CN114023815A - 一种半垂直GaN基逆导型IGBT器件及其制备方法 - Google Patents

一种半垂直GaN基逆导型IGBT器件及其制备方法 Download PDF

Info

Publication number
CN114023815A
CN114023815A CN202111124189.1A CN202111124189A CN114023815A CN 114023815 A CN114023815 A CN 114023815A CN 202111124189 A CN202111124189 A CN 202111124189A CN 114023815 A CN114023815 A CN 114023815A
Authority
CN
China
Prior art keywords
region
gan
layer
collector
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111124189.1A
Other languages
English (en)
Other versions
CN114023815B (zh
Inventor
张鹏
王凯
马晓华
郝跃
李萌迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202111124189.1A priority Critical patent/CN114023815B/zh
Publication of CN114023815A publication Critical patent/CN114023815A/zh
Application granted granted Critical
Publication of CN114023815B publication Critical patent/CN114023815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种半垂直GaN基逆导型IGBT器件及其制备方法,该器件包括:衬底,依次设置在衬底上的缓冲层、场截止层、n‑漂移区及p型GaN层;其中,p型GaN层两侧各设有一深沟槽结构,深沟槽结构起始于p型GaN层上表面,向下延伸至场截止层上表面,以将p型GaN层划分成两侧的p+集电区和中间的p基区,从而形成U型半垂直结构;p基区上方设有n+GaN层,作为器件的n+发射区;n+GaN层中间设有沟槽栅结构;p+集电区内靠近深沟槽结构一侧分别设有一n+短路集电极区,p+集电区和n+发射区上方分别淀积有金属电极。本发明提供的器件克服了采用传统IGBT结构制作垂直GaN基逆导型IGBT器件时,内层p‑GaN无法激活的问题,并将集电极从背部转移到正面,使逆导型IGBT的制造工艺变得简单。

Description

一种半垂直GaN基逆导型IGBT器件及其制备方法
技术领域
本发明属于功率半导体技术领域,具体涉及一种半垂直GaN基逆导型IGBT器件及其制备方法。
背景技术
功率半导体器件又被称为电力电子器件,是电力电子技术的基础,也是构成电力电子变换装置的核心器件。IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)作为一种由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFTE与BJT两者的优势,具有高输入阻抗、驱动电流小、开关损耗小、开关速度快、高开关频率、低导通压降、高击穿电压、控制电路简单、工作温度高和热稳定性好等优点,并且不会有二次击穿现象,安全工作区宽,因而被广泛应用在新能源汽车、轨道交通、国家电网和航天航空等领域。
传统的IGBT可以按照器件在关断耐压状态下,漂移区内电场是否在集电极区附近截止,分为穿通型(Punch Through)和非穿通型(Non-Punch Through)两类。近年来,出现了一种场截止型IGBT(Field Stop IGBT),其综合了PT-IGBT和NPT-IGBT的优势,它同NPT-IGBT一样采用背面工艺形成P+集电极区,还在P+集电极区和N-漂移区之间通过注入形成了高浓度的N型场截止层,既控制了集电极空穴注入效率,同时也不需要过长的漂移区来维持耐压,在导通压降和关断损耗之间取得了较好的折中。请参见图1,图1是传统型IGBT器件结构示意图。
由于IGBT在反向偏置的条件下等效为一个基区开路的BJT,因此IGBT本身不具备反向导通的能力。但在IGBT大部分的应用中,通常需要在其两端反并联一个续流二极管(FWD),以实现反向续流的功能。最初是将IGBT与FWD两个独立的器件通过引线焊接在一起做成模块来使用,但这会带来一些缺陷,一是由于加入了引线会引入寄生电感和寄生电阻,进而影响器件的性能;二是使得系统体积较大并且二者的性能通常不能实现很好的匹配。因此,人们将IGBT和FWD集成在同一芯片上发展出了逆导型绝缘栅双极晶体管(RC-IGBT),如图2所示。
随着半导体技术的发展,以GaN材料为代表的第三代半导体材料,凭借其出色的材料特性,逐渐取代了传统的第一代半导体Si材料,迅速成为高频大功率电子产品的首选材料。GaN材料相比于第一代和第二代半导体材料,其特点是禁带宽度大、击穿场强高、电子迁移率高、电子饱和速度高等。尽管基于GaN同质外延的垂直结构功率器件具有很好的器件性能,GaN本身熔点(2791K)和离解压(6GPa以上)比较高,导致制备GaN单晶比较困难。出于其成本及其商业化的考虑,在大尺寸、低成本衬底上进行异质外延GaN基垂直功率器件可大幅降低器件的制造成本。
然而,由于RC-IGBT结构复杂,不管是对于GaN异质外延材料,其衬底一般为硅、碳化硅或蓝宝石,还是对于GaN体材料,其衬底一般为高掺杂的N+GaN,这些衬底材料均不易制作垂直结构的IGBT。加之全垂直GaN基RC-IGBT器件需要在衬底上生长出PNPN(从下至上)四层材料结构,不仅生长难度大而且内层P-GaN的激活难度大,浅层的P-base层(基区)还可以通过刻蚀开孔后快速退火来激活,而深层的P-collector(集电区)则需要在制作背电极前开孔激活,从而导致激活难度非常大,甚至出现内层p-GaN无法激活的问题,从而导致器件无法正常工作。
此外,由于GaN基RC-IGBT的背电极制作本身就存在一定难度,首先需要进行衬底减薄,降低衬底厚度,其次需要背部光刻、深孔刻蚀以及深孔金属填充工艺制作背面集电极。并且RC-IGBT还需要在p+集电极区局部注入n型杂质形成n+短路集电极区,使其成为反向导通时的电流路径。这些复杂的工艺进一步阻碍了GaN基RC-IGBT器件的应用与发展。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种半垂直GaN基逆导型IGBT器件及其制备方法。本发明要解决的技术问题通过以下技术方案实现:
一种半垂直GaN基逆导型IGBT器件,其特征在于,包括:衬底,依次设置在所述衬底上的缓冲层、场截止层、n-漂移区以及p型GaN层;其中,
所述p型GaN层两侧各设有一深沟槽结构,所述深沟槽结构起始于所述p型GaN层上表面,并向下延伸至所述场截止层的上表面,以将所述p型GaN层划分成两侧的p+集电区和中间的p基区,从而形成U型半垂直结构;
所述p基区上方形成有n+GaN层,作为器件的n+发射区;
所述n+GaN层中间设有沟槽栅结构;所述沟槽栅结构起始于所述n+GaN层上表面,并向下延伸至所述n-漂移区内,其包括栅氧化层和栅极;
所述p+集电区内靠近所述深沟槽结构一侧分别设有一n+短路集电极区;
所述p+集电区和所述n+发射区上方分别淀积有金属电极,以形成器件的集电极和发射极。
在本发明的一个实施例中,所述衬底的材料为碳化硅、硅或蓝宝石。
在本发明的一个实施例中,所述n-漂移区的掺杂浓度小于所述场截止层的掺杂浓度。
在本发明的一个实施例中,所述n+发射区靠近所述深沟槽结构一侧分别设有一p+欧姆接触区。
在本发明的一个实施例中,所述p+欧姆接触区是通过Mg离子掺杂形成的。
在本发明的一个实施例中,所述p+欧姆接触区的掺杂浓度大于所述p基区的浓度。
本发明的另一个实施例还提供了一种半垂直GaN基逆导型IGBT器件的制备方法,包括:
步骤1:在衬底上依次外延缓冲层、场截止层、n-漂移区以及p型GaN层;
步骤2:在所述p型GaN层外延生长n+GaN层,作为器件的n+发射区;
步骤3:对上述样品进行刻蚀以形成深沟槽结构和栅槽结构;其中,所述深沟槽结构起始于所述p型GaN层上表面,并向下延伸至所述场截止层的上表面,以将所述p型GaN层划分成两侧的p+集电区和中间的p基区,从而形成U型半垂直结构;所述栅槽结构位于所述n+GaN层中间;
步骤4:对所述n+GaN层进行刻蚀以露出p+集电区;
步骤5:对所述p+集电区局部进行n型掺杂,以在所述p+集电区内靠近所述深沟槽结构一侧形成n+短路集电极区;
步骤6:在所述p+集电区、所述n+发射区、以及所述栅槽结构上制备金属电极以形成器件的集电极、发射极以及栅电极。
在本发明的一个实施例中,在步骤5之后、步骤6之前,还包括:
步骤x:对所述n+发射区局部进行p型掺杂,以形成p+欧姆接触区。
在本发明的一个实施例中,在步骤1和步骤2之间,还包括:
步骤y:对整个样品进行激活处理,使其电离产生空穴后,再进行表面处理。
在本发明的一个实施例中,在步骤4之后、步骤5之前,还包括:
步骤z:对整个样品进行激活处理,使其电离产生空穴。
本发明的有益效果:
1、本发明提供的半垂直GaN基逆导型IGBT器件结构,通过在衬底上生长NPN(n-漂移区、p型GaN层、n+GaN层)三层材料结构,并通过深槽刻蚀将器件的栅极和发射极与集电极隔开,形成U型半垂直结构,从而将p+集电极、n+集电极和发射极都集中在器件正面,克服了采用传统RC-IGBT结构制作垂直GaN RC-IGBT器件时,内层p-GaN无法激活的问题;
2、本发明将集电极从器件背部转移到正面,还避免了采用传统RC-IGBT结构制作垂直GaN RC-IGBT器件时,背面集电极时需要的衬底减薄、背部开孔和背孔金属填充等步骤,优化了RC-IGBT器件的制作工艺,使GaN基逆导型IGBT器件的制造过程变得简单,节省了成本并易于商业化;
3、本发明通过深槽刻蚀将器件的栅极和发射极与集电极隔开,电流通过底部的高掺杂N+GaN层贯通,使得整体电流方向从平面横向移动变为纵向移动;同时,N+GaN层起到了场截止层的作用,使得电场在整个漂移区的分布更加均匀,进而提高了相同漂移区厚度下的击穿电压。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是传统型IGBT器件的结构示意图;图2是传统逆导型IGBT器件的结构示意图
图3是本发明实施例提供的一种半垂直GaN基逆导型IGBT器件结构示意图;
图4是本发明实施例提供的一种半垂直GaN基逆导型IGBT器件的制备方法流程图;
图5a-5m是本发明实施例提供的一种半垂直GaN基逆导型IGBT器件的制备过程示意图。
附图标记说明:
图1-2:9a-集电极,51a-p+集电区,53a-n+短路集电极区,3a-n+场截止层,4a-n-漂移区,52a-p基区,72a-p+欧姆接触区,10a-发射极,71a-n+发射区,81a-栅介质层,82a栅极;
图3-5:1-衬底,2-缓冲层,3-场截止层,4-n-漂移区,5-p型GaN层,51-p+集电区,52-p基区,53-n+短路集电极区,6-深沟槽结构,7-n+GaN层,71-n+发射区,72-p+欧姆接触区,8-沟槽栅结构,81-栅氧化层,82-栅极,9-集电极,10-发射极。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例一
请参见图3,图3是本发明实施例提供的一种半垂直GaN基逆导型IGBT器件结构示意图,其包括:衬底1,依次设置在衬底1上的缓冲层2、场截止层3、n-漂移区4以及p型GaN层5;其中,
p型GaN层5两侧各设有一深沟槽结构6,深沟槽结构6起始于p型GaN层5上表面,并向下延伸至场截止层3的上表面,以将p型GaN层5划分成两侧的p+集电区51和中间的p基区52,从而形成U型半垂直结构;
p基区52上方形成有n+GaN层7,其部分作为器件的n+发射区71;
n+GaN层7中间设有沟槽栅结构8;沟槽栅结构8起始于n+GaN层7上表面,并向下延伸至n-漂移区4内,其包括栅氧化层81和栅极82;
p+集电区51内靠近深沟槽结构6一侧分别设有一n+短路集电极区53;
p+集电区51和n+发射区71上方分别淀积有金属电极,以形成器件的集电极9和发射极10。
在本实施例中,衬底1可以采用碳化硅、硅或蓝宝石等材料,缓冲层2可以采用AlN、GaN等材料,以降低衬底材料与器件之间的晶格失配与热失配,从而提高器件性能。
进一步地,场截止层3采用n+GaN形成,其作为半垂直IGBT的电场阻止层,即场截止FS层,用以完全截止n-漂移区4过来的电场,优化了正向阻断时器件内部的电场分布,使得电场在整个漂移区的分布更加均匀,提高了相同漂移区厚度下的击穿电压。从而提高了器件的正向耐压能力。
需要强调的是,由于n-漂移区4主要用于承担正向阻断状态时器件的耐压,其参数的设计直接决定了IGBT的耐压能力大小,因此,本实施例将n-漂移区4的掺杂浓度设计成小于场截止层3的掺杂浓度,以满足耐压要求。
进一步地,n+发射区71靠近深沟槽结构6一侧分别设有一p+欧姆接触区72。其中,p+欧姆接触区72是通过Mg离子掺杂形成的,且掺杂浓度大于p基区52的浓度。
在本实施例中,漂移区4的上方的p型GaN作为IGBT的p型基区52,即器件的反型导电沟道,IGBT栅上的正电压大于寄身MOSFET的阈值电压时,器件导通,电子通过该反型沟道流入n-漂移区4;p型基区52的上方为外延生长的n+GaN,其作为器件的n+发射区71,在器件正向导通时,该n+发射区71会向n-漂移区4注入电子,使得漂移区4的区域电势降低,直至n-漂移区4与p+集电区51直接达到PN结的开启电压,从而器件开始工作。通过在n+发射区71局部注入p型杂质,形成的p+欧姆接触区可以降低串联电阻,使得寄生的NPN晶体管不被触发,从而避免闩锁效应的发生。通过在p+集电区51的局部区域掺杂n型杂质,形成n+短路集电极区53,例如可掺杂Si或Ge来实现n+短路集电极区53。
本实施例通过p基区52、n-漂移区4、n+场截止层3以及n+短路集电极区53,可以为器件提供反向导通时电流路径。
本实施例提供的半垂直GaN基逆导型IGBT器件结构通过在衬底上生长NPN(n-漂移区、p型GaN层、n+GaN层)三层材料结构,并通过深槽刻蚀将器件的栅极和发射极与集电极隔开,形成U型半垂直结构,从而将p+集电极、n+集电极和发射极都集中在器件正面,克服了采用传统RC-IGBT结构制作垂直GaN RC-IGBT器件时,内层p-GaN无法激活的问题。同时,本发明将集电极从器件背部转移到正面,还避免了采用传统RC-IGBT结构制作垂直GaN RC-IGBT器件时,背面集电极时需要的衬底减薄、背部开孔和背孔金属填充等步骤,优化了RC-IGBT器件的制作工艺,使GaN基逆导型IGBT器件的制造过程变得简单,节省了成本并易于商业化。
此外,本实施例通过深槽刻蚀将器件的栅极和发射极与集电极隔开,电流通过底部的高掺杂N+GaN层贯通,使得整体电流方向从平面横向移动变为纵向移动;同时,N+GaN层起到了场截止层的作用,使得电场在整个漂移区的分布更加均匀,进而提高了相同漂移区厚度下的击穿电压,提升了器件性能。
实施例二
在上述实施例一的基础上,本实施例提供了一种半垂直GaN基逆导型IGBT器件的制备方法,请参见图4,图4是本发明实施例提供的一种半垂直GaN基逆导型IGBT器件的制备方法流程图;其包括:
步骤1:在衬底上依次外延缓冲层、场截止层、n-漂移区以及p型GaN层;
步骤2:在p型GaN层外延生长n+GaN层,作为器件的n+发射区;
步骤3:对上述样品进行刻蚀以形成深沟槽结构和栅槽结构;其中,深沟槽结构起始于p型GaN层上表面,并向下延伸至场截止层的上表面,以将p型GaN层划分成中间的p基区和两侧的p+集电区,从而形成U型半垂直结构;栅槽结构位于n+GaN层中间;
步骤4:对n+发射区进行刻蚀以露出p+集电区;
步骤5:对所述p+集电区局部进行n型掺杂,以在所述p+集电区内靠近所述深沟槽结构一侧形成n+短路集电极区;
步骤6:在p+集电区、n+发射区、以及栅槽结构上制备金属电极以形成器件的集电极、发射极以及栅电极。
进一步地,在步骤5之后、步骤6之前,还包括:
步骤x:对n+发射区局部进行p型掺杂,以形成p+欧姆接触区。
其中,p+欧姆接触区位于靠近p+集电区一侧,且掺杂浓度大于p型基区的掺杂浓度。本实施例引入p+欧姆接触区可以降低串联电阻,使得寄生的NPN晶体管不被触发,从而避免闩锁效应的发生。
需要说明的是,由于P型GaN的Mg离子掺杂与H离子结合而钝化,因此需要经中高温快速退火来激活受主,从而产生空穴,以使器件能够正常工作。
因此,在本实施例中,可以在外延完P-GaN后,直接对其进行退火激活产生空穴,进行表面处理后再进行n+型GaN的再生长,最终得到满足需求的NPIN材料结构,也即在步骤1和步骤2之间,还包括:
步骤y:对整个样品进行激活处理,使其电离产生空穴后,再进行表面处理。
具体地,可以通过快速退火、高温激活、激光退火、多循环快速热退火等方法实现对样品的激活处理。
本实施例采用此种处理方法可以使得P-GaN层激活充分,对器件性能十分有利。
在本发明的另一个实施例中,还可以在外延完所有材料之后,再通过刻蚀部分n+GaN露出p型GaN后,进行退火激活处理,也即在步骤4之后、步骤5之前,还包括:
步骤z:对整个样品进行激活处理,使其电离产生空穴。
采用此种处理方法可以使器件材料一次生长成型,退火处理后无需再进行生长工艺。
本实施例提供的半垂直GaN基逆导型IGBT器件的制备方法避免了采用传统RC-IGBT结构制作垂直GaN RC-IGBT器件时,背面集电极时需要的衬底减薄、背部开孔和背孔金属填充等步骤,优化了RC-IGBT器件的制作工艺,使GaN基逆导型IGBT器件的制造过程变得简单,节省了成本并易于商业化。
实施例三
下面结合附图对实施例一提供的半垂直GaN基逆导型IGBT器件的制备过程进行详细介绍。
请参见图5a-5h,图5a-5h是本发明实施例提供的一种半垂直GaN基逆导型IGBT器件的制备过程示意图。具体如下:
步骤一:选取适当厚度的碳化硅、蓝宝石或硅作为器件的衬底1,并在衬底1上外延AlN,GaN等缓冲材料作为器件的缓冲层2,如图5a所示。
步骤二:在缓冲层2的上方外延一层厚度适中掺杂浓度较高的n+GaN作为器件的场截止层3,即FS层,如图5b所示。
步骤三:在场截止层3上继续外延生长n-GaN作为器件的n-漂移区4,其掺杂浓度低于场截止层3,如图5c所示。
步骤四:在n-漂移区4的基础上外延p型GaN层5,如图5d所示。
步骤五:对步骤四得到的样品进行高温退火激活受主,使其电离产生空穴,并对激活后的样品进行表面处理。
步骤六:在经过表面处理的p型GaN层5上外延生长n+GaN层7,其作为器件的n+发射区,如图5e所示。
步骤七:对样品进行深槽(Stage)刻蚀,将栅源区和集电区的N-漂移区刻开,形成U型半垂直结构;其中,所述深沟槽结构6起始于n+GaN层7上表面,并向下延伸至所述场截止层3的上表面,以将所述p型GaN层5划分成两侧的p+集电区51和中间的p基区52,如图5f所示.
步骤八:通过光刻开窗口进行Trench栅槽刻蚀,以在n+GaN层中间形成栅槽结构,如图5g所示。
步骤九:对n+GaN层7进行刻蚀以露出p+集电区51,如图5h所示。
步骤十:对p+集电区51局部进行n型掺杂,以在p+集电区内靠近所述深沟槽结构6一侧形成n+短路集电极区53,如图5i所示。
步骤十一:通过光刻开窗口,对n+发射区71局部进行p型Mg掺杂形成p+欧姆接触区72,并进行退火激活,其掺杂浓度大于p型基区8浓度;如图5j所示。
步骤十二:借助光刻在p+欧姆接触区72与n+发射区3上方沉积发射极金属,以形成发射极10,如图5k所示。
步骤十三:借助光刻在p+集电极区51上方淀积集电极金属,以形成集电极9,如图5l所示。
步骤十四:在栅槽的底部与侧面沉积栅氧化层81,并在栅氧化层81上方淀积栅电极金属82,以形成沟槽栅结构8,如图5m所示。
至此,完成半垂直GaN基逆导型IGBT器件的制备。
实施例四
本发明提供了另一种半垂直GaN基逆导型IGBT器件的制备过程,具体包括:
步骤S1:参见实施例三中步骤一至步骤四以及附图5a-5d:在衬底上依次外延缓冲层、场截止层、n-漂移区以及p型GaN层;具体过程,详细过程在此不再赘述。
步骤S2:在p型GaN层5上外延生长n+GaN层,作为器件的n+发射区。
步骤S3:对步骤S2所得的样品进行刻蚀以形成深沟槽结构和栅槽结构,具体过程参见上述实施例三中步骤七至步骤八。
步骤S4:对n+GaN层进行刻蚀以露出p+集电区。
步骤S5:对步骤S4得到的样品进行高温退火激活受主,使其电离产生空穴。
步骤S6:通过光刻开窗口,对p+集电区局部进行n型掺杂,以在p+集电区内靠近深沟槽结构一侧形成n+短路集电极区。
步骤S7:通过光刻开窗口,对n+发射区71局部进行p型Mg掺杂形成p+欧姆接触区72,并进行退火激活,其掺杂浓度大于p型基区8浓度。
步骤S8:制备金属电极和沟槽栅结构,详见上述实施例三中步骤十二至步骤十四。
至此,完成半垂直GaN基逆导型IGBT器件的制备。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种半垂直GaN基逆导型IGBT器件,其特征在于,包括:衬底(1),依次设置在所述衬底(1)上的缓冲层(2)、场截止层(3)、n-漂移区(4)以及p型GaN层(5);其中,
所述p型GaN层(5)两侧各设有一深沟槽结构(6),所述深沟槽结构(6)起始于所述p型GaN层(5)上表面,并向下延伸至所述场截止层(3)的上表面,以将所述p型GaN层(5)划分成两侧的p+集电区(51)和中间的p基区(52),从而形成U型半垂直结构;
所述p基区(52)上方形成有n+GaN层(7),作为器件的n+发射区(71);
所述n+GaN(7)层中间设有沟槽栅结构(8);所述沟槽栅结构(8)起始于所述n+GaN层(7)上表面,并向下延伸至所述n-漂移区(4)内,其包括栅氧化层(81)和栅极(82);
所述p+集电区(51)内靠近所述深沟槽结构(6)一侧分别设有一n+短路集电极区(53);
所述p+集电区(51)和所述n+发射区(71)上方分别淀积有金属电极,以形成器件的集电极(9)和发射极(10)。
2.根据权利要求1所述的半垂直GaN基逆导型IGBT器件,其特征在于,所述衬底(1)的材料为碳化硅、硅或蓝宝石。
3.根据权利要求1所述的半垂直GaN基逆导型IGBT器件,其特征在于,所述n-漂移区(4)的掺杂浓度小于所述场截止层(3)的掺杂浓度。
4.根据权利要求1所述的半垂直GaN基逆导型IGBT器件,其特征在于,所述n+发射区(71)靠近所述深沟槽结构(6)一侧分别设有一p+欧姆接触区(72)。
5.根据权利要求5所述的半垂直GaN基逆导型IGBT器件,其特征在于,所述p+欧姆接触区(72)是通过Mg离子掺杂形成的。
6.根据权利要求5所述的半垂直GaN基逆导型IGBT器件,其特征在于,所述p+欧姆接触区(72)的掺杂浓度大于所述p基区(52)的浓度。
7.一种半垂直GaN基逆导型IGBT器件的制备方法,其特征在于,包括:
步骤1:在衬底上依次外延缓冲层、场截止层、n-漂移区以及p型GaN层;
步骤2:在所述p型GaN层外延生长n+GaN层,作为器件的n+发射区;
步骤3:对上述样品进行刻蚀以形成深沟槽结构和栅槽结构;其中,所述深沟槽结构起始于所述p型GaN层上表面,并向下延伸至所述场截止层的上表面,以将所述p型GaN层划分成两侧的p+集电区和中间的p基区,从而形成U型半垂直结构;所述栅槽结构位于所述n+GaN层中间;
步骤4:对所述n+GaN层进行刻蚀以露出p+集电区;
步骤5:对所述p+集电区局部进行n型掺杂,以在所述p+集电区内靠近所述深沟槽结构一侧形成n+短路集电极区;
步骤6:在所述p+集电区、所述n+发射区、以及所述栅槽结构上制备金属电极以形成器件的集电极、发射极以及栅电极。
8.根据权利要求7所述的半垂直GaN基逆导型IGBT器件的制备方法,其特征在于,在步骤5之后、步骤6之前,还包括:
步骤x:对所述n+发射区局部进行p型掺杂,以形成p+欧姆接触区。
9.根据权利要求8所述的半垂直GaN基逆导型IGBT器件的制备方法,其特征在于,在步骤1和步骤2之间,还包括:
步骤y:对整个样品进行激活处理,使其电离产生空穴后,再进行表面处理。
10.根据权利要求8所述的半垂直GaN基逆导型IGBT器件的制备方法,其特征在于,在步骤4之后、步骤5之前,还包括:
步骤z:对整个样品进行激活处理,使其电离产生空穴。
CN202111124189.1A 2021-09-24 2021-09-24 一种半垂直GaN基逆导型IGBT器件及其制备方法 Active CN114023815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111124189.1A CN114023815B (zh) 2021-09-24 2021-09-24 一种半垂直GaN基逆导型IGBT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111124189.1A CN114023815B (zh) 2021-09-24 2021-09-24 一种半垂直GaN基逆导型IGBT器件及其制备方法

Publications (2)

Publication Number Publication Date
CN114023815A true CN114023815A (zh) 2022-02-08
CN114023815B CN114023815B (zh) 2023-08-08

Family

ID=80054856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111124189.1A Active CN114023815B (zh) 2021-09-24 2021-09-24 一种半垂直GaN基逆导型IGBT器件及其制备方法

Country Status (1)

Country Link
CN (1) CN114023815B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504817A (zh) * 2023-06-29 2023-07-28 上海陆芯电子科技有限公司 开关速度快且损耗低的rc-igbt结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344081A (en) * 1980-04-14 1982-08-10 Supertex, Inc. Combined DMOS and a vertical bipolar transistor device and fabrication method therefor
US20070249163A1 (en) * 2006-04-21 2007-10-25 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US20110095358A1 (en) * 2009-10-28 2011-04-28 Stmicrolectronics S.R.L. Double-sided semiconductor structure and method for manufacturing same
CN110797403A (zh) * 2019-10-18 2020-02-14 上海睿驱微电子科技有限公司 一种rc-igbt半导体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344081A (en) * 1980-04-14 1982-08-10 Supertex, Inc. Combined DMOS and a vertical bipolar transistor device and fabrication method therefor
US20070249163A1 (en) * 2006-04-21 2007-10-25 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US20110095358A1 (en) * 2009-10-28 2011-04-28 Stmicrolectronics S.R.L. Double-sided semiconductor structure and method for manufacturing same
CN110797403A (zh) * 2019-10-18 2020-02-14 上海睿驱微电子科技有限公司 一种rc-igbt半导体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENGXUAN JIANG ET AL: "\"Simulation Study of a Thyristor Conduction-Insulated Gate Bipolar Transistor (TC-IGBT) With a p-n-p Base and an n-p-n Collector for Reducing Turn-Off Loss\"", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》, pages 2854 - 2858 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504817A (zh) * 2023-06-29 2023-07-28 上海陆芯电子科技有限公司 开关速度快且损耗低的rc-igbt结构及其制备方法
CN116504817B (zh) * 2023-06-29 2023-09-19 上海陆芯电子科技有限公司 开关速度快且损耗低的rc-igbt结构及其制备方法

Also Published As

Publication number Publication date
CN114023815B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
JP5140347B2 (ja) バイポーラトランジスタ及びその製造方法
JP2663679B2 (ja) 伝導度変調型mosfet
CN107342319B (zh) 一种复合应变Si/SiGe异质结双极晶体管及其制备方法
US20140334212A1 (en) Semiconductor Device and Power Converter
CN110504310B (zh) 一种具有自偏置pmos的ret igbt及其制作方法
JPH0669509A (ja) 伝導度変調型半導体装置及びその製造方法
CN115020479B (zh) 一种耗尽型碳化硅双极器件结构及制作方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN108155230B (zh) 一种横向rc-igbt器件及其制备方法
JP2002261281A (ja) 絶縁ゲートバイポーラトランジスタの製造方法
CN114023815B (zh) 一种半垂直GaN基逆导型IGBT器件及其制备方法
WO2021005903A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
CN110504313B (zh) 一种横向沟槽型绝缘栅双极晶体管及其制备方法
CN111933705A (zh) 一种功率半导体器件的制作方法及功率半导体器件
JP2553510B2 (ja) 半導体装置およびその製造方法
JP4573490B2 (ja) 逆阻止型igbtおよびその製造方法
CN114023814B (zh) 一种半垂直GaN基场截止型IGBT器件及其制备方法
JP3885616B2 (ja) 半導体装置
JP4075218B2 (ja) ヘテロ接合型半導体装置
CN113964197A (zh) 一种低泄漏电流的igbt器件及其制备方法
CN114783873B (zh) 具有两层外延的碳化硅凹槽mos栅控晶闸管的制造方法
CN114783875B (zh) 具有四层外延的碳化硅凹槽mos栅控晶闸管的制造方法
CN217719610U (zh) 一种具有两层外延的碳化硅凹槽mos栅控晶闸管
CN217719611U (zh) 一种具有三层外延的碳化硅凹槽mos栅控晶闸管
CN114639599B (zh) 一种半导体器件局域寿命控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant