CN114204043A - 一种碱性体系水合肼燃料电池负极材料及其制备方法 - Google Patents

一种碱性体系水合肼燃料电池负极材料及其制备方法 Download PDF

Info

Publication number
CN114204043A
CN114204043A CN202111503477.8A CN202111503477A CN114204043A CN 114204043 A CN114204043 A CN 114204043A CN 202111503477 A CN202111503477 A CN 202111503477A CN 114204043 A CN114204043 A CN 114204043A
Authority
CN
China
Prior art keywords
hydrazine hydrate
fuel cell
preparation
anode material
hydrate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111503477.8A
Other languages
English (en)
Inventor
陈忠伟
马歌
王新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Energy Industry Research Institute Guangzhou Co ltd
Original Assignee
Advanced Energy Industry Research Institute Guangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Energy Industry Research Institute Guangzhou Co ltd filed Critical Advanced Energy Industry Research Institute Guangzhou Co ltd
Priority to CN202111503477.8A priority Critical patent/CN114204043A/zh
Publication of CN114204043A publication Critical patent/CN114204043A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明属于燃料电池的技术领域,具体的涉及一种碱性体系水合肼燃料电池负极材料及其制备方法。所述碱性体系水合肼燃料电池负极材料的制备方法,包括以下步骤:(1)制备氢氧化镍纳米片阵列;(2)制备水合肼燃料电池负极材料。通过该制备方法制得的负极材料具有优异的机械强度和柔韧性,电化学活性稳定,且制备方法简单,成本低廉,在水合肼燃料电池方面具有良好的应用前景。

Description

一种碱性体系水合肼燃料电池负极材料及其制备方法
技术领域
本发明属于燃料电池的技术领域,具体的涉及一种碱性体系水合肼燃料电池负极材料及其制备方法。
背景技术
在21世纪,能源环境等问题是目前比较突出的生态问题之一,寻找新型能源技术是科学工作者们致力的工作之一。当今燃料电池发展迅猛,是目前安全高效的电池技术之一。人们正通过不断的探索和开发来提高燃料电池的效率,而电极的状态,大小和表面结构等因素对燃料电池的电催化活性会产生重要的影响。优化电极材料的组成和结构成为提高电化学活性的前提。目前燃料电池的电极大多为贵金属等材料,且大多数缺少稳定性评价,因此亟需结构稳定,性能优异,价格低廉的燃料电池电极材料。水合肼(N2H4)作为一种理想的燃料,含氢量高达12.5%,发生电化学氧化时产物只有氨气和水,此外直接水合肼燃料电池的能量密度高达5.419Wh·g-1。基于上述优势,直接水合肼燃料电池逐渐引起研究人员的关注。
在水合肼燃料电池的发展过程中存在的主要问题还是如何提高催化剂的催化性能进而提高电池的发电性能。水合肼燃料电池的阴极反应是ORR,阳极反应是N2H4的电化学氧化反应,因此电催化剂的选择对电池性能的影响至关重要。大多数贵金属基阳极催化剂都表现出较好的催化活性,但是考虑到成本高昂的问题,近几年以Ni和Co为主体的阳极催化剂也开始进入人们的视野,大量的研究也表明过渡金属基材料也可以表现出优异的水合肼催化氧化活性。
发明内容
本发明的目的在于针对现有水合肼燃料电池性能受限,成本高昂的技术问题而提供一种碱性体系水合肼燃料电池负极材料及其制备方法,通过该制备方法制得的负极材料具有优异的机械强度和柔韧性,电化学活性稳定,且制备方法简单,成本低廉,在水合肼燃料电池方面具有良好的应用前景。
本发明的技术方案为:一种碱性体系水合肼燃料电池负极材料的制备方法,包括以下步骤:
(1)制备氢氧化镍纳米片阵列:首先将氯化镍和镍氰化钾溶于去离子水中,搅拌均匀得到混合溶液;将导电衬底置于混合溶液中,室温下静置后得到蓝色水凝胶,且置于其中的导电衬底均匀包覆有水凝胶;然后配制NaBH4溶液加入所得水凝胶中,在70℃下恒温搅拌,待冷却至室温后采用去离子水冲洗,得到均匀生长在导电衬底上的有序氢氧化镍纳米片阵列;
(2)制备水合肼燃料电池负极材料:称取次磷酸钠和步骤(1)所得均匀生长有氢氧化镍纳米片阵列的导电衬底分别置于管式炉的上风口和下风口,在氩气或氮气保护下在500℃进行退火处理;待自然冷却至室温得到水合肼燃料电池负极材料。
所述步骤(1)中氯化镍与镍氰化钾的质量比为2:1。
所述步骤(1)中室温下静置6~12h。
所述步骤(1)中NaBH4溶液浓度为0.1~2g/mL,用量为100~200mL。
所述步骤(1)中恒温搅拌8~10h。
所述步骤(1)中导电衬底包括但不限于泡沫镍、泡沫铜、泡沫碳、碳布和碳纸。泡沫镍提供柔韧的衬底;泡沫镍独特的3D多孔结构促进了反应中间气体的传输,避免中间气体吸附在催化剂表面而导致催化剂失活;同时泡沫镍具有很强的导电性,可以促进电子传输。
所述步骤(2)中次磷酸钠为2~3g。
所述步骤(2)中管式炉的升温速率1~5℃/min;退火处理时间为2~5小时。
一种所述制备方法制得的碱性体系水合肼燃料电池负极材料。
本发明的有益效果为:本发明所述制备方法首先在导电衬底上通过凝胶法制备得到有序的氢氧化镍纳米片阵列;然后通过高温煅烧对其进行原位磷化处理制得碱性体系水合肼燃料电池负极材料。原位磷化氢氧化镍纳米片阵列方法简单,快速,最关键的是磷化均匀且彻底。
通过该制备方法制得的负极材料具有优异的机械强度和柔韧性,电化学活性稳定,且制备方法简单,成本低廉,在水合肼燃料电池方面具有良好的应用前景。
附图说明
图1为实施例1制得的负极材料的SEM图。
图2为实施例1所得负极材料、对比例1所得负极材料和对比例2制得的负极材料在1mol/L KOH+0.5mol/L水合肼电解液中的LSV扫描对比图。
具体实施方式
以下结合具体实施例和附图来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,本发明所用试剂和材料均为市购。
实施例1
所述碱性体系水合肼燃料电池负极材料的制备方法,包括以下步骤:
(1)制备氢氧化镍纳米片阵列:首先将3mmol氯化镍和1.5mmol镍氰化钾溶于3mL去离子水中,搅拌均匀得到混合溶液;取一块清洁的泡沫镍置于混合溶液中,室温下静置10h后得到蓝色水凝胶,且置于其中的泡沫镍均匀包覆有水凝胶;然后将100mL浓度为1g/mL的NaBH4溶液加入所得水凝胶中,在70℃下恒温搅拌10h,待冷却至室温后采用去离子水冲洗,得到均匀生长在泡沫镍上的有序氢氧化镍纳米片阵列;
(2)制备水合肼燃料电池负极材料:称取3g次磷酸钠和步骤(1)所得均匀生长有氢氧化镍纳米片阵列的泡沫镍分别置于管式炉的上风口和下风口,在氩气或氮气保护下在500℃进行退火处理,保温2小时;待自然冷却至室温得到水合肼燃料电池负极材料。
由图1可以看出,在泡沫镍表面生长了连续的磷化镍纳米片阵列。
实施例2
所述碱性体系水合肼燃料电池负极材料的制备方法,包括以下步骤:
(1)制备氢氧化镍纳米片阵列:首先将5mmol氯化镍和2.5mmol镍氰化钾溶于5mL去离子水中,搅拌均匀得到混合溶液;取一块亲水处理后的碳布置于混合溶液中,室温下静置6h后得到蓝色水凝胶,且置于其中的碳布均匀包覆有水凝胶;然后将100mL浓度为1g/mL的NaBH4溶液加入所得水凝胶中,在70℃下恒温搅拌8h,待冷却至室温后采用去离子水冲洗,得到均匀生长在碳布上的有序氢氧化镍纳米片阵列;
(2)制备水合肼燃料电池负极材料:称取2g次磷酸钠和步骤(1)所得均匀生长有氢氧化镍纳米片阵列的碳布分别置于管式炉的上风口和下风口,在氩气或氮气保护下在500℃进行退火处理,保温2小时;待自然冷却至室温得到水合肼燃料电池负极材料。
实施例3
所述碱性体系水合肼燃料电池负极材料的制备方法,包括以下步骤:
(1)制备氢氧化镍纳米片阵列:首先将1mmol氯化镍和0.5mmol镍氰化钾溶于1mL去离子水中,搅拌均匀得到混合溶液;取一块清洁的泡沫碳置于混合溶液中,室温下静置8h后得到蓝色水凝胶,且置于其中的导电衬底均匀包覆有水凝胶;然后将200mL浓度为0.5g/mL的NaBH4溶液加入所得水凝胶中,在70℃下恒温搅拌8h,待冷却至室温后采用去离子水冲洗,得到均匀生长在泡沫碳上的有序氢氧化镍纳米片阵列;
(2)制备水合肼燃料电池负极材料:称取3g次磷酸钠和步骤(1)所得均匀生长有氢氧化镍纳米片阵列的泡沫碳分别置于管式炉的上风口和下风口,在氩气或氮气保护下在500℃进行退火处理,保温5小时;待自然冷却至室温得到水合肼燃料电池负极材料。
对比例1
称取3mmol氯化镍和1.5mmol镍氰化钾溶于3mL去离子水中,在室温下静置10h后得到蓝色水凝胶;配制1g/mL的NaBH4溶液100mL,倒入上述水凝胶中并在70℃恒温搅拌10h后,得到氢氧化镍纳米片;称取3g次磷酸钠和上述氢氧化镍粉末分别置于管式炉的上风口和下风口,在氩气保护中500℃进行退火处理2小时后自然冷却至室温,得到粉末状水合肼燃料电池负极材料。
对比例2
称取3mmol氯化镍和1.5mmol镍氰化钾溶于3mL去离子水中,取一块清洁的泡沫镍置于上述混合溶液中,在室温下静置10h后得到均匀包覆了蓝色水凝胶的泡沫镍;配制1g/mL的NaBH4溶液100mL,倒入上述水凝胶中并在70℃恒温搅拌10h后,泡沫镍上均匀生长了一层有序的氢氧化镍纳米片阵列;将上述泡沫镍分别置于管式炉,在氩气保护中500℃进行退火处理2小时后自然冷却至室温,得到泡沫镍负载的氧化镍纳米片。
通过图2可以看出,导电衬底可以有效提高电子传输的效率,特有的大孔结构特征也可以有效避免反应中间产物在电极上的吸附。此外磷化后的电极材料表现出明显更优异的电化学活性。

Claims (9)

1.一种碱性体系水合肼燃料电池负极材料的制备方法,其特征在于,包括以下步骤:
(1)制备氢氧化镍纳米片阵列:首先将氯化镍和镍氰化钾溶于去离子水中,搅拌均匀得到混合溶液;将导电衬底置于混合溶液中,室温下静置后得到蓝色水凝胶,且置于其中的导电衬底均匀包覆有水凝胶;然后配制NaBH4溶液加入所得水凝胶中,在70℃下恒温搅拌,待冷却至室温后采用去离子水冲洗,得到均匀生长在导电衬底上的有序氢氧化镍纳米片阵列;
(2)制备水合肼燃料电池负极材料:称取次磷酸钠和步骤(1)所得均匀生长有氢氧化镍纳米片阵列的导电衬底分别置于管式炉的上风口和下风口,在氩气或氮气保护下在500℃进行退火处理;待自然冷却至室温得到水合肼燃料电池负极材料。
2.根据权利要求1所述碱性体系水合肼燃料电池负极材料的制备方法,其特征在于,所述步骤(1)中氯化镍与镍氰化钾的质量比为2:1。
3.根据权利要求1所述碱性体系水合肼燃料电池负极材料的制备方法,其特征在于,所述步骤(1)中室温下静置6~12h。
4.根据权利要求1所述碱性体系水合肼燃料电池负极材料的制备方法,其特征在于,所述步骤(1)中NaBH4溶液浓度为0.1~2g/mL,用量为100~200mL。
5.根据权利要求1所述碱性体系水合肼燃料电池负极材料的制备方法,其特征在于,所述步骤(1)中恒温搅拌8~10h。
6.根据权利要求1所述碱性体系水合肼燃料电池负极材料的制备方法,其特征在于,所述步骤(1)中导电衬底为泡沫镍、泡沫铜、泡沫碳、碳布和碳纸中的一种。
7.根据权利要求1所述碱性体系水合肼燃料电池负极材料的制备方法,其特征在于,所述步骤(2)中次磷酸钠为2~3g。
8.根据权利要求1所述碱性体系水合肼燃料电池负极材料的制备方法,其特征在于,所述步骤(2)中管式炉的升温速率1~5℃/min;退火处理时间为2~5小时。
9.一种如权利要求1-8任一项所述制备方法制得的碱性体系水合肼燃料电池负极材料。
CN202111503477.8A 2021-12-10 2021-12-10 一种碱性体系水合肼燃料电池负极材料及其制备方法 Pending CN114204043A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111503477.8A CN114204043A (zh) 2021-12-10 2021-12-10 一种碱性体系水合肼燃料电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111503477.8A CN114204043A (zh) 2021-12-10 2021-12-10 一种碱性体系水合肼燃料电池负极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114204043A true CN114204043A (zh) 2022-03-18

Family

ID=80652016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111503477.8A Pending CN114204043A (zh) 2021-12-10 2021-12-10 一种碱性体系水合肼燃料电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114204043A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110029570A (ko) * 2009-09-16 2011-03-23 우석대학교 산학협력단 직접메탄올 연료전지용 전극촉매물질, 이를 포함하는 직접메탄올 연료전지, 및 그 제조방법
CN102389794A (zh) * 2011-10-11 2012-03-28 南京师范大学 利用氰胶前驱体还原制备具有三维纳米网状结构Pd催化剂的方法
CN103290246A (zh) * 2013-05-27 2013-09-11 南京师范大学 锂离子电池负极用三维纳米多孔锡基合金的制备方法
CN105033241A (zh) * 2015-06-04 2015-11-11 北京化工大学 一种超薄金属镍纳米片、其制备方法和作为电极材料的应用
CN107308940A (zh) * 2017-07-25 2017-11-03 陕西师范大学 一种超薄多孔Co纳米片的制备方法
CN107331851A (zh) * 2017-07-25 2017-11-07 太原理工大学 钠离子电池纳米片阵列磷化镍/3d石墨烯复合材料及其制备方法
CN107398564A (zh) * 2017-07-25 2017-11-28 陕西师范大学 一种超薄CoNi合金纳米片的制备方法
CN109569608A (zh) * 2018-12-17 2019-04-05 济南大学 一种CoFe2O4纳米片析氧催化剂的制备方法及用途
CN110064398A (zh) * 2019-04-24 2019-07-30 中南大学 室温一锅法制备超薄钴基双金属氧化物纳米片
CN110459740A (zh) * 2019-07-16 2019-11-15 五邑大学 一种碳纳米管包覆氧化钴材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110029570A (ko) * 2009-09-16 2011-03-23 우석대학교 산학협력단 직접메탄올 연료전지용 전극촉매물질, 이를 포함하는 직접메탄올 연료전지, 및 그 제조방법
CN102389794A (zh) * 2011-10-11 2012-03-28 南京师范大学 利用氰胶前驱体还原制备具有三维纳米网状结构Pd催化剂的方法
CN103290246A (zh) * 2013-05-27 2013-09-11 南京师范大学 锂离子电池负极用三维纳米多孔锡基合金的制备方法
CN105033241A (zh) * 2015-06-04 2015-11-11 北京化工大学 一种超薄金属镍纳米片、其制备方法和作为电极材料的应用
CN107308940A (zh) * 2017-07-25 2017-11-03 陕西师范大学 一种超薄多孔Co纳米片的制备方法
CN107331851A (zh) * 2017-07-25 2017-11-07 太原理工大学 钠离子电池纳米片阵列磷化镍/3d石墨烯复合材料及其制备方法
CN107398564A (zh) * 2017-07-25 2017-11-28 陕西师范大学 一种超薄CoNi合金纳米片的制备方法
CN109569608A (zh) * 2018-12-17 2019-04-05 济南大学 一种CoFe2O4纳米片析氧催化剂的制备方法及用途
CN110064398A (zh) * 2019-04-24 2019-07-30 中南大学 室温一锅法制备超薄钴基双金属氧化物纳米片
CN110459740A (zh) * 2019-07-16 2019-11-15 五邑大学 一种碳纳米管包覆氧化钴材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU DING, ATOMICALLY THICK NI(OH)2 NANOMESHES FOR UREA ELECTROOXIDATION, vol. 2019, no. 3, pages 1058 - 1064 *

Similar Documents

Publication Publication Date Title
CN111224113B (zh) 一种多级碳纳米结构锚定的Ni-N4单原子催化剂及其制备方法和应用
CN111682223A (zh) 一种原位合成氮掺杂碳片担载(Co,Ni,Fe)纳米颗粒电催化剂的制备
CN113652707B (zh) 一种碲化镍析氢催化剂及其制备方法与应用
CN112652780B (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
CN110624540A (zh) 新型钌基自支撑电催化材料及其制备方法和在电催化氮气还原产氨中的应用
CN112736261A (zh) 多孔碳网络负载铂纳米颗粒复合材料催化剂及其制备方法
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN114477163A (zh) 铁/氮共掺杂单原子碳催化剂及其制备方法
CN108832141A (zh) 一种燃料电池用蜂窝结构镍钴硼合金催化剂及其制备方法
CN109802143B (zh) 一种燃料电池3D网状结构PdRh合金电催化剂的制备方法及应用
CN115064717B (zh) 一种锌空气电池正极用orr-oer催化剂及其制备方法
CN111342060A (zh) 一种铂-镍/氮掺杂还原氧化石墨烯的制备方法
CN114016067B (zh) 一种自支撑双功能电解水催化剂的制备及应用
CN113774425B (zh) 一种Ru修饰FeCo@NF电催化剂的制备方法及应用
CN113122876B (zh) 一种钼掺杂镍铁普鲁士蓝类似物@碳毡的制备方法及应用
CN114204043A (zh) 一种碱性体系水合肼燃料电池负极材料及其制备方法
CN113353906B (zh) 非晶态铁掺杂磷酸镍-碳复合纳米球的制备方法及应用于电极催化剂
CN111514911B (zh) 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN113584513A (zh) 一种制备RuNC-T复合纳米材料的方法及其应用
CN112647087A (zh) 一种氰化镍/硒化镍复合纳米异质结构电催化剂及其制备与应用
CN115074774B (zh) 一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用
CN115224288B (zh) 一种碳包覆富位错过渡金属纳米颗粒电催化剂及其制备方法和应用
CN114214636B (zh) 一种含硒配体制备钴基纳米片自支撑电极的方法及应用
CN111411370B (zh) 一种用于高效电解水的自支撑电极及制备方法
CN115449693B (zh) 一种框架结构高熵合金析氧催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination