CN110797403A - 一种rc-igbt半导体装置 - Google Patents

一种rc-igbt半导体装置 Download PDF

Info

Publication number
CN110797403A
CN110797403A CN201910993731.3A CN201910993731A CN110797403A CN 110797403 A CN110797403 A CN 110797403A CN 201910993731 A CN201910993731 A CN 201910993731A CN 110797403 A CN110797403 A CN 110797403A
Authority
CN
China
Prior art keywords
region
igbt
type
layer
type base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910993731.3A
Other languages
English (en)
Other versions
CN110797403B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ruiqu Microelectronics Technology Co Ltd
Original Assignee
Shanghai Ruiqu Microelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ruiqu Microelectronics Technology Co Ltd filed Critical Shanghai Ruiqu Microelectronics Technology Co Ltd
Priority to CN201910993731.3A priority Critical patent/CN110797403B/zh
Publication of CN110797403A publication Critical patent/CN110797403A/zh
Application granted granted Critical
Publication of CN110797403B publication Critical patent/CN110797403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种RC‑IGBT半导体装置,在一个衬底上形成有IGBT和FWD,IGBT具有p型基极层和n型漂移层和多个沟槽栅极结构,栅电极穿过p型基极层,p型基极层由栅电极分成多个间隔区域;在间隔区域中,p型基极层上表面设置有p+发射极区和n+发射极区,n+发射极及p型基极层的侧壁均与沟槽侧壁外表面相接触;FWD设置有形成在n型漂移层表面的多个虚拟沟道,以及在衬底上形成的n型漂移层;在n型漂移层上平行虚拟沟道方向设置有多段p型基区,所述p型基区将位于虚拟沟道之间的n型漂移层隔离出n‑漂移区,所述n‑漂移区上覆盖有肖特基势垒区。本发明实现低寄生电容,获得低集电极发射极饱和压降VCE(sat)和大短路电流安全工作区。

Description

一种RC-IGBT半导体装置
技术领域
本发明属于半导体技术领域,具体涉及一种RC-IGBT半导体装置。
背景技术
IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。
逆导型IGBT(Revers conducting IGBT)是将续流二极管(Free wheeling diode)集成到一个芯片中,具有尺寸小、高功率密度、成本低、高可靠性等诸多优点,不足的是对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线电感,就产生了L di/dt即关断浪涌电压。
IGBT关断过程中,集-射极电压变化率duce/dt通过密勒电容CGC反馈到栅极,会形成位移电流iGC。在电压UCE缓慢上升时,栅极电压处于密勒平台,这个位移电流最初保持稳定并有助于维持平台电压恒定。位移电流的幅值完全依赖于反馈电容CGC。反过来这也会受到IGBT内部的氧化层等效电容和电流控制等效结电容的影响。IGBT关断的电流lC越大,电容CGC也就越大。这是由于IGBT内部空间电荷区的结构造成的,该结构由结电容组成。因此,被关断的集电极电流IC越大,产生的位移电流iGC就越大,这也就容易理解了。当半导体并联连接时,这种正反馈可能引发振荡。内置式FWD在IGBT关断时产生较高的尖峰电压并在FWD反向恢复时电压产生振荡。
发明内容
本发明所要解决的技术问题是如何在IGBT的关断阶段避免高的di/dt和dv/dt引起的电压和电流的振荡,提供一种RC-IGBT半导体装置。
本发明所取得的有益技术效果:
本发明实现低寄生电容,获得低集电极发射极饱和压降VCE(sat)和大短路电流安全工作区;
本发明FWD部分的p+/p-阳极区和阴极N+/N-对载流子的有效抑制,其反向恢复功耗大幅降低。来自IGBT区域背面的空穴进入抑制了二极管反向恢复条件下的电压振荡,并且N+/N-阴极能够减小反向恢复过程中的拖尾电流。此外,通过将碰撞电离电固定在沟槽的底部并从背面注入空穴,靠近表面和背面电场强度减弱;采用了肖特基势垒区能够降低器件的势垒,同时保持优良的耐高压、高温特性和浪涌能力;
本发明FWD阴极区部分的p+集电极的宽度大于n+集电极的宽度,由于p+集电极宽度的增大,器件从MOSFET工作模式转变为双极性IGBT工作模式的影响被削弱,器件能更好地进入IGBT模式,FWD导通电压小于传统RC-IGBT。
说明书附图
图1传统RC-IGBT的结构示意图;
图2是本发明具体实施例提供的RC-IGBT的结构示意图;
图3是本发明具体实施例提供的RC-IGBT的结构示意图;
图4是是本发明具体实施例提供的RC-IGBT的AA'线的横截面的结构示意图;
图5是本发明具体实施例提供的RC-IGBT的BB'线的横截面的结构示意图;
图6是本发明具体实施例提供的RC-IGBT的结构示意图;
图中标记:1:发射极电极;2:n+发射极区;3:多晶硅栅电极;5:N型漂移层;6:n型电场阻止层;7:p+集电极区;8:n+集电极区;9:p型基区;10:集电极电极;11:n型存储区;12:p+发射极区;13:n-漂移区;14:绝缘膜;15:栅氧化层;16-肖特基势垒区。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
传统的RC-IGBT的结构如图1所示,当集电极和发射极电压VCE>0,在栅极开启的情况下,RC-IGBT中的IGBT进入导通状态,集成续流二极管截止;当集电极加反向电压时,集电极和发射极电压VCE<0,IGBT关断时,感性电路中的电感通过RC-IGBT体内集成的续流二极管进行续流放电,续流二极管正向导通。当集电极电压VCE<0时,集成二极管导通,但N+短路区的面积较小,其体内发生电导调制效应较弱,由于p+集电极区7的存在,是的n型FS层和p+集电极区7形成PN结反片,增大了器件正向导通压降。
因此RC-IGBT实现了正反向均可以导通的功能,节约了制造成本缩小了器件体积。但是这种传统的RC-IGBT结构的不足是对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线电感,就产生了L di/dt即关断浪涌电压。
为解决上述技术问题,本发明采用以下技术方案:
实施方式一:提供一种RC-IGBT半导体装置(如图2所示),包括:
IGBT具有:p型基区9和n型漂移层5,所述p型基区9形成在n型漂移层5的表面;
多个沟槽栅结构,每个所述沟槽栅极结构包括在所述衬底上的沟槽、所述沟槽中的导电膜以及IGBT元件的多晶硅栅电极3和栅氧化层4;所述衬底上的所述沟槽内设置有SiO2栅氧化层4,SiO2栅氧化层4上沉积有多晶硅;在所述沟槽的内壁上形成绝缘膜14;通过所述绝缘膜14,在所述沟槽中形成导电膜。
所述栅电极3穿过所述p型基区9,所述p型基区9由所述栅电极3分成多个间隔区域;
在所述间隔区域中,所述p型基区9上表面设置有p+发射极区12和n+发射极区2,所述p+发射极区12与所述n+发射极区2彼此独立;所述n+发射极区2设置在p+发射极区12的两侧;n+发射极区2设置在所述间隔区域的表面部分中,所述n+发射极及p型基区9的侧壁均与沟槽侧壁外表面相接触,所述n+发射极区2和p+发射极区12均与发射极电极1电耦合;所述栅氧化层4与所述n+发射极区2和p型基区9侧面接触;
所述n型漂移层5底部具有n型电场阻止层6;n型电场阻止层6背面与p+集电极区7相接触,所述p+集电极区7与集电极电极10电耦合;
FWD具有:设置有形成在n型漂移层5表面的多个虚拟沟道,以及在衬底上形成的n型漂移层5;在n型漂移层5上平行虚拟沟道方向设置有多段p型基区9,所述p型基区9将位于虚拟沟道之间的n型漂移层5隔离出n-漂移区13,所述n-漂移区13上覆盖有肖特基势垒16区;
所述虚拟沟道经由作为信号线而彼此共同耦合在一起与发射极电极1相连;
虚拟沟道间隔穿过p型基层,并且虚拟沟道的底部到达衬底,在FWD的虚拟沟道与IGBT的栅电极3之间的p型基层上表面也设置有p+阳极层;
在FWD部分的n型漂移层5的背面形成的n+阴极,所述n+集电极区8与所述集电电极电连接。
本实施方式中,n-漂移区13的掺杂浓度比p+集电极区7低,电阻率大,因此导通过程中n-漂移区13的额外载流子数较低。集电极加反向电压时,RC-IGBT中的集成二极管导通。FWD部分的阳极结构具有肖特基势垒16接触区和P+P结区,并且Sb(Schottky barrier)和P+P结区交替位于阳极线上。由于p+/p-阳极区和阴极N+/N-对载流子的有效抑制,其反向恢复功耗大幅降低。来自IGBT区域背面的空穴进入抑制了二极管反向恢复条件下的电压振荡,并且N+/N-阴极能够减小反向恢复过程中的拖尾电流。此外,通过将碰撞电离电固定在沟槽的底部并从背面注入空穴,靠近表面和背面电场强度减弱。所以在高电流条件该器件的动态特性非常稳定。本实施方式的剖面图可参考图4和图5结构,不同的是本实施方式中没有图4和图5中示出的n型存储层。所述RC-IGBT半导体装置的半导体材料采用Si、SiC、GaAs或者GaN。n型漂移层厚度110μm。n型漂移层掺杂浓度为1.85×1014,N型电场阻止层的厚度为2.2μm,N型电场阻止层的掺杂浓度为2.1×1015
实施方式二:在以上实施方式的基础上了,在发射极区的p型基极层下方且在IGBT的栅电极3和FWD的虚拟沟道之间设置n型存储区11(如图3所示)。传统的沟槽栅场阻止RC-IGBT而言,其器件结构中不存在n型存储区11,从而高掺杂p+集电极空穴直接通过n-漂移区13到达发射极。本发明加入了n型存储层,所述n型存储区11具有提供载流子存储功能或电场截止功能,其浓度略高于低掺杂的n-漂移区13浓度,这样n型半导体阻挡层和发射层p-几区和电位差就高于没有存储曾是的发射极侧p基区与n-漂移区13之间的电位差。这个高电压阻挡了来自p+集电极区7的空穴,建立可空穴的增强区,加强了发射极附近的载流子浓度。n型半导体阻挡层增加的电势存储了来自靠近上面发射极的p区送来的空穴,增加了载流子浓度,有利于降低RC-IGBT的饱和压降。
本实施方式的剖面图如图4和图5所示。本发明中采用了肖特基势垒16区能够降低器件的势垒,同时保持优良的耐高压、高温特性和浪涌能力。
实施方式三
在以上实施方式的基础上,所述n+集电极区8被多个p+集电极区7隔离成多段(如图6所示)。所述p+集电极区7的宽度大于n+集电极区8n+集电极区8的深度大于p+集电极区7的深度。
p+集电极的宽度大于n+集电极的宽度,由于p+集电极宽度的增大,器件从MOSFET工作模式转变为双极性IGBT工作模式的影响被削弱,器件能更好地进入IGBT模式。FWD导通电压小于传统RC-IGBT,且氧化槽之间的n+集电极充当了FWD的阴极。
实施方式四
在以上实施方式的基础上,在FWD部分的n型漂移层5的背面所述n+集电极区8和所述p+集电极区7之间设置有SiO2氧化槽。当p+集电极电压增大时,器件有单极性MOSFET工作模式转变为双极性IGBT工作模式,背部的氧化槽结构增加了横向电阻,从而阻止了背面n+集电极和p+集电极的短路导通。此时,集电极p+部分开始向漂移区注入大量的空穴,形成了空穴电流。同时,空穴电流和从n+发射极过来的电子进行复合,在漂移区形成电导调制效应,n-漂移区13的电阻迅速降低,器件处于正向导通模式。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

1.一种RC-IGBT半导体装置,在一个衬底上形成有IGBT和FWD,其特征在于,
IGBT具有:p型基区和n型漂移层,所述p型基区形成在n型漂移层的表面;
多个沟槽栅结构,每个所述沟槽栅极结构包括在所述衬底上的沟槽、所述沟槽中的导电膜以及IGBT元件的多晶硅栅电极和栅氧化层;所述衬底上的所述沟槽内设置有SiO2栅氧化层,SiO2栅氧化层上沉积有多晶硅;
所述栅电极穿过所述p型基区,所述p型基区由所述栅电极分成多个间隔区域;
在所述间隔区域中,所述p型基区上表面设置有p+发射极区和n+发射极区,所述p+发射极区与所述N+发射极区彼此独立;所述N+发射极区设置在p+发射极区的两侧;n+发射极区设置在所述间隔区域的表面部分中,所述n+发射极及p型基区的侧壁均与沟槽侧壁外表面相接触,所述n+发射极区和p+发射极区均与发射极电极电耦合;所述栅氧化层与所述N+发射极区和p型基区侧面接触;
所述n型漂移层底部具有n型电场阻止层;n型电场阻止层背面与p+集电极区相接触,所述p+集电极区与集电极电极电耦合;
FWD具有:设置有形成在n型漂移层表面的多个虚拟沟道,以及在衬底上形成的n型漂移层;在n型漂移层上平行虚拟沟道方向设置有多段p型基区,所述p型基区将位于虚拟沟道之间的n型漂移层隔离出n-漂移区,所述n-漂移区上覆盖有肖特基势垒区;
所述虚拟沟道经由作为信号线而彼此共同耦合在一起与发射极电极相连;
虚拟沟道间隔穿过p型基层,并且虚拟沟道的底部到达衬底,在FWD的虚拟沟道与IGBT的栅电极之间的p型基层上表面也设置有p+阳极层;
在FWD部分的n型漂移层的背面形成的n+集电极区,所述集电极区与所述集电电极电连接。
2.根据权利要求1所述的一种RC-IGBT半导体装置,其特征在于,所述n+集电极区被多个p+集电极区隔离成多段。
3.根据权利要求2所述的一种RC-IGBT半导体装置,其特征在于,所述n+集电极区的宽度小于p+集电极区的宽度。
4.根据权利要求2所述的一种RC-IGBT半导体装置,其特征在于,在FWD部分的n型漂移层的背面所述n+集电极区和所述p+集电极区之间设置有SiO2氧化槽。
5.根据权利要求1所述的一种RC-IGBT半导体装置,其特征在于,在发射极区的p型基极层下方且在IGBT的栅电极和FWD的虚拟沟道之间设置n型存储区。
6.根据权利要求1所述的一种RC-IGBT半导体装置,其特征在于,所述RC-IGBT半导体装置的半导体材料采用Si、SiC、GaAs或者GaN。
7.根据权利要求1所述的一种RC-IGBT半导体装置,其特征在于,n型漂移层厚度110um。
CN201910993731.3A 2019-10-18 2019-10-18 一种rc-igbt半导体装置 Active CN110797403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910993731.3A CN110797403B (zh) 2019-10-18 2019-10-18 一种rc-igbt半导体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910993731.3A CN110797403B (zh) 2019-10-18 2019-10-18 一种rc-igbt半导体装置

Publications (2)

Publication Number Publication Date
CN110797403A true CN110797403A (zh) 2020-02-14
CN110797403B CN110797403B (zh) 2023-08-01

Family

ID=69439445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910993731.3A Active CN110797403B (zh) 2019-10-18 2019-10-18 一种rc-igbt半导体装置

Country Status (1)

Country Link
CN (1) CN110797403B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430453A (zh) * 2020-03-11 2020-07-17 上海擎茂微电子科技有限公司 一种反向恢复特性好的rc-igbt芯片及其制造方法
CN111933687A (zh) * 2020-07-07 2020-11-13 电子科技大学 具有高安全工作区的横向功率器件
WO2021232810A1 (zh) * 2020-05-19 2021-11-25 无锡华润上华科技有限公司 沟槽栅igbt器件及其制备方法
CN113990926A (zh) * 2021-10-26 2022-01-28 电子科技大学 一种降低集成二极管反向恢复损耗的rc-igbt结构
CN113990939A (zh) * 2021-10-26 2022-01-28 电子科技大学 一种抑制Snapback现象的新型RC-IGBT结构
CN114023815A (zh) * 2021-09-24 2022-02-08 西安电子科技大学 一种半垂直GaN基逆导型IGBT器件及其制备方法
CN114203802A (zh) * 2021-12-10 2022-03-18 电子科技大学 一种降低集成二极管反向恢复损耗的rc-igbt结构
CN115719763A (zh) * 2022-12-09 2023-02-28 宁波达新半导体有限公司 一种SiC逆导型IGBT器件
CN115985852A (zh) * 2023-03-22 2023-04-18 上海鼎阳通半导体科技有限公司 半导体器件及其制备方法
CN116632053A (zh) * 2023-07-25 2023-08-22 深圳市美浦森半导体有限公司 一种rc-igbt器件及其制造方法
CN117577669A (zh) * 2023-11-16 2024-02-20 浙江旺荣半导体有限公司 一种逆导型绝缘栅双极晶体管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090278166A1 (en) * 2008-05-09 2009-11-12 Soeno Akitaka Semiconductor device
CN102318071A (zh) * 2008-12-15 2012-01-11 Abb技术有限公司 双极穿通半导体器件和制造这种半导体器件的方法
CN104733519A (zh) * 2013-12-19 2015-06-24 英飞凌科技股份有限公司 半导体器件
CN105210187A (zh) * 2013-10-04 2015-12-30 富士电机株式会社 半导体装置
CN107112353A (zh) * 2014-12-23 2017-08-29 Abb瑞士股份有限公司 反向传导半导体装置
CN109155334A (zh) * 2016-05-17 2019-01-04 株式会社电装 半导体装置
CN109256423A (zh) * 2018-08-30 2019-01-22 西安理工大学 一种氧化槽交替隔离型绝缘栅双极晶体管及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090278166A1 (en) * 2008-05-09 2009-11-12 Soeno Akitaka Semiconductor device
CN102318071A (zh) * 2008-12-15 2012-01-11 Abb技术有限公司 双极穿通半导体器件和制造这种半导体器件的方法
CN105210187A (zh) * 2013-10-04 2015-12-30 富士电机株式会社 半导体装置
CN104733519A (zh) * 2013-12-19 2015-06-24 英飞凌科技股份有限公司 半导体器件
CN107112353A (zh) * 2014-12-23 2017-08-29 Abb瑞士股份有限公司 反向传导半导体装置
CN109155334A (zh) * 2016-05-17 2019-01-04 株式会社电装 半导体装置
CN109256423A (zh) * 2018-08-30 2019-01-22 西安理工大学 一种氧化槽交替隔离型绝缘栅双极晶体管及其制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430453A (zh) * 2020-03-11 2020-07-17 上海擎茂微电子科技有限公司 一种反向恢复特性好的rc-igbt芯片及其制造方法
CN111430453B (zh) * 2020-03-11 2022-06-17 上海擎茂微电子科技有限公司 一种反向恢复特性好的rc-igbt芯片及其制造方法
WO2021232810A1 (zh) * 2020-05-19 2021-11-25 无锡华润上华科技有限公司 沟槽栅igbt器件及其制备方法
CN111933687A (zh) * 2020-07-07 2020-11-13 电子科技大学 具有高安全工作区的横向功率器件
CN114023815B (zh) * 2021-09-24 2023-08-08 西安电子科技大学 一种半垂直GaN基逆导型IGBT器件及其制备方法
CN114023815A (zh) * 2021-09-24 2022-02-08 西安电子科技大学 一种半垂直GaN基逆导型IGBT器件及其制备方法
CN113990926A (zh) * 2021-10-26 2022-01-28 电子科技大学 一种降低集成二极管反向恢复损耗的rc-igbt结构
CN113990939A (zh) * 2021-10-26 2022-01-28 电子科技大学 一种抑制Snapback现象的新型RC-IGBT结构
CN113990926B (zh) * 2021-10-26 2023-11-24 电子科技大学 一种降低集成二极管反向恢复损耗的rc-igbt结构
CN114203802A (zh) * 2021-12-10 2022-03-18 电子科技大学 一种降低集成二极管反向恢复损耗的rc-igbt结构
CN115719763A (zh) * 2022-12-09 2023-02-28 宁波达新半导体有限公司 一种SiC逆导型IGBT器件
CN115985852A (zh) * 2023-03-22 2023-04-18 上海鼎阳通半导体科技有限公司 半导体器件及其制备方法
CN116632053A (zh) * 2023-07-25 2023-08-22 深圳市美浦森半导体有限公司 一种rc-igbt器件及其制造方法
CN116632053B (zh) * 2023-07-25 2024-01-30 深圳市美浦森半导体有限公司 一种rc-igbt器件的控制方法
CN117577669A (zh) * 2023-11-16 2024-02-20 浙江旺荣半导体有限公司 一种逆导型绝缘栅双极晶体管

Also Published As

Publication number Publication date
CN110797403B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN110797403B (zh) 一种rc-igbt半导体装置
CN109427869B (zh) 一种半导体器件
JP5987990B2 (ja) 半導体装置
JP5790214B2 (ja) 横型の絶縁ゲート型バイポーラトランジスタ
US20150187678A1 (en) Power semiconductor device
CN110491937B (zh) 一种具有自偏置分离栅结构igbt
KR20130098831A (ko) 반도체 장치
CN109888007B (zh) 具有二极管钳位载流子存储层的soi ligbt器件
JP2020098881A (ja) 半導体装置
JP2018117044A (ja) 半導体装置、及びそれを用いた電力変換装置
CN117497579A (zh) 碳化硅igbt的结构、制造方法及电子设备
CN111403385B (zh) 一种具有内嵌肖特基二极管的rc-ligbt器件
CN112271208A (zh) 碳化硅单栅极双沟道晶闸管输运igbt及制造方法
US20150187922A1 (en) Power semiconductor device
US11984473B2 (en) Semiconductor device
CN113054012B (zh) 绝缘栅双极晶体管及其制造方法
CN111223937B (zh) 一种具有集成续流二极管的GaN纵向场效应晶体管
US9209287B2 (en) Power semiconductor device
CN112736134A (zh) 碳化硅pnpn晶闸管注入型igbt器件
US20150187869A1 (en) Power semiconductor device
JPH10270686A (ja) 絶縁ゲート型バイポーラトランジスタ
CN110797404B (zh) 一种rc-igbt半导体器件
CN112510086B (zh) 一种igbt器件及智能功率模块
CN114883395B (zh) 一种具有部分p型漂移区的igbt
CN114447101B (zh) 一种集成续流沟道二极管的垂直GaN MOSFET

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant