CN114180943A - 复合烧结体、半导体制造装置构件及复合烧结体的制造方法 - Google Patents

复合烧结体、半导体制造装置构件及复合烧结体的制造方法 Download PDF

Info

Publication number
CN114180943A
CN114180943A CN202111081223.1A CN202111081223A CN114180943A CN 114180943 A CN114180943 A CN 114180943A CN 202111081223 A CN202111081223 A CN 202111081223A CN 114180943 A CN114180943 A CN 114180943A
Authority
CN
China
Prior art keywords
electrode
zro
sintered body
difference
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111081223.1A
Other languages
English (en)
Other versions
CN114180943B (zh
Inventor
阿闭恭平
宫西启太
永井明日美
山口浩文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of CN114180943A publication Critical patent/CN114180943A/zh
Application granted granted Critical
Publication of CN114180943B publication Critical patent/CN114180943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/068Oxidic interlayers based on refractory oxides, e.g. zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Laminated Bodies (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种复合烧结体、半导体制造装置构件及复合烧结体的制造方法,能够抑制电极的电阻率增大,并且减小电极与基材的热膨胀系数之差。复合烧结体(20)具备以陶瓷为主材料的基材和配置于该基材的内部或表面的电极(23)。电极(23)包含W和ZrO2。由此,能够减小电极(23)与基材的热膨胀系数之差。其结果是,能够抑制由电极(23)与基材的热膨胀系数之差引起的基材的裂纹、电极(23)的剥离。另外,在复合烧结体(20)中,也能够抑制电极(23)的电阻率增大。其结果是,能够高精度地控制电极(23)的发热量。

Description

复合烧结体、半导体制造装置构件及复合烧结体的制造方法
技术领域
本发明涉及复合烧结体、半导体制造装置构件及复合烧结体的制造方法。
背景技术
以往,在半导体基板的制造装置等中,使用通过吸附来保持半导体基板的静电卡盘、加热半导体基板的加热器、将它们组合而成的静电卡盘加热器等基座。该基座具备以氧化铝等陶瓷的烧结体为主材料的基材和配置于该基材的内部等的电极。
上述基座例如通过将基材与电极一体烧成而形成。在该烧成中,存在产生因基材的热膨胀系数与电极的热膨胀系数之差而引起的不良影响的担忧。例如,有可能在基材上产生裂纹,或者电极从基材上剥离。
因此,在专利文献1中,提出了通过在WC等高熔点的主材料中添加了5重量%~30重量%的氧化铝(即,基材成分)的材料来形成与氧化铝烧结体的基材一起烧成的电极,从而提高基材与电极的密合性的技术。
另外,在专利文献2中,提出了具有在氧化铝中添加有MgF2等的基材以及以WC为主材料并添加有Ni、Co和氧化铝的电极的烧结体。电极中的氧化铝的添加与上述同样,是为了提高基材与电极的密合性。在电极中添加Ni和Co的目的在于,在由于添加MgF2而设定得低的烧成温度(例如,1120℃~1300℃)下提高电极的烧结性。
另一方面,在专利文献3中,提出了一种陶瓷加热器,其具有以氧化铝为主材料的基材和以Mo为主材料来代替上述WC的电极。在该电极中,为了改善电阻率温度依赖性的反转现象,在Mo中分散有Ti-Al-Mg-O复合氧化物。
现有技术文献
专利文献
专利文献1:日本特开2005-343733号公报
专利文献2:日本特开2011-168472号公报
专利文献3:日本特开2013-229310号公报
发明内容
发明所要解决的课题
然而,在专利文献1和专利文献2中,虽然通过在以WC为主材料的电极中添加基材成分,使得电极与基材的热膨胀系数之差在某种程度上变小,但减小热膨胀系数之差存在极限。
另外,在基座中,对于基材中使用的氧化铝材料,要求高电阻率、高绝缘耐压、减少颗粒产生的风险等,因此需要使氧化铝材料高纯度化,其结果是,基座制造时的烧成温度高温化(例如,1500℃以上)。因此,若如专利文献1以及专利文献2那样,在电极材料中使用WC,则由于高温烧成而导致WC的一部分氧化从而生成W2C,因此存在WC和W2C的含有率变动而电极的特性(例如,电阻率、热膨胀系数等)不稳定的担忧。另外,还存在由于在WC氧化时产生的CO气体,在电极周边产生气孔,基材的绝缘耐压降低的担忧。
进而,在专利文献2中,电极中所含的Ni和Co的熔点比较低,因此难以在1500℃以上的高温烧成中维持形状。另外,由于Ni以及Co是磁性材料,因此在将该电极用于静电卡盘的情况下,还存在阻碍基于库仑力的吸附力的担忧。
另一方面,在专利文献3中,通过Ti-Al-Mg-O复合氧化物,电极与基材的热膨胀系数之差有可能在某种程度上变小。然而,Ti-Al-Mg-O复合氧化物因烧成中的反应而生成,因此存在生成量不稳定,电极的特性(例如,电阻率、热膨胀系数等)不稳定的担忧。另外,由于电极中的Ti-Al-Mg-O复合氧化物粗大,Ti-Al-Mg-O复合氧化物的分布也不均匀,因此也存在难以稳定地控制电极特性的担忧。
本发明是鉴于上述课题而完成的,其目的在于,抑制电极的电阻率增大,并且减小电极与基材的热膨胀系数之差。
用于解决课题的手段
本发明的优选的一个方式的复合烧结体具备以陶瓷为主材料的基材和配置于所述基材的内部或表面的电极。上述电极包含钨和氧化锆。
优选所述电极与所述基材的热膨胀系数之差的绝对值在40℃以上且1000℃以下的范围内为0.5ppm/℃以下。
优选所述电极在室温下的电阻率为3.5×10-5Ω·cm以下。
优选在所述电极中,通过X射线衍射法得到的所述钨与所述氧化锆的主峰的强度比为0.90以上且小于0.96。
优选所述电极中的所述钨和所述氧化锆的合计含有率为100体积%。
优选所述氧化锆的烧结粒径为0.7μm以上且3.0μm以下。
优选所述氧化锆的烧结粒径与所述钨的烧结粒径之差的绝对值为0.5μm以下。
优选所述基材的主材料为氧化铝。所述基材中的所述氧化铝的含有率为95质量%以上。
本发明也面向在半导体制造装置中使用的半导体制造装置构件。该半导体制造装置构件使用上述复合烧结体来制作。所述基材为圆板状。在所述基材的主面上载置半导体基板。
本发明还面向复合烧结体的制造方法。该复合烧结体的制造方法具备:a)准备第一构件及第二构件的工序,所述第一构件及第二构件是以陶瓷为主材料的成型体、预烧体或烧结体;b)在所述第一构件上配置含有钨及氧化锆的电极或所述电极的前体后,将所述第二构件层叠而形成层叠体的工序;以及c)对所述层叠体进行热压烧成的工序。
优选所述c)工序结束后的所述电极与所述第一构件及所述第二构件的热膨胀系数之差的绝对值在40℃以上且1000℃以下的范围内为0.5ppm/℃以下。
优选所述c)工序中的烧成温度为1550℃以上且1650℃以下。
发明效果
在本发明中,能够抑制电极的电阻率增大,并且减小电极与基材的热膨胀系数之差。
附图说明
图1是一个实施方式的基座的截面图。
图2是复合烧结体的截面SEM图像。
图3是表示复合烧结体的制造流程的图。
符号说明
1:基座,20:复合烧结体,21:主体部,23:电极,9:基板,S11~S15:步骤。
具体实施方式
图1是本发明的一个实施方式的基座1的截面图。基座1是在半导体制造装置中使用的半导体制造装置构件。基座1从图1中的下侧支撑大致圆板状的半导体基板9(以下,简称为“基板9”)。在以下的说明中,将图1中的上侧和下侧简称为“上侧”和“下侧”。另外,将图1中的上下方向简称为“上下方向”。图1中的上下方向未必与将基座1设置于半导体制造装置时的实际的上下方向一致。
基座1具备主体部21、基体部22以及电极23。主体部21是以陶瓷为主材料的大致板状(例如大致圆板状)的基材。在主体部21的上侧的主面(即,上表面)上载置基板9。基体部22是在俯视中比主体部21大的大致板状(例如大致圆板状)的构件。主体部21安装于基体部22上。在图1所示的例子中,电极23配置(即埋设)于主体部21的内部。电极23例如是在俯视中描绘预定的图案的大致带状的构件。电极23优选由具有较高熔点的材料形成。主体部21和电极23是由多个材料形成的复合烧结体。在以下的说明中,也将主体部21和电极23统称为“复合烧结体20”。关于主体部21和电极23的材料在后面叙述。需说明的是,电极23的形状可以进行各种变更。另外,电极23也可以设置于主体部21的表面。
在图1所示的例子中,基座1是利用通过对电极23施加直流电压而产生的热对基板9进行加热的加热器。即,电极23是对基板9进行加热的电阻发热体。在基座1中,除了电极23以外,还可以在主体部21的内部设置利用库仑力或约翰逊·拉别克力对基板9进行静电吸附的卡盘用电极。或者,也可以将电极23用作卡盘用电极。
主体部21例如以氧化铝(Al2O3)为主材料而形成。在主体部21中,也可以将氧化镁(MgO)和/或镁铝尖晶石(MgAl2O4)等添加材料添加到Al2O3。主体部21中,作为主材料的Al2O3的含有率例如为95质量%以上且100质量%以下,优选为99质量%以上且100质量%以下。主体部21中的Al2O3的含有率可根据所期望的主体部21的材料特性而调整。需说明的是,主体部21的主材料并不限定于Al2O3,也可以是其他陶瓷。
电极23包含钨(W)和氧化锆(ZrO2)。在本实施方式中,电极23实质上仅由W和ZrO2形成,实质上不含W和ZrO2以外的物质。换言之,在本实施方式中,电极23中的W和ZrO2的合计含有率为100体积%。
电极23中的W和ZrO2的含有率被调整为电极23与主体部21的热膨胀系数之差实质上接近0。另外,在电极23中,通过X射线衍射法(XRD)得到的W与ZrO2的主峰的强度比(以下,也称为“W-ZrO2峰值比”)例如为0.90以上且小于0.96,以电极23与主体部21的热膨胀系数之差实质上接近0的方式进行调整。W-ZrO2峰值比是通过将W的主峰强度除以W的主峰强度与ZrO2的主峰强度的合计而得到的值。
W的热膨胀系数(也称为热膨胀率)在40℃以上且1000℃以下的范围内,为5.3ppm/℃(即,ppm/K)。以下的说明中的热膨胀系数在没有温度条件的记载的情况下,是在40℃以上且1000℃以下的范围内的热膨胀系数。ZrO2的热膨胀系数为10.5ppm/℃。Al2O3的热膨胀系数为8.0ppm/℃。主体部21的热膨胀系数根据作为主材料的Al2O3中添加的添加材料的种类和比例而变化,例如为8.1ppm/℃~8.3ppm/℃。
电极23所含的W的热膨胀系数比主体部21的热膨胀系数低。电极23所包含的ZrO2的热膨胀系数比主体部21的热膨胀系数高。在40℃以上且1000℃以下的范围内的电极23与主体部21的热膨胀系数之差的绝对值(以下,也称为“CTE差”)例如为0.5ppm/℃以下,优选为0.2ppm/℃以下。CTE差的下限没有特别限定,为0.0ppm/℃以上。
电极23在室温下的电阻率例如为3.5×10-5Ω·cm以下,优选为3.0×10-5Ω·cm以下。该电阻率的下限没有特别限定,例如为1.0×10-5Ω·cm以上。
如后所述,电极23是通过与主体部21一起或者与主体部21独立地进行烧成而形成的烧结体。烧成温度例如为1500℃以上的高温。需说明的是,W的熔点为3410℃,ZrO2的熔点为2715℃。W的烧结粒径例如为0.7μm以上且3.0μm以下,优选为1.0μm以上且2.0μm以下。ZrO2的烧结粒径例如为0.7μm以上且3.0μm以下,优选为1.0μm以上且2.0μm以下。ZrO2的烧结粒径与W的烧结粒径之差的绝对值(以下,也简称为“烧结粒径差”)例如为0.5μm以下,优选为0.25μm以下。烧结粒径差的下限没有特别限定,例如为0.0μm以上。W和ZrO2的烧结粒径可以通过使用SEM(扫描型电子显微镜)等的微结构观察来求出。
图2是后述的实施例10的复合烧结体20的截面SEM图像。图2中的上下方向的中央部的泛白区域与电极23对应。另外,电极23的下侧的黑色带状的区域与主体部21的第一构件对应,电极23的上侧的黑色带状的区域与主体部21的第二构件对应。在与电极23对应的区域内,颜色最浅的白色的区域为W,颜色比W深的灰色的区域为ZrO2。在复合烧结体20中,如上所述,通过减小电极23中的烧结粒径差,从而电极23中的W和ZrO2的分散的均匀性提高。
接着,参照图3对基座1的主体部21和电极23(即,复合烧结体20)的制造方法的一例进行说明。在该例子中,制作主体部21的下半部分的大致圆板状的部位(以下,称为“第一构件”)和上半部分的大致圆板状的部位(以下,称为“第二构件”),通过在第一构件与第二构件之间夹入电极23的材料并进行烧成,由此制造主体部21和电极23。
在该制造方法中,首先,准备主体部21的第一构件以及第二构件(步骤S11)。在步骤S11中准备的第一构件和第二构件可以是成型体、预烧体和烧结体中的任意状态。在步骤S11中,首先,以成为预定的组成的方式称量主体部21(即,第一构件及第二构件)的原料粉末,将该原料粉末进行湿式混合,然后通过单轴加压成型等成型为预定形状的成型体。
在步骤S11中,作为Al2O3原料,例如使用市售的高纯度微粒粉末。另外,在主体部21中含有MgO的情况下,作为MgO原料,例如使用市售的高纯度微粒粉末。在主体部21中含有MgAl2O4的情况下,例如,将上述的市售的MgO粉末与市售的Al2O3的高纯度微粒粉末进行加热合成而得到的物质用作MgAl2O4原料。或者,作为MgAl2O4原料,也可以使用市售的MgAl2O4的高纯度微粒粉末。Al2O3原料、MgO原料和MgAl2O4原料的纯度和平均粒径等可以适宜地决定。
在步骤S11中,原料粉末的混合条件(例如,混合时间、溶剂种类等)可以适宜地决定。作为该溶剂,例如可以使用有机溶剂或离子交换水。需说明的是,在步骤S11中,也可以通过干式混合来混合原料粉末。
在步骤S11中,成型体的成型条件(例如,施加的压力等)可以适宜地决定。在成型体的形状为板状的情况下,也可以通过将原料粉末填充于热压模具等来成型成型体。该成型体的成型只要能够保持形状即可,也可以通过其他各种方法进行。例如,也可以将湿式混合后的浆料以具有流动性的状态注入模具后除去溶剂成分,制成预定形状的成型体。或者,也可以通过利用了刮刀等的带成型法,形成预定形状的带成型体。
在步骤S11中,在准备第一构件和/或第二构件的预烧体或烧结体的情况下,利用热压法等对通过上述方法形成的成型体进行烧成,形成预烧体(即预烧结体)或烧结体。该成型体的烧成中的烧成条件(例如,压制压力、烧成温度、烧成时间等)可以适宜地决定。另外,该成型体的烧成也可以利用热压法以外的方法进行。
接着,以成为预定的组成的方式称量电极23的原料粉末,将该原料粉末混合后,与溶剂和粘合剂等混炼,生成作为电极23的前体的电极糊(步骤S12)。在步骤S12中,作为W原料及ZrO2原料,例如可使用市售的高纯度微粒粉末。W原料及ZrO2原料的纯度及平均粒径等可以适宜地决定。W原料和ZrO2原料的平均粒径例如小于1μm。
上述电极23的原料粉末的混合例如通过湿式混合来进行。原料粉末的混合条件(例如,混合时间、溶剂种类等)可以适宜地决定。作为该溶剂,例如可以使用有机溶剂或离子交换水。需说明的是,在步骤S12中,也可以通过干式混合来混合原料粉末。在步骤S12中,与原料粉末一起混炼的上述溶剂(例如有机溶剂)和粘合剂的种类可以适宜地决定。需说明的是,步骤S12可以在步骤S11之前进行或与步骤S11并行地进行。
在步骤S12中生成的电极糊通过丝网印刷等以预定的形状赋予至在步骤S11中形成的第一构件的上表面上(步骤S13)。在步骤S13中,在作为成型体的第一构件上赋予电极糊的情况下,第一构件例如是带成型体。需说明的是,在步骤S13中,电极糊的涂布也可以通过丝网印刷以外的方法进行。在第一构件为成型体或预烧体的情况下,准确地说,电极糊被赋予至第一构件的前体的上表面上。然后,将电极糊在大气中等干燥预定时间(例如1小时)后,在第一构件和电极糊上层叠第二构件而形成层叠体(步骤S14)。
需说明的是,在复合烧结体20的制造中,也可以代替上述的步骤S13~S14,将在步骤S12中生成的电极糊单独进行烧成而形成电极23,将该电极23配置在第一构件的上表面上,在第一构件及电极23上层叠第二构件。
之后,通过热压法等对在步骤S14中形成的层叠体进行烧成,从而使第一构件和第二构件一体化,形成主体部21和电极23(即,复合烧结体20)(步骤S15)。步骤S15中的烧成条件(例如,压制压力、烧成温度、烧成时间等)可以适宜地决定。步骤S15中的烧成温度(即,预烧时的最高温度)例如为1550℃以上且1650℃以下。步骤S15中的层叠体的烧成也可以通过热压法以外的方法进行。
接着,参照表1~表3,对本发明的复合烧结体20(即,主体部21及电极23)的实施例1~13以及用于与复合烧结体20进行比较的比较例1~4的复合烧结体进行说明。在实施例1~13中,电极23包含W和ZrO2,与此相对,在比较例1~4中,电极23不含ZrO2,在比较例1~2中,电极23还不含W。
[表1]
Figure BDA0003264110500000091
[表2]
Figure BDA0003264110500000101
[表3]
Figure BDA0003264110500000111
在实施例1~13和比较例1~4中,主体部21和电极23的制造通过上述的步骤S11~S15进行。在实施例1~13和比较例1~4中,使用MgO作为步骤S11中的向Al2O3中的添加剂。作为Al2O3原料,使用市售的Al2O3的高纯度微粒粉末(纯度99.99%以上、平均粒径0.5μm)。另外,作为MgO原料,使用市售的MgO的高纯度微粒粉末(纯度99.9%以上、平均粒径1μm以下)。
在实施例1~13和比较例1~4中,步骤S11中的原料粉末的湿式混合通过使用氧化铝球和塑料桶的球磨机来进行。混合时间为20小时,使用的溶剂为有机溶剂。将通过湿式混合而生成的浆料在干燥后过筛,由此得到主体部21的原料粉末。另外,步骤S11中的成型体的成型通过向单轴加压成型用的模具中填充原料粉末来进行。该单轴加压成型时的压力为100kgf/cm2。得到的成型体为直径50mm、厚度10mm的大致圆板状。需说明的是,在实施例1~13和比较例1~4中,制作、使用比实际的复合烧结体20小的试验体。
在实施例1~13及比较例1~4中,在步骤S12中,作为W原料及ZrO2原料,使用市售的W的高纯度微粒粉末(纯度99.9%以上、平均粒径0.8μm)及ZrO2的高纯度微粒粉末(纯度99%以上、平均粒径0.4μm)。
在实施例1~13和比较例1~4中,步骤S12中的原料粉末的湿式混合通过使用了氧化铝球和塑料桶的球磨机来进行。混合时间为20小时,使用的溶剂为有机溶剂。将通过湿式混合而生成的浆料在干燥后过筛,由此得到电极23的原料粉末。另外,作为在电极糊的生成时与该原料粉末混炼的溶剂和粘合剂,使用丁基卡必醇和聚甲基丙烯酸正丁酯。
在实施例1~13以及比较例1~4中,步骤S13中的电极糊的涂布通过丝网印刷来进行。涂布在第一构件上的电极糊的形状为宽度5mm、长度15mm的大致长方形。电极糊的厚度为60μm~70μm。
在实施例1~13和比较例1~4中,在步骤S13、S14中,作为第一构件和第二构件,使用成型体、预烧体或烧结体中的任一种。在使用成型体作为第一构件或第二构件的情况下,使用在上述的步骤S11中得到的构件。
在使用预烧体作为第一构件或第二构件的情况下,通过与前述的成型体同样的方法制作成型体,进行热处理而制作。烧成温度(即,热处理时的最高温度)为800℃以上且1000℃以下。然后,将得到的预烧体加工成直径50mm、厚度5mm的大致圆板状。需说明的是,预烧体只要适宜地采用在原料粉末中添加有机粘合剂等成型助剂而保持了形状的成型体进行加热处理而制作等现有的方法即可,其制作条件并不限定于上述。
在使用烧结体作为第一构件或第二构件的情况下,通过热压法进行成型体的烧成。具体而言,将上述成型体收纳于热压用的石墨模具中,设置于热压炉中进行烧成。预烧时的压制压力为200kgf/cm2。烧成温度(即,预烧时的最高温度)为1550℃以上且1650℃以下。烧成时间为8小时。升温速度和降温速度为300℃/h。对于烧成气氛,在直到1000℃的升温时进行抽真空,然后导入氮气。导入氮气后的气体压力维持在约1.5atm(约0.152MPa)。降温时,在1400℃下停止温度控制,进行炉冷。然后,将得到的烧结体加工成直径50mm、厚度5mm的大致圆板状。
在实施例1~13及比较例1~4中,步骤S15中的层叠后的烧成通过热压法进行。具体而言,将上述的层叠体收纳于热压用的石墨模具中,设置于热压炉中进行烧成。烧成时的压制压力为200kgf/cm2。烧成温度(即,烧成时的最高温度)为1550℃以上且1650℃以下。烧成时间为4小时~8小时。升温速度和降温速度为300℃/h。烧成气氛为氮气气氛。
在表1~表3中,对于基材(即,主体部21的第一构件和第二构件)的热膨胀系数,使用从主体部21切出的烧结体试样,通过基于JIS-R1618的方法,在40℃~1000℃的范围进行测定。另外,实施例1~13的电极23的热膨胀系数基于W和ZrO2各自的单独的热膨胀系数和电极23中的W和ZrO2的含有率来求出。具体而言,将W单独的热膨胀系数与电极23中的W的含有率(体积%)之积、和ZrO2单独的热膨胀系数与电极23中的ZrO2的含有率(体积%)之积的合计设为电极23的热膨胀系数。对于W和ZrO2各自的单独的热膨胀系数,对在步骤S12中使用的市售的W粉末和ZrO2粉末在与步骤S11同样的条件下进行热压烧成而制作块状材料,使用该块状材料,通过基于JIS-R1618的方法在40℃~1000℃的范围进行测定。在比较例1~4中也是同样的。如上所述,CTE差是电极23的热膨胀系数与主体部21的热膨胀系数之差的绝对值。
电极23中的W-ZrO2峰值比是通过上述的XRD测定的W与ZrO2的主峰的强度比。关于W-ZrO2峰值比,将作为W的主峰的(110)面的强度设为I1,将作为ZrO2的主峰的(111)面的强度设为I2,计算I1/(I1+I2)。另外,在利用XRD进行测定时,除去第二构件,使位于第一构件上的电极23露出来进行测定。作为X射线衍射装置,使用封入管式X射线衍射装置(布鲁克AXS公司制D8-ADVANCE)。测定条件为CuKα、40kV、40mA、2θ=10~70°、步长为0.002°。
电极23中的W的烧结粒径通过使用SEM的微结构观察而求出。具体而言,将试验片的一面研磨精加工成镜面状,使用SEM观察电极23的研磨面。然后,计算预定数量(例如,数十个)烧结颗粒各自的长径和短径的平均值即平均直径,将该预定数量的烧结颗粒的平均直径的算术平均设为W的烧结粒径。关于电极23中的ZrO2的烧结粒径也是同样的。
电极23的电阻率如下求出。首先,从在步骤S15中形成的复合烧结体20切出宽度、长度及厚度分别为9mm的大致长方体状的试验片。试验片以在中央部内置有宽度5mm、长度9mm的电极23的方式切出。在试验片的两端面露出有宽度5mm的电极23。电极23的截面积S(cm2)是通过光学显微镜测定试验片的端面的电极23的宽度和长度而求出的。另外,利用游标卡尺测定电极23所露出的试验片的两端面间的距离,将电极23的长度设为L(cm)。电阻测定用的电路是在电极23的两端面涂布导电性糊剂后连接引线而构成的。然后,在大气中,在室温下,以0mA~150mA的范围对电极23施加微小电流I(mA),测定此时产生的微小电压值V(mV),通过R=V/I求出电极23的电阻R(Ω)。然后,通过ρ=R×S/L求出电极23的电阻率ρ(Ω·cm)。
电极23的组成如下求出。首先,去除试验片的上半部分或下半部分而使电极23的上表面或下表面露出,对所露出的电极23进行研磨。然后,在电极23的研磨面中,利用上述的X射线衍射装置在上述测定条件下鉴定结晶相。
在实施例1~13和比较例1~4中,主体部21的主材料为Al2O3,添加物为MgO。另外,如上所述,在实施例1~13中,电极23由W和ZrO2形成。换言之,在实施例1~13中,电极23中的W和ZrO2的合计含有率为100体积%。另一方面,在比较例1中,电极23仅由碳化钨(WC)形成,不含W和ZrO2。在比较例2中,电极23由WC和Al2O3形成,不含W和ZrO2。在比较例3中,电极23仅由W形成,不含ZrO2。在比较例4中,电极23由W和Al2O3形成,不含ZrO2
在实施例1中,在步骤S13中赋予电极糊的主体部21的第一构件是烧结体。另外,在步骤S14中层叠于第一构件上的第二构件为成型体。主体部21的MgO的含有率为0.025质量%,主体部21的热膨胀系数为8.1ppm/℃。需说明的是,主体部21的MgO以外的剩余部分为Al2O3(在其他实施例和比较例中也同样)。电极23中的W的含有率为46.2体积%,ZrO2的含有率为53.8体积%。电极23的热膨胀系数为8.1ppm/℃。复合烧结体20的烧成温度(即,烧成时的最高温度)为1600℃。
在实施例1中,CTE差(即,在40℃以上且1000℃以下的范围内的电极23与主体部21的热膨胀系数之差的绝对值)为0.0ppm/℃。W-ZrO2峰值比为0.94。W和ZrO2的烧结粒径分别为1.17μm和1.27μm,烧结粒径差(即,ZrO2的烧结粒径与W的烧结粒径之差的绝对值)为0.10μm。电极23的电阻率为2.9×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例1中,由于CTE差小于0.5ppm/℃以下,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小至3.5×10-5Ω·cm以下。W-ZrO2峰值比处于0.90以上且小于0.96这样适当的范围内,由此,能够适当地兼顾上述的热膨胀系数之差的减少和电阻率增大的抑制。ZrO2的烧结粒径为0.7μm以上且3.0μm以下这样适当的范围,烧结粒径差(即,W的烧结粒径与ZrO2的烧结粒径之差)小至0.5μm以下。因此,在电极23中实现了W和ZrO2的大致均等的分散。
在实施例2中,主体部21中的MgO的含有率为1.0质量%,主体部21的热膨胀系数为8.2ppm/℃。电极23中的W的含有率为44.2体积%,ZrO2的含有率为55.8体积%。电极23的热膨胀系数为8.2ppm/℃。其他条件与实施例1同样。
在实施例2中,CTE差为0.0ppm/℃。W-ZrO2峰值比为0.93。W和ZrO2的烧结粒径分别为1.15μm和1.32μm,烧结粒径差为0.17μm。电极23的电阻率为3.0×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例2中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
在实施例3中,主体部21中的MgO的含有率为5.0质量%,主体部21的热膨胀系数为8.3ppm/℃。电极23中的W的含有率为42.3体积%,ZrO2的含有率为57.7体积%。电极23的热膨胀系数为8.3ppm/℃。其他条件与实施例1同样。
在实施例3中,CTE差为0.0ppm/℃。W-ZrO2峰值比为0.91。W和ZrO2的烧结粒径分别为1.14μm和1.36μm,烧结粒径差为0.22μm。电极23的电阻率为3.2×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例3中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
若着眼于实施例1~3,则即使在将主体部21的热膨胀系数在上述范围(即8.1ppm/℃~8.3ppm/℃)内变更的情况下,也能够使CTE差为0.0ppm/℃,能够防止主体部21的裂纹、电极23的剥离。另外,能够抑制电极23的电阻率增大。
在实施例4中,电极23中的W的含有率为55.8体积%,ZrO2的含有率为44.2体积%。电极23的热膨胀系数为7.6ppm/℃。其他条件与实施例1同样。
在实施例4中,CTE差为0.5ppm/℃。W-ZrO2峰值比为0.96。W和ZrO2的烧结粒径分别为1.20μm和1.11μm,烧结粒径差为0.09μm。电极23的电阻率为2.0×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例4中,由于CTE差小(即,为0.5ppm/℃以下),因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
在实施例5中,电极23中的W的含有率为51.9体积%,ZrO2的含有率为48.1体积%。电极23的热膨胀系数为7.8ppm/℃。其他条件与实施例1同样。
在实施例5中,CTE差为0.3ppm/℃。W-ZrO2峰值比为0.95。W和ZrO2的烧结粒径分别为1.19μm和1.14μm,烧结粒径差为0.05μm。电极23的电阻率为2.5×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例5中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
在实施例6中,电极23中的W的含有率为48.1体积%,ZrO2的含有率为51.9体积%。电极23的热膨胀系数为8.0ppm/℃。其他条件与实施例1同样。
在实施例6中,CTE差为0.1ppm/℃。W-ZrO2峰值比为0.95。W和ZrO2的烧结粒径分别为1.18μm和1.22μm,烧结粒径差为0.04μm。电极23的电阻率为2.8×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例6中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
在实施例7中,电极23中的W的含有率为44.2体积%,ZrO2的含有率为55.8体积%。电极23的热膨胀系数为8.2ppm/℃。其他条件与实施例1同样。
在实施例7中,CTE差为0.1ppm/℃。W-ZrO2峰值比为0.93。W和ZrO2的烧结粒径分别为1.16μm和1.30μm,烧结粒径差为0.14μm。电极23的电阻率为3.1×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例7中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
在实施例8中,电极23中的W的含有率为40.4体积%,ZrO2的含有率为59.6体积%。电极23的热膨胀系数为8.4ppm/℃。其他条件与实施例1同样。
在实施例8中,CTE差为0.3ppm/℃。W-ZrO2峰值比为0.91。W和ZrO2的烧结粒径分别为1.14μm和1.35μm,烧结粒径差为0.21μm。电极23的电阻率为3.3×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例8中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
在实施例9中,电极23中的W的含有率为36.5体积%,ZrO2的含有率为63.5体积%。电极23的热膨胀系数为8.6ppm/℃。其他条件与实施例1同样。
在实施例9中,CTE差为0.5ppm/℃。W-ZrO2峰值比为0.90。W和ZrO2的烧结粒径分别为1.13μm和1.38μm,烧结粒径差为0.25μm。电极23的电阻率为3.5×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例9中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
若着眼于实施例1、4~9,则即使在变更电极23中的W和ZrO2的含有率、将CTE差在上述范围(即,0.0ppm/℃~0.5ppm/℃)内变更的情况下,也能够防止主体部21的裂纹、电极23的剥离。另外,能够抑制电极23的电阻率的增大。
在实施例10中,复合烧结体20的烧成温度为1550℃。其他条件与实施例1同样。
在实施例10中,电极23的热膨胀系数为8.0ppm/℃,CTE差为0.1ppm/℃。W-ZrO2峰值比为0.94。W和ZrO2的烧结粒径分别为0.94μm和0.82μm,烧结粒径差为0.12μm。电极23的电阻率为3.0×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例10中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
在实施例11中,复合烧结体20的烧成温度为1650℃。其他条件与实施例1同样。
在实施例11中,电极23的热膨胀系数为8.2ppm/℃,CTE差为0.1ppm/℃。W-ZrO2峰值比为0.93。W和ZrO2的烧结粒径分别为1.81μm和1.72μm,烧结粒径差为0.09μm。电极23的电阻率为3.1×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例11中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
若着眼于实施例1、10~11,则即使将复合烧结体20的烧成温度在上述范围(即1550℃~1650℃)内变更的情况下,CTE差也小至0.0ppm/℃~0.1ppm/℃,能够防止主体部21的裂纹、电极23的剥离。另外,能够抑制电极23的电阻率的增大。
在实施例12中,在步骤S11中准备的第一构件以及在步骤S14中层叠于第一构件上的第二构件是预烧体。其他条件与实施例1同样。
在实施例12中,CTE差为0.0ppm/℃。W-ZrO2峰值比为0.93。W和ZrO2的烧结粒径分别为2.22μm和2.55μm,烧结粒径差为0.33μm。电极23的电阻率为2.8×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例12中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为合适的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
在实施例13中,在步骤S14中层叠于第一构件上的第二构件是烧结体。其他条件与实施例1同样。
在实施例13中,CTE差为0.0ppm/℃。W-ZrO2峰值比为0.94。W和ZrO2的烧结粒径分别为1.15μm和1.25μm,烧结粒径差为0.10μm。电极23的电阻率为2.9×10-5Ω·cm。电极23的组成为W和ZrO2
在实施例13中,由于CTE差小,因此没有产生由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的电阻率小。进而,ZrO2的烧结粒径为适当的范围,烧结粒径差小,因此在电极23中实现了W和ZrO2的大致均等的分散。
若着眼于实施例1、12~13,则即使将步骤S15中的烧结前的第一构件和第二构件的状态(即,成型体、预烧体或烧结体)进行了变更的情况下,CTE差为0.0ppm/℃,也能够防止主体部21的裂纹、电极23的剥离。另外,能够抑制电极23的电阻率的增大。
在比较例1中,如上所述,电极23仅由WC形成,不含W和ZrO2。电极23的热膨胀系数为5.3ppm/℃。其他条件与实施例1同样。在比较例1中,CTE差较大,为2.8ppm/℃,因此产生了由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的组成为WC和W2C。该W2C是通过高温烧成来使WC的一部分氧化而生成的,电极23中的WC和W2C的含有率发生变动,存在电极23的特性(例如,电阻率、热膨胀系数等)不稳定化的可能性。
在比较例2中,如上所述,电极23由WC和Al2O3形成,不含W和ZrO2。电极23的热膨胀系数为6.1ppm/℃。其他条件与实施例1同样。在比较例2中,由于CTE差较大,为2.0ppm/℃,因此产生了由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的组成为WC、W2C以及Al2O3。因此,与比较例1同样地,存在电极23的特性不稳定化的可能性。
在比较例3中,如上所述,电极23仅由W形成,不含ZrO2。电极23的热膨胀系数为5.3ppm/℃。其他条件与实施例1同样。在比较例2中,CTE差较大,为2.5ppm/℃,因此产生了由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的组成为W。
在比较例4中,如上所述,电极23由W和Al2O3形成,不含ZrO2。电极23的热膨胀系数为6.1ppm/℃。其他条件与实施例1同样。在比较例2中,由于CTE差较大,为2.0ppm/℃,因此产生了由主体部21与电极23的热膨胀系数之差引起的主体部21的裂纹、电极23的剥离。另外,电极23的组成为W和Al2O3
如以上说明的那样,复合烧结体20具备以陶瓷为主材料的基材(在上述例子中为主体部21)和配置于该基材的内部或表面的电极23。电极23包含W和ZrO2。由此,如实施例1~13所示,能够减小电极23与基材的热膨胀系数之差。其结果是,能够抑制由电极23与基材的热膨胀系数之差引起的基材的裂纹、电极23的剥离。另外,在复合烧结体20中,也能够抑制电极23的电阻率的增大。其结果是,能够高精度地控制电极23的发热量。而且,由于W和ZrO2不是Ni、Co这样的磁性材料,因此即使在将复合烧结体20用作静电卡盘的情况下,也能够抑制由库仑力引起的基板9的吸附阻碍。
如上所述,电极23与基材的热膨胀系数之差的绝对值在40℃以上且1000℃以下的范围内优选为0.5ppm/℃以下。由此,能够进一步抑制由电极23与基材的热膨胀系数之差引起的基材的裂纹、电极23的剥离。
如上所述,电极23在室温下的电阻率优选为3.5×10-5Ω·cm以下。由此,能够更高精度地控制电极23的发热量。
如上所述,在电极23中,通过X射线衍射法得到的W与ZrO2的主峰的强度比(即,W-ZrO2峰值比)优选为0.90以上且小于0.96。这样,通过将电极23中的W与ZrO2的组成比设为适当的范围,从而能够适当地抑制电极23的电阻率增大,并且能够适当地减小电极23与基材的热膨胀系数之差。
如上所述,电极23中的W和ZrO2的合计含有率优选为100体积%。由此,能够防止因电极23的材料的种类增加而导致的制造成本增大。
如上所述,ZrO2的烧结粒径优选为0.7μm以上且3.0μm以下。由此,能够提高电极23中的ZrO2的分散的均匀性。其结果是,能够实现电极23整体的电阻率增大的抑制以及与基材的热膨胀系数差的减小。
如上所述,ZrO2的烧结粒径与W的烧结粒径之差的绝对值(即,烧结粒径差)优选为0.5μm以下。由此,能够提高电极23中的W和ZrO2的分散的均匀性。其结果是,能够实现电极23整体的电阻率增大的抑制以及与基材的热膨胀系数差的减小。
如上所述,基材的主材料为Al2O3,该基材中的Al2O3的含有率优选为95质量%以上。由此,在制造复合烧结体20时,能够进行复合烧结体20的高温烧成。因此,能够抑制烧成时的W的碳化和氧化。其结果是,能够使电极23的特性稳定。
如上所述,在复合烧结体20中,能够抑制电极23的电阻率增大,并且减小电极23与基材的热膨胀系数之差,抑制基材的裂纹、电极23的剥离。因此,复合烧结体20适合于在半导体制造装置中使用的半导体制造装置构件。复合烧结体20特别适合于在高功率蚀刻装置等高输出功率的半导体制造装置中使用的半导体制造装置构件。作为使用复合烧结体20制作的半导体制造装置构件的适当的一例,可举出上述的基座1。在基座1中,如上所述,主体部21为圆板状,在主体部21的主面上载置有基板9。
上述的复合烧结体20的制造方法具备:准备第一构件及第二构件的工序(步骤S11),所述第一构件及第二构件的工序(步骤S11)为以陶瓷为主材料的成型体、预烧体或烧结体;在该第一构件上配置含有W及ZrO2的电极23或电极23的前体后,层叠第二构件而形成层叠体的工序(步骤S13、S14);以及对该层叠体进行热压烧成的工序(步骤S15)。由此,与上述同样地,能够抑制由电极23与基材的热膨胀系数之差引起的基材的裂纹、电极23的剥离。
如上所述,步骤S15结束后的电极23与第一构件及第二构件的热膨胀系数之差的绝对值在40℃以上且1000℃以下的范围内优选为0.5ppm/℃以下。由此,能够进一步抑制由电极23与基材的热膨胀系数之差引起的基材的裂纹、电极23的剥离。
如上所述,步骤S15中的烧成温度优选为1550℃以上且1650℃以下。由此,能够抑制烧成时的W的碳化和氧化。其结果是,能够使电极23的特性稳定。
在上述的复合烧结体20、半导体制造装置构件以及复合烧结体20的制造方法中,能够进行各种变更。
例如,复合烧结体20的CTE差也可以大于0.5ppm/℃。
电极23在室温下的电阻率也可以高于3.5×10-5Ω·cm。
在电极23中,W-ZrO2峰值比可以小于0.90,也可以为0.96以上。
电极23中的固态物中的W和ZrO2的合计含有率也可以小于100体积%。
电极23中的ZrO2的烧结粒径可以小于0.7μm,也可以大于3.0μm。
在电极23中,ZrO2的烧结粒径与W的烧结粒径之差的绝对值(即,烧结粒径差)也可以大于0.5μm。
主体部21中的Al2O3的含有率也可以小于95质量%。另外,主体部21的主材料也可以是Al2O3以外的陶瓷。
在复合烧结体20的制造方法中,上述的步骤S15中的烧成温度可以小于1550℃,也可以高于1650℃。
复合烧结体20也可以通过与上述制造方法不同的方法来制造。例如,也可以省略步骤S12,在步骤S13中,将电极23的原料粉末(即,电极23的前体)赋予到第一构件上。
复合烧结体20除了基座1以外,也可以用于制作在半导体制造装置中设置的其他半导体制造装置构件(例如环、喷头等)。另外,也可以利用复合烧结体20制作在半导体制造装置以外的装置中使用的构件。例如,复合烧结体20可以用于制作支撑半导体基板以外的基板的基座,也可以用于制作对对象物进行加热的陶瓷加热器。
上述实施方式和各变形例中的构成只要不相互矛盾,就可以适宜地组合。
产业上的可利用性
本发明能够用于与半导体制造装置相关的领域,例如保持半导体基板并进行加热的基座的制造。

Claims (12)

1.一种复合烧结体,其特征在于,
具备以陶瓷为主材料的基材和配置于所述基材的内部或表面的电极,
所述电极包含钨和氧化锆。
2.根据权利要求1所述的复合烧结体,其特征在于,
所述电极与所述基材的热膨胀系数之差的绝对值在40℃以上且1000℃以下的范围内为0.5ppm/℃以下。
3.根据权利要求1或2所述的复合烧结体,其特征在于,
所述电极在室温下的电阻率为3.5×10-5Ω·cm以下。
4.根据权利要求1~3中任一项所述的复合烧结体,其特征在于,
在所述电极中,通过X射线衍射法得到的所述钨与所述氧化锆的主峰的强度比为0.90以上且小于0.96。
5.根据权利要求1~4中任一项所述的复合烧结体,其特征在于,
所述电极中的所述钨和所述氧化锆的合计含有率为100体积%。
6.根据权利要求1~5中任一项所述的复合烧结体,其特征在于,
所述氧化锆的烧结粒径为0.7μm以上且3.0μm以下。
7.根据权利要求1~6中任一项所述的复合烧结体,其特征在于,
所述氧化锆的烧结粒径与所述钨的烧结粒径之差的绝对值为0.5μm以下。
8.根据权利要求1~7中任一项所述的复合烧结体,其特征在于,
所述基材的主材料为氧化铝,所述基材中的所述氧化铝的含有率为95质量%以上。
9.一种半导体制造装置构件,是在半导体制造装置中使用的半导体制造装置构件,其特征在于,使用权利要求1~8中任一项所述的复合烧结体来制作,所述基材为圆板状,在所述基材的主面上载置半导体基板。
10.一种复合烧结体的制造方法,其特征在于,具备:
a)准备第一构件及第二构件的工序,所述第一构件及第二构件是以陶瓷为主材料的成型体、预烧体或烧结体;
b)在所述第一构件上配置含有钨及氧化锆的电极或所述电极的前体后,将所述第二构件层叠而形成层叠体的工序;以及
c)对所述层叠体进行热压烧成的工序。
11.根据权利要求10所述的复合烧结体的制造方法,其特征在于,
所述c)工序结束后的所述电极与所述第一构件及所述第二构件的热膨胀系数之差的绝对值在40℃以上且1000℃以下的范围内为0.5ppm/℃以下。
12.根据权利要求10或11所述的复合烧结体的制造方法,其特征在于,
所述c)工序中的烧成温度为1550℃以上且1650℃以下。
CN202111081223.1A 2020-09-15 2021-09-15 复合烧结体、半导体制造装置构件及复合烧结体的制造方法 Active CN114180943B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154641 2020-09-15
JP2020154641A JP7465771B2 (ja) 2020-09-15 2020-09-15 複合焼結体、半導体製造装置部材および複合焼結体の製造方法

Publications (2)

Publication Number Publication Date
CN114180943A true CN114180943A (zh) 2022-03-15
CN114180943B CN114180943B (zh) 2023-06-27

Family

ID=80601065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111081223.1A Active CN114180943B (zh) 2020-09-15 2021-09-15 复合烧结体、半导体制造装置构件及复合烧结体的制造方法

Country Status (5)

Country Link
US (1) US11926570B2 (zh)
JP (1) JP7465771B2 (zh)
KR (1) KR20220036334A (zh)
CN (1) CN114180943B (zh)
TW (1) TWI773497B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868913B (zh) * 2018-03-23 2023-08-22 住友大阪水泥股份有限公司 静电卡盘装置及静电卡盘装置的制造方法
JP2021072350A (ja) * 2019-10-30 2021-05-06 日本碍子株式会社 複合焼結体および複合焼結体の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714645A (en) * 1981-10-20 1987-12-22 Mitsubishi Mining & Cement Co., Ltd. Electronic parts and process for the manufacture of the same
JPH04337276A (ja) * 1991-05-14 1992-11-25 Shin Etsu Chem Co Ltd 複層セラミックスヒ−タ−
JPH08315967A (ja) * 1995-05-16 1996-11-29 Ngk Spark Plug Co Ltd メタライズ発熱層を有するアルミナ質セラミックヒータ
JP2004119111A (ja) * 2002-09-25 2004-04-15 Kyocera Corp セラミックヒータの製造方法
JP2004342622A (ja) * 2004-07-16 2004-12-02 Ngk Spark Plug Co Ltd セラミックヒータ
KR100648001B1 (ko) * 2005-06-20 2006-11-23 (주) 세라트론 세라믹 히터
CN1947461A (zh) * 2003-11-25 2007-04-11 京瓷株式会社 陶瓷加热器及其制造方法
KR20100108290A (ko) * 2009-03-26 2010-10-06 니뽄 가이시 가부시키가이샤 알루미나 소결체, 그 제법 및 반도체 제조 장치 부재
JP2010229976A (ja) * 2009-03-30 2010-10-14 Ngk Insulators Ltd 通電発熱用ハニカム体及びその製造方法
CN103582193A (zh) * 2012-08-08 2014-02-12 湖南省新化县齐睿电子电器有限公司 一种即热式陶瓷加热管及加工工艺
JP2017062908A (ja) * 2015-09-24 2017-03-30 イビデン株式会社 セラミックヒーターの製造方法
CN107135560A (zh) * 2016-02-29 2017-09-05 日本碍子株式会社 陶瓷结构体、其制法及半导体制造装置用部件
JP2017188261A (ja) * 2016-04-04 2017-10-12 信越化学工業株式会社 複層セラミックスヒーター、複層セラミックスヒーターの製造方法、及び、加熱方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111828A (ja) 1997-09-30 1999-04-23 Shin Etsu Chem Co Ltd 静電吸着装置
EP1191002A4 (en) 2000-02-24 2005-01-26 Ibiden Co Ltd SINTERED ALUMINUM NITRIDE PIECE, CERAMIC SUBSTRATE, CERAMIC HEATING BODY, AND ELECTROSTATIC CHUCK
JP4476701B2 (ja) 2004-06-02 2010-06-09 日本碍子株式会社 電極内蔵焼結体の製造方法
US20080016684A1 (en) 2006-07-06 2008-01-24 General Electric Company Corrosion resistant wafer processing apparatus and method for making thereof
US20080006204A1 (en) 2006-07-06 2008-01-10 General Electric Company Corrosion resistant wafer processing apparatus and method for making thereof
JP2008016795A (ja) 2006-07-06 2008-01-24 Momentive Performance Materials Inc 耐腐食性ウェーハプロセス装置およびその作製方法
US7929269B2 (en) * 2008-09-04 2011-04-19 Momentive Performance Materials Inc. Wafer processing apparatus having a tunable electrical resistivity
JP5501040B2 (ja) 2009-03-26 2014-05-21 日本碍子株式会社 アルミナ焼結体、その製法及び半導体製造装置部材
JP6018071B2 (ja) 2011-10-11 2016-11-02 日本碍子株式会社 セラミックス部材、半導体製造装置用部材及びセラミックス部材の製造方法
JP6049509B2 (ja) 2012-03-28 2016-12-21 日本碍子株式会社 セラミックヒーター、ヒーター電極及びセラミックヒーターの製法
KR101757793B1 (ko) 2014-03-10 2017-07-14 스미토모 오사카 세멘토 가부시키가이샤 유전체 재료 및 정전 척 장치
JP5926870B1 (ja) 2014-09-16 2016-05-25 日本碍子株式会社 セラミック構造体、基板保持装置用部材及びセラミック構造体の製法
CN110494392A (zh) * 2017-04-11 2019-11-22 巴斯夫欧洲公司 包含电子盐化合物的复合材料
JP7213710B2 (ja) 2018-03-23 2023-01-27 日本碍子株式会社 複合焼結体、半導体製造装置部材および複合焼結体の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714645A (en) * 1981-10-20 1987-12-22 Mitsubishi Mining & Cement Co., Ltd. Electronic parts and process for the manufacture of the same
JPH04337276A (ja) * 1991-05-14 1992-11-25 Shin Etsu Chem Co Ltd 複層セラミックスヒ−タ−
JPH08315967A (ja) * 1995-05-16 1996-11-29 Ngk Spark Plug Co Ltd メタライズ発熱層を有するアルミナ質セラミックヒータ
JP2004119111A (ja) * 2002-09-25 2004-04-15 Kyocera Corp セラミックヒータの製造方法
CN1947461A (zh) * 2003-11-25 2007-04-11 京瓷株式会社 陶瓷加热器及其制造方法
JP2004342622A (ja) * 2004-07-16 2004-12-02 Ngk Spark Plug Co Ltd セラミックヒータ
KR100648001B1 (ko) * 2005-06-20 2006-11-23 (주) 세라트론 세라믹 히터
KR20100108290A (ko) * 2009-03-26 2010-10-06 니뽄 가이시 가부시키가이샤 알루미나 소결체, 그 제법 및 반도체 제조 장치 부재
JP2010229976A (ja) * 2009-03-30 2010-10-14 Ngk Insulators Ltd 通電発熱用ハニカム体及びその製造方法
CN103582193A (zh) * 2012-08-08 2014-02-12 湖南省新化县齐睿电子电器有限公司 一种即热式陶瓷加热管及加工工艺
JP2017062908A (ja) * 2015-09-24 2017-03-30 イビデン株式会社 セラミックヒーターの製造方法
CN107135560A (zh) * 2016-02-29 2017-09-05 日本碍子株式会社 陶瓷结构体、其制法及半导体制造装置用部件
JP2017188261A (ja) * 2016-04-04 2017-10-12 信越化学工業株式会社 複層セラミックスヒーター、複層セラミックスヒーターの製造方法、及び、加熱方法

Also Published As

Publication number Publication date
US20220081365A1 (en) 2022-03-17
CN114180943B (zh) 2023-06-27
KR20220036334A (ko) 2022-03-22
TWI773497B (zh) 2022-08-01
JP7465771B2 (ja) 2024-04-11
JP2022048679A (ja) 2022-03-28
TW202212135A (zh) 2022-04-01
US11926570B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
KR101483921B1 (ko) 냉각판, 그 제조방법 및 반도체 제조 장치용 부재
TWI575634B (zh) Ceramic heater, heater electrode and ceramic heater system
KR101891930B1 (ko) 세라믹 히터 및 그 제법
WO2016042957A1 (ja) セラミック構造体、基板保持装置用部材及びセラミック構造体の製法
CN114180943A (zh) 复合烧结体、半导体制造装置构件及复合烧结体的制造方法
KR102497967B1 (ko) 복합 소결체, 반도체 제조 장치 부재 및 복합 소결체의 제조 방법
CN107135560B (zh) 陶瓷结构体、其制法及半导体制造装置用部件
CN110709367A (zh) 复合烧结体、静电卡盘部件及静电卡盘装置
CN111868913B (zh) 静电卡盘装置及静电卡盘装置的制造方法
JP2010208871A (ja) 酸化アルミニウム焼結体、その製法及び半導体製造装置部材
CN112750692B (zh) 复合烧结体及复合烧结体的制造方法
CN114180942B (zh) 复合烧结体、半导体制造装置构件及复合烧结体的制造方法
JPWO2019163710A1 (ja) 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
KR101692219B1 (ko) 진공척용 복합체 및 그 제조방법
JP2022048078A (ja) 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
JP2005200281A (ja) セラミック抵抗体及びその製造方法並びに静電チャック

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant