CN113845099A - 一种弧光放电技术用于制备CoSP钠电负极材料的方法 - Google Patents
一种弧光放电技术用于制备CoSP钠电负极材料的方法 Download PDFInfo
- Publication number
- CN113845099A CN113845099A CN202110733925.7A CN202110733925A CN113845099A CN 113845099 A CN113845099 A CN 113845099A CN 202110733925 A CN202110733925 A CN 202110733925A CN 113845099 A CN113845099 A CN 113845099A
- Authority
- CN
- China
- Prior art keywords
- arc discharge
- preparing
- cosp
- carrying
- simple substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010891 electric arc Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000005516 engineering process Methods 0.000 title claims description 12
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims description 8
- 229910052708 sodium Inorganic materials 0.000 title claims description 8
- 239000011734 sodium Substances 0.000 title claims description 8
- 239000010405 anode material Substances 0.000 title claims description 3
- 239000000126 substance Substances 0.000 claims abstract description 21
- 238000000151 deposition Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 16
- 238000001914 filtration Methods 0.000 claims abstract description 15
- 239000013077 target material Substances 0.000 claims abstract description 11
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims abstract description 8
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims abstract description 8
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 8
- 150000002500 ions Chemical class 0.000 claims abstract description 4
- 238000012216 screening Methods 0.000 claims abstract description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 20
- 239000011889 copper foil Substances 0.000 claims description 20
- 230000008021 deposition Effects 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 208000028659 discharge Diseases 0.000 claims description 11
- 239000007773 negative electrode material Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 8
- 239000002033 PVDF binder Substances 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 238000001291 vacuum drying Methods 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- 229910001415 sodium ion Inorganic materials 0.000 abstract description 14
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 abstract description 10
- 239000000956 alloy Substances 0.000 abstract description 5
- QCJQWJKKTGJDCM-UHFFFAOYSA-N [P].[S] Chemical compound [P].[S] QCJQWJKKTGJDCM-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 230000001351 cycling effect Effects 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 239000011574 phosphorus Substances 0.000 abstract description 2
- 239000011593 sulfur Substances 0.000 abstract 1
- 229910052717 sulfur Inorganic materials 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/14—Sulfur, selenium, or tellurium compounds of phosphorus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5805—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种弧光放电技术用于制备CoSP钠电负极材料的方法,制备出CoSP的方法是先通过水热法制备出氢氧化钴前驱体,然后分别先后对硫单质和磷单质进行弧光放电处理,处理后的正离子通过磁过滤进行筛选,最后结合化学气相沉积将其沉积到靶材上便可以得到硫、磷双掺杂的CoSP空心球材料,将其应用到钠离子电池中可以实现较为优异的电化学性能。在0.1 A g‑1电流密度下,在循环100圈后,其比容量仍可高达633 mAh g‑1,2 A g‑1的电流密度下,经过400圈循环后,其比容量高达456 mAh g‑1,体现其较好的循环稳定性。
Description
技术领域
本发明属于钠离子电池负极材料制备技术领域,具体涉及一种弧光放电技术用于制备CoSP钠电负极材料的方法。
背景技术
目前锂离子电池发展迅速,商用的锂离子电池应用非常广泛,但随着人们需求的不断增长,锂离子电池成本高、资源少,这也成为阻碍锂离子电池实现大规模应用的短板。钠离子电池具有和锂离子电池相似的电池结构,但正负极采用不同的材料,同时电解液也不同。锂离子和钠离子的差异也造成某些方面的不同。对于钠离子电池负极材料,主要分为碳基材料、纳米合金材料、金属化合物、等。碳基材料中硬碳材料在宏观上是无序结构,微观上是不同取向的石墨微晶,钠离子可以嵌入到不同取向的石墨微晶中。对于纳米合金材料来讲由于钠离子的尺寸较大,在循环过程中电极材料的体积变化较大,容易发生材料的塌陷,因此对于合金材料而言其循环稳定性的提高是非常关键性的。金属化合物的研究包括金属氧化物、金属硫化物、金属磷化物、金属硒化物等。和氧化物相比,杂元素的引入可以增加钠离子的存储活性位点,进而提高材料的储钠性能。传统的元素掺杂主要是通过水热、高温裂解、熔融法等方式进行掺杂,这些掺杂方式得到的材料往往是不均匀的,同时反应条件往往涉及到高温反应,不仅会造成资源的浪费,同时排放出的污染物会对环境造成一定的污染。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种制备双掺杂金属化合物的方法,通过弧光放电技术对原料进行轰击得到等离子体态,然后用磁过滤装置进行过滤从而得到质量均匀且纯度较高的正离子。最后通过化学气相沉积将已过滤的等离子体态沉积到基底上,从而实现均匀的元素掺杂。
本发明提供一种弧光放电技术用于制备CoSP钠电负极材料的方法,包括如下步骤,
步骤S1、通过水热方法制备氢氧化钴的前驱体,然后放在60℃真空干燥箱中干燥12 h;
步骤S2、将氢氧化物前驱体和导电炭黑、PVDF粘结剂按照8:1:1的比例称取适量,以NMP做为溶剂,搅拌24 h后进行涂布,将膏体涂敷在铜箔上,然后在60℃下干燥12 h;
步骤S3、剪裁尺寸为3×4 cm的涂敷后的铜箔作为靶材,先对弧光放电以及此磁过滤装备进行抽真空处理,使其真空度得到1×10-5 Pa;
步骤S4、将靶材放置于旋转台中央,首先进行等离子体清洗,同时提前将S单质和P单质都提前放在弧光放电舱体中,再设置好弧光放电仪器参数,先进行弧光放电处理,再将弧光放电后的等离子体态物质施加有效磁场进行磁过滤处理;
步骤S5、进行沉积,沉积完成后,关闭弧光放电、磁过滤电源,取出样品。
作为本发明的进一步技术方案,步骤S4中设置好的弧光放电仪器参数为电流1~1.8A、电压150~200 V、磁场50~200 WB。
进一步的,步骤S4中、将射频放电后的等离子态的正离子引入磁过滤管中进行筛选,沉积10min结束,关闭射频放电、磁过滤电源,释放真空度,获取双掺杂的复合材料。
本发明的优点在于,通过水热法制备出氢氧化钴前驱体,然后分别先后对硫单质和磷单质进行弧光放电处理,处理后的正离子体结合磁过滤进行筛选,最后结合化学气相沉积将其沉积到靶材上便可以得到硫、磷双掺杂的CoSP空心球材料,将其应用到钠离子电池中可以实现较为优异的电化学性能。在0.1 A g-1电流密度下,在循环100圈后,其比容量仍可高达633 mAh g-1, 2 A g-1的电流密度下,经过400圈循环后,其比容量高达456 mAh g-1,体现其较好的循环稳定性。
附图说明
图1为本发明的实施例1所制备的CoSP材料的SEM图;
图2为本发明的实施例1所制备的CoSP材料的TEM图;
图3为本发明的实施例1所制备的CoS和CoSP材料在2 Ag-1电流密度下的循环性能图。
具体实施方式
实施例1
一种利用弧光放电技术进行钠离子电池负极材料的制备,它包括以下步骤:首先通过水热方法制备氢氧化钴的前驱体,然后放在60℃真空干燥箱中干燥12 h。接下来将氢氧化物前驱体和导电炭黑、PVDF粘结剂按照8:1:1的比例称取适量,以NMP做为溶剂,搅拌24h后进行涂布,将膏体涂敷在铜箔上,然后在60℃下干燥12 h。然后剪取尺寸大小为3×4 cm的涂敷后的铜箔作为靶材。先对弧光放电以及此磁过滤装备进行抽真空处理,使其真空度得到1×10-5 Pa。然后将靶材放置于旋转台中央,首先进行等离子体清洗。同时提前将S单质和P单质都提前放在弧光放电舱体中,再设置好弧光放电仪器参数,电压为180 V,电流为1.5 A,100 WB,先进性弧光放电处理,再将弧光放电后的等离子体态物质施加有效磁场进行磁过滤处理。最后进行沉积,沉积完成后,关闭弧光放电、磁过滤电源,取出样品。请参阅图1-图3,本实施例所制备的CoSP材料的SEM图、TEM图以及制备的CoS和CoSP材料在2 A g-1电流密度下的循环性能图。
实施例2
一种利用弧光放电技术进行钠离子电池负极材料的制备,它包括以下步骤:首先通过水热方法制备氢氧化钴的前驱体,然后放在60℃真空干燥箱中干燥12 h。接下来将氢氧化物前驱体和导电炭黑、PVDF粘结剂按照8:1:1的比例称取适量,以NMP做为溶剂,搅拌24h后进行涂布,将膏体涂敷在铜箔上,然后在60℃下干燥12 h。然后剪取尺寸大小为3×4 cm的涂敷后的铜箔作为靶材。先对弧光放电以及此磁过滤装备进行抽真空处理,使其真空度得到1×10-5 Pa。然后将靶材放置于旋转台中央,首先进行等离子体清洗。同时提前将S单质和P单质都提前放在弧光放电舱体中,再设置好弧光放电仪器参数,电压为180 V,电流为1.5 A,120 WB,先进性弧光放电处理,再将弧光放电后的等离子体态物质施加有效磁场进行磁过滤处理。最后进行沉积,沉积完成后,关闭弧光放电、磁过滤电源,取出样品。
实施例3
一种利用弧光放电技术进行钠离子电池负极材料的制备,它包括以下步骤:首先通过水热方法制备氢氧化钴的前驱体,然后放在60℃真空干燥箱中干燥12 h。接下来将氢氧化物前驱体和导电炭黑、PVDF粘结剂按照8:1:1的比例称取适量,以NMP做为溶剂,搅拌24h后进行涂布,将膏体涂敷在铜箔上,然后在60℃下干燥12 h。然后剪取尺寸大小为3×4 cm的涂敷后的铜箔作为靶材。先对弧光放电以及此磁过滤装备进行抽真空处理,使其真空度得到1×10-5 Pa。然后将靶材放置于旋转台中央,首先进行等离子体清洗。同时提前将S单质和P单质都提前放在弧光放电舱体中,再设置好弧光放电仪器参数,电压为180 V,电流为1.5 A,140 WB,先进性弧光放电处理,再将弧光放电后的等离子体态物质施加有效磁场进行磁过滤处理。最后进行沉积,沉积完成后,关闭弧光放电、磁过滤电源,取出样品。
实施例4
一种利用弧光放电技术进行钠离子电池负极材料的制备,它包括以下步骤:首先通过水热方法制备氢氧化钴的前驱体,然后放在60℃真空干燥箱中干燥12 h。接下来将氢氧化物前驱体和导电炭黑、PVDF粘结剂按照8:1:1的比例称取适量,以NMP做为溶剂,搅拌24h后进行涂布,将膏体涂敷在铜箔上,然后在60℃下干燥12 h。然后剪取尺寸大小为3×4 cm的涂敷后的铜箔作为靶材。先对弧光放电以及此磁过滤装备进行抽真空处理,使其真空度得到1×10-5 Pa。然后将靶材放置于旋转台中央,首先进行等离子体清洗。同时提前将S单质和P单质都提前放在弧光放电舱体中,再设置好弧光放电仪器参数,电压为180 V,电流为1.5 A,160 WB,先进性弧光放电处理,再将弧光放电后的等离子体态物质施加有效磁场进行磁过滤处理。最后进行沉积,沉积完成后,关闭弧光放电、磁过滤电源,取出样品。
实施例5
一种利用弧光放电技术进行钠离子电池负极材料的制备,它包括以下步骤:首先通过水热方法制备氢氧化钴的前驱体,然后放在60℃真空干燥箱中干燥12 h。接下来将氢氧化物前驱体和导电炭黑、PVDF粘结剂按照8:1:1的比例称取适量,以NMP做为溶剂,搅拌24h后进行涂布,将膏体涂敷在铜箔上,然后在60℃下干燥12 h。然后剪取尺寸大小为3×4 cm的涂敷后的铜箔作为靶材。先对弧光放电以及此磁过滤装备进行抽真空处理,使其真空度得到1×10-5 Pa。然后将靶材放置于旋转台中央,首先进行等离子体清洗。同时提前将S单质和P单质都提前放在弧光放电舱体中,再设置好弧光放电仪器参数,电压为180 V,电流为1.5 A,180 WB,先进性弧光放电处理,再将弧光放电后的等离子体态物质施加有效磁场进行磁过滤处理。最后进行沉积,沉积完成后,关闭弧光放电、磁过滤电源,取出样品。
以上显示和描述了本发明的基本原理、主要特征和优点。本领域的技术人员应该了解,本发明不受上述具体实施例的限制,上述具体实施例和说明书中的描述只是为了进一步说明本发明的原理,在不脱离本发明精神范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护的范围由权利要求书及其等效物界定。
Claims (3)
1.一种弧光放电技术用于制备CoSP钠电负极材料的方法,其特征在于,包括如下步骤,
步骤S1、通过水热方法制备氢氧化钴的前驱体,然后放在60℃真空干燥箱中干燥12 h;
步骤S2、将氢氧化物前驱体和导电炭黑、PVDF粘结剂按照8:1:1的比例称取适量,以NMP做为溶剂,搅拌24 h后进行涂布,将均匀的膏体涂敷在铜箔上,然后在60℃下干燥12 h;
步骤S3、剪裁尺寸为3×4 cm的涂敷后的铜箔作为靶材,先对弧光放电以及磁过滤装备进行抽真空处理,使其真空度得到1×10-5 Pa;
步骤S4、将靶材放置于旋转台中央,首先进行等离子体清洗,同时提前将S单质和P单质放在弧光放电舱体中,再设置好弧光放电仪器参数,先进行弧光放电处理,再将弧光放电后的等离子体态物质施加有效磁场之后对其进行磁过滤处理;
步骤S5、进行沉积,沉积完成后,关闭弧光放电、磁过滤电源,取出样品。
2.根据权利要求1所述的一种弧光放电技术用于制备CoSP钠电负极材料的方法,其特征在于,所述步骤S4中设置好的弧光放电仪器参数为电流1~1.8A、电压150~200 V、磁场50~200 WB。
3.根据权利要求1所述的一种弧光放电技术用于制备CoSP钠电负极材料的方法,其特征在于,所述步骤S4中、将射频放电后的正离子引入磁过滤管中进行筛选,沉积10min后,关闭射频放电、磁过滤电源,释放真空度,获取双掺杂的复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110733925.7A CN113845099B (zh) | 2021-06-30 | 2021-06-30 | 一种弧光放电技术用于制备CoSP钠电负极材料的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110733925.7A CN113845099B (zh) | 2021-06-30 | 2021-06-30 | 一种弧光放电技术用于制备CoSP钠电负极材料的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113845099A true CN113845099A (zh) | 2021-12-28 |
CN113845099B CN113845099B (zh) | 2024-04-26 |
Family
ID=78975108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110733925.7A Active CN113845099B (zh) | 2021-06-30 | 2021-06-30 | 一种弧光放电技术用于制备CoSP钠电负极材料的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113845099B (zh) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004152708A (ja) * | 2002-11-01 | 2004-05-27 | Shin Kobe Electric Mach Co Ltd | リチウムイオン二次電池 |
JP2004227988A (ja) * | 2003-01-24 | 2004-08-12 | Mitsubishi Materials Corp | 負極材料及びこれを用いた負極、並びにこの負極を用いたリチウムイオン電池及びリチウムポリマー電池 |
US20050089681A1 (en) * | 2003-10-23 | 2005-04-28 | Transfert Plus, S.E.C. | Electrode having a CoS layer thereon, process or preparation and uses thereof |
KR100537745B1 (ko) * | 2004-06-21 | 2005-12-19 | 한국전기연구원 | 리튬이차전지용 음극 활물질 및 그 제조방법 |
CN101363114A (zh) * | 2007-12-12 | 2009-02-11 | 中国科学院金属研究所 | 一种磁场增强电弧离子镀沉积工艺 |
CN102916186A (zh) * | 2012-11-07 | 2013-02-06 | 深圳华粤宝电池有限公司 | 一种钠离子电池负极材料和负极的制备方法及钠离子电池 |
CN103094538A (zh) * | 2011-11-08 | 2013-05-08 | 三星Sdi株式会社 | 负极活性材料及其制备方法、负电极及锂电池 |
KR20140081663A (ko) * | 2012-12-13 | 2014-07-01 | 주식회사 에코프로 | 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 |
WO2017024774A1 (zh) * | 2015-08-07 | 2017-02-16 | 田东 | 一种高容量高倍率负极材料的制备方法 |
WO2017206181A1 (zh) * | 2016-06-03 | 2017-12-07 | 罗伯特·博世有限公司 | 电池的负极材料的制备方法、锂离子电池和固态电池 |
CN111092222A (zh) * | 2019-12-11 | 2020-05-01 | 中南大学 | 一种钠离子电池钴铁铜硫化物负极材料及其制备方法 |
CN111180700A (zh) * | 2020-01-06 | 2020-05-19 | 山东大学 | 一种用于高性能钾硫电池正极N掺杂Co纳米团簇/N掺杂多孔碳/S复合材料的制备方法 |
CN112678878A (zh) * | 2020-12-28 | 2021-04-20 | 格林美(江苏)钴业股份有限公司 | 一种磷、硫双掺杂钴酸锂正极材料及其制备方法 |
-
2021
- 2021-06-30 CN CN202110733925.7A patent/CN113845099B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004152708A (ja) * | 2002-11-01 | 2004-05-27 | Shin Kobe Electric Mach Co Ltd | リチウムイオン二次電池 |
JP2004227988A (ja) * | 2003-01-24 | 2004-08-12 | Mitsubishi Materials Corp | 負極材料及びこれを用いた負極、並びにこの負極を用いたリチウムイオン電池及びリチウムポリマー電池 |
US20050089681A1 (en) * | 2003-10-23 | 2005-04-28 | Transfert Plus, S.E.C. | Electrode having a CoS layer thereon, process or preparation and uses thereof |
KR100537745B1 (ko) * | 2004-06-21 | 2005-12-19 | 한국전기연구원 | 리튬이차전지용 음극 활물질 및 그 제조방법 |
CN101363114A (zh) * | 2007-12-12 | 2009-02-11 | 中国科学院金属研究所 | 一种磁场增强电弧离子镀沉积工艺 |
CN103094538A (zh) * | 2011-11-08 | 2013-05-08 | 三星Sdi株式会社 | 负极活性材料及其制备方法、负电极及锂电池 |
CN102916186A (zh) * | 2012-11-07 | 2013-02-06 | 深圳华粤宝电池有限公司 | 一种钠离子电池负极材料和负极的制备方法及钠离子电池 |
KR20140081663A (ko) * | 2012-12-13 | 2014-07-01 | 주식회사 에코프로 | 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 |
WO2017024774A1 (zh) * | 2015-08-07 | 2017-02-16 | 田东 | 一种高容量高倍率负极材料的制备方法 |
WO2017206181A1 (zh) * | 2016-06-03 | 2017-12-07 | 罗伯特·博世有限公司 | 电池的负极材料的制备方法、锂离子电池和固态电池 |
CN111092222A (zh) * | 2019-12-11 | 2020-05-01 | 中南大学 | 一种钠离子电池钴铁铜硫化物负极材料及其制备方法 |
CN111180700A (zh) * | 2020-01-06 | 2020-05-19 | 山东大学 | 一种用于高性能钾硫电池正极N掺杂Co纳米团簇/N掺杂多孔碳/S复合材料的制备方法 |
CN112678878A (zh) * | 2020-12-28 | 2021-04-20 | 格林美(江苏)钴业股份有限公司 | 一种磷、硫双掺杂钴酸锂正极材料及其制备方法 |
Non-Patent Citations (5)
Title |
---|
GIULIA SAPONARO: "Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions", ATMOS. CHEM. PHYS, pages 1607 - 1626 * |
周赟: "CoP3 和CoSP3自支撑纳米线阵列的电催化析氢性能", 中国科技论文, vol. 14, no. 4, pages 353 - 356 * |
邓文昕;吴爱民;周抒予;黄慧慧;邱治文;黄昊;: "MoS_2薄膜负极材料的制备及其电化学行为", 功能材料, no. 08 * |
邓文昕;吴爱民;周抒予;黄慧慧;邱治文;黄昊;: "MoS_2薄膜负极材料的制备及其电化学行为", 功能材料, no. 08, 30 August 2020 (2020-08-30) * |
钟盛文;钟风娣;张骞;: "锂离子正极材料LiNi_(0.5)Mn_(0.3)Co_(0.2)O_2的合成与掺杂Al的性能研究", 有色金属科学与工程, no. 04, 15 August 2013 (2013-08-15) * |
Also Published As
Publication number | Publication date |
---|---|
CN113845099B (zh) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cao et al. | A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode | |
Lu et al. | Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode | |
Wang et al. | A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance | |
EP3859823B1 (en) | Functional separator having catalytic sites introduced thereinto, manufacturing method therefor, and lithium secondary battery comprising same | |
CN112467111A (zh) | 一种导电碳基底负载石墨烯气凝胶复合电极及其制备方法 | |
CN114464873B (zh) | 无负极醚类高电压钠二次电池及其制备方法 | |
CN112209362B (zh) | 一种等离子体诱导活化氟化碳的方法及锂一次电池制备 | |
CN111900407B (zh) | 一种锂硫电池正极材料及其制备方法 | |
CN107431187B (zh) | 具有多孔粘合剂涂层的电极、其制造方法和包括它的电池 | |
CN112864371A (zh) | 一种三氧化二钒与氮掺杂多孔碳复合负极材料的制备方法 | |
CN114597532A (zh) | 失效钴酸锂正极直接再生为高电压钴酸锂正极的方法及产物 | |
CN110048124B (zh) | 一种用于锂硫电池的多硫化物阻挡层及其制备方法 | |
CN109904428B (zh) | 一种硒化铁/碳复合材料的制备方法 | |
CN111446418B (zh) | 一种高载硫量锂硫电池正极片及制备方法 | |
CN117239102A (zh) | 钠离子电池正极材料及其制备方法、钠离子电池 | |
Yuan et al. | Facile synthesis of a sulfur/multiwalled carbon nanotube nanocomposite cathode with core–shell structure for lithium rechargeable batteries | |
CN108767249B (zh) | 一种硬碳电极材料的制备方法 | |
CN116632195A (zh) | 一种二硒化钼/碳电极材料及其制备方法和常/低温应用 | |
CN115084475B (zh) | 一种快离子导体包覆石墨复合材料及其制备方法和应用 | |
CN114613944B (zh) | 一种通过微波工艺制备固态电池电极的方法 | |
CN113845099A (zh) | 一种弧光放电技术用于制备CoSP钠电负极材料的方法 | |
CN114512710A (zh) | 一种包覆型硫化物固态电解质材料及其制备方法和应用 | |
CN114275828A (zh) | 富镍材料及其制备方法、正极片、电池及用电设备 | |
CN103247776B (zh) | 电极复合材料的制备方法 | |
CN112614977B (zh) | 基于石墨烯/人造石墨复合材料的锂离子电池优化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |