制备方法,其特征在于,所述Fe2O3、MnCO3、CeO2和ZnO的平均颗粒尺寸为0.6~0.9μm;
所述预烧温度为800~1000℃,合成时间2~5小时。
6.根据权利要求4所述的超低损耗的宽温功率MnZn铁氧体的制备方法,其特征在于,所述铁氧体浆料的颗粒平均尺寸为0.5~0.7μm、偏差为小于14.5%。
7.根据权利要求4所述的高频锰锌铁氧体材料的制备方法,其特征在于,所述掺杂铁氧体粉料为平均粒径为10~1.2mm的球形颗粒粉料;
所述铁氧体素坯的成型压力为300Mpa,保压时间为5分钟;
所述铁氧体素坯为内径为15mm、外径为25mm和高为10mm的圆环形。
8.根据权利要求4所述的超低损耗的宽温功率MnZn铁氧体的制备方法,其特征在于,所述烧结过程包括如下步骤:
步骤41、升温阶段:25℃-290℃,升温速率1.0℃/min,氧分压PO2=0.21atm;290℃保温40分钟,氧分压PO2=0.30atm;290-1290℃,升温速率2.5℃/min,采用平衡氧分压;
步骤42、烧结阶段:1290℃保温4小时,氧分压PO2=0.10atm;
步骤43、冷却阶段:1290℃-1000℃,冷却速率3℃/min,氧分压PO2=0.05atm;1100℃保温1小时,氧分压PO2=0.02atm;1100℃-室温,随炉冷却,采用平衡氧分压进行。
9.根据权利要求1所述的超低损耗的宽温功率MnZn铁氧体在5G通讯领域的应用,其特征在于,所述MnZn铁氧体在60℃具备超低损耗的宽温功率。
CN202011180786.1A 2020-10-29 2020-10-29 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用 Active CN112194482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011180786.1A CN112194482B (zh) 2020-10-29 2020-10-29 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011180786.1A CN112194482B (zh) 2020-10-29 2020-10-29 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用

Publications (2)

Publication Number Publication Date
CN112194482A true CN112194482A (zh) 2021-01-08
CN112194482B CN112194482B (zh) 2022-06-03

Family

ID=74011932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011180786.1A Active CN112194482B (zh) 2020-10-29 2020-10-29 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用

Country Status (1)

Country Link
CN (1) CN112194482B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831119A (zh) * 2021-09-30 2021-12-24 海宁辉恒磁业有限公司 一种超高Bs低损耗锰锌铁氧体材料及其制备方法
CN115367813A (zh) * 2022-08-16 2022-11-22 矿冶科技集团有限公司 一种尖晶石型镍锌铁氧体及其制备方法和应用
CN118255582A (zh) * 2024-02-23 2024-06-28 东阳富仕特磁业有限公司 一种高介电常数高平均功率微波铁氧体材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976739A (zh) * 2012-12-21 2013-03-20 南京工业大学 超低高频损耗功率MnZn铁氧体及其制备方法
CN106396661A (zh) * 2016-08-30 2017-02-15 南京新康达磁业股份有限公司 一种宽温低功耗锰锌铁氧体材料及其制备方法
CN109553408A (zh) * 2018-12-31 2019-04-02 天长市中德电子有限公司 一种稀土掺杂锰锌铁氧体材料的制备方法
CN109704409A (zh) * 2018-12-29 2019-05-03 天长市中德电子有限公司 一种低损耗铁氧体材料及其制备方法
CN110128124A (zh) * 2019-05-13 2019-08-16 海宁联丰磁业股份有限公司 一种宽温超低损耗软磁铁氧体材料及其制备方法
WO2020092004A1 (en) * 2018-11-02 2020-05-07 Rogers Corporation Low loss power ferrites and method of manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976739A (zh) * 2012-12-21 2013-03-20 南京工业大学 超低高频损耗功率MnZn铁氧体及其制备方法
CN106396661A (zh) * 2016-08-30 2017-02-15 南京新康达磁业股份有限公司 一种宽温低功耗锰锌铁氧体材料及其制备方法
WO2020092004A1 (en) * 2018-11-02 2020-05-07 Rogers Corporation Low loss power ferrites and method of manufacture
CN109704409A (zh) * 2018-12-29 2019-05-03 天长市中德电子有限公司 一种低损耗铁氧体材料及其制备方法
CN109553408A (zh) * 2018-12-31 2019-04-02 天长市中德电子有限公司 一种稀土掺杂锰锌铁氧体材料的制备方法
CN110128124A (zh) * 2019-05-13 2019-08-16 海宁联丰磁业股份有限公司 一种宽温超低损耗软磁铁氧体材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李治: ""宽温低损耗MnZn功率铁氧体研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831119A (zh) * 2021-09-30 2021-12-24 海宁辉恒磁业有限公司 一种超高Bs低损耗锰锌铁氧体材料及其制备方法
CN115367813A (zh) * 2022-08-16 2022-11-22 矿冶科技集团有限公司 一种尖晶石型镍锌铁氧体及其制备方法和应用
CN115367813B (zh) * 2022-08-16 2023-11-24 矿冶科技集团有限公司 一种尖晶石型镍锌铁氧体及其制备方法和应用
CN118255582A (zh) * 2024-02-23 2024-06-28 东阳富仕特磁业有限公司 一种高介电常数高平均功率微波铁氧体材料及其制备方法

Also Published As

Publication number Publication date
CN112194482B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN110128129B (zh) 一种低损耗石榴石铁氧体材料的制备方法
CN102976739B (zh) 超低高频损耗功率MnZn铁氧体及其制备方法
CN110304913B (zh) 一种高频超低损耗锰锌软磁铁氧体材料及其制备方法
CN108129143B (zh) 高叠加特性宽温低功耗锰锌软磁铁氧体及其制备方法
CN104230326B (zh) M型钙永磁铁氧体的制备方法
CN112573912A (zh) 一种中宽频宽温低损耗MnZn铁氧体材料制备方法
CN111943658A (zh) 一种宽温低损耗MnZn铁氧体材料及其制备方法
CN104230325A (zh) 制备永磁铁氧体预烧料的方法及永磁铁氧体的制备方法
CN108610037B (zh) 一种宽温高叠加高居里温度的锰锌高磁导率材料及其制备方法
CN108275994B (zh) 宽温低功耗高直流叠加特性锰锌铁氧体及其制备方法
CN112898008A (zh) 一种低损耗yig铁氧体及其制备方法
CN116396069B (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN109704749B (zh) 超高频低损耗软磁铁氧体材料及磁芯的制备方法和应用
CN112390637A (zh) 无钇配方的高介电常数微波铁氧体材料及其制备方法和器件
CN112341179A (zh) 一种高频锰锌铁氧体材料、其制备方法和应用
CN113968730B (zh) 一种z型铁氧体复合材料及其制备方法与应用
CN113284731B (zh) 一种高频大磁场软磁铁氧体材料及其制备方法
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN109734432B (zh) 一种车载用宽温抗应力铁氧体材料和磁芯、及其制造方法
KR102683577B1 (ko) 페라이트 소결 자석의 제조 방법
CN111943659A (zh) 一种高频低损耗高电阻率镍锌铁氧体材料的制备工艺
CN116120049B (zh) 钙镧钴铁氧体磁体的制备方法、钙镧钴铁氧体磁体和应用
CN114477987B (zh) 一种宽温锰锌铁氧体材料的制备工艺
CN115745588B (zh) 一种高性能因子锰锌铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230607

Address after: 243000 No.1, Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan, Anhui Province

Patentee after: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD.

Address before: 211135 No.8, Tianhe Road, industrial concentration area, Qilin street, Jiangning District, Nanjing City, Jiangsu Province

Patentee before: NANJING NEW CONDA MAGNETIC INDUSTRIAL Co.,Ltd.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 243000 No.1, Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan, Anhui Province

Patentee after: Ma'anshan Xinkangda Magnetic Industry Co.,Ltd.

Address before: 243000 No.1, Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan, Anhui Province

Patentee before: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD.