CN113424298B - 碳化硅材料及其制备方法 - Google Patents

碳化硅材料及其制备方法 Download PDF

Info

Publication number
CN113424298B
CN113424298B CN202080015359.XA CN202080015359A CN113424298B CN 113424298 B CN113424298 B CN 113424298B CN 202080015359 A CN202080015359 A CN 202080015359A CN 113424298 B CN113424298 B CN 113424298B
Authority
CN
China
Prior art keywords
silicon carbide
plane
thermal conductivity
low thermal
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080015359.XA
Other languages
English (en)
Other versions
CN113424298A (zh
Inventor
李相喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Korea Co Ltd
Original Assignee
Tokai Carbon Korea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Korea Co Ltd filed Critical Tokai Carbon Korea Co Ltd
Publication of CN113424298A publication Critical patent/CN113424298A/zh
Application granted granted Critical
Publication of CN113424298B publication Critical patent/CN113424298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0033Manufacture or treatment of substrate-free structures, i.e. not connected to any support
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明涉及一种碳化硅(SiC)材料及其制备方法,更具体地,涉及一种包括碳化硅(SiC)层的碳化硅(SiC)材料及其制备方法,其中,在所述碳化硅(SiC)层的至少一部分上形成有平均晶粒尺寸为3.5μm以下并在X射线衍射分析中(111)面优先生长的低导热率区域。

Description

碳化硅材料及其制备方法
技术领域
本发明涉及一种碳化硅材料及其制备方法。
背景技术
现有的化学气相沉积(CVD)碳化硅(SiC)材料形成为其晶粒尺寸为3μm至15μm、平均晶粒尺寸为7μm至8μm,由此形成较少的晶界。因此,由于以晶粒引起的导热率为主,显示出较高的导热率值。这些化学气相沉积(CVD)碳化硅(SiC)材料的高导热率有利于热释放,以最大限度地减少用于在部分半导体蚀刻制程的高温制程条件下的半导体设备的损坏。
在大规模集成电路(Large scale integrated circuit,LSI)等使用较低制程温度的半导体制程中,需要对晶圆边缘进行均匀刻蚀以提高半导体芯片的收率,因此需要形成均匀的晶圆温度。在此类制程中,当使用传统的高导热率化学气相沉积(CVD)碳化硅(SiC)材料时,由于热损失,晶圆中的温度不均匀性会增加。
发明内容
要解决的技术问题
本发明的目的在于解决上述问题,即提供一种碳化硅(SiC)材料及其制备方法,其可以通过平均晶粒尺寸的细化来调整导热率,并有效地适用于需要低温的半导体制造制程。
然而,本发明要解决的问题并非受限于上述言及的问题,未言及的其他问题能够通过以下记载由本领域普通技术人员所明确理解。
解决问题的技术手段
根据本发明的一实施例,涉及一种包括低导热率区域的碳化硅(SiC)材料,其中,所述低导热率区域的平均晶粒尺寸为3.5μm以下并在X射线衍射分析中(111)面优先生长。
根据本发明的一实施例,所述低导热率区域的平均晶粒尺寸可以是0.5至3.5μm。
根据本发明的一实施例,所述低导热率区域,根据以下公式1计算的X射线衍射分析的衍射强度比(I)可以是0.5以下,
[公式1]
衍射强度比(I)=((200)面的峰值强度+(220)面的峰值强度+(311)面的峰值强度)/(111)面的峰值强度。
根据本发明的一实施例,所述低导热率区域,根据以下公式2计算的X射线衍射分析的衍射强度比(I)可以是0.5以下,
[公式2]
衍射强度比(I)=((200)面的峰值强度+(220)面的峰值强度)/(111)面的峰值强度。
根据本发明的一实施例,所述衍射强度比(I)可以是0.001至0.3。
根据本发明的一实施例,所述低导热率区域的导热率可以是200W/mk以下。
根据本发明的一实施例,所述低导热率区域可以通过化学气相沉积(CVD)方法来进行沉积。
根据本发明的一实施例,所述碳化硅(SiC)材料可以是用于制造半导体非存储器制造的等离子体处理装置的部件的材料。
根据本发明的一实施例,所述碳化硅(SiC)材料是用于放置晶圆的环,所述低导热率区域可以形成在放置晶圆的区域。
根据本发明的一实施例,所述低导热率区域的温度偏差可以是1℃以下。
根据本发明的一实施例,所述低导热率区域可以是所述碳化硅(SiC)层面积的50%以上及100%以下。
根据本发明的一实施例,所述碳化硅(SiC)层的厚度可以是2mm以上。
根据本发明的一实施例,涉及一种包括碳化硅(SiC)层的碳化硅(SiC)材料,其中,所述碳化硅(SiC)层的平均晶粒尺寸为3.5μm以下,并在X射线衍射分析中(111)面优先生长。
根据本发明的一实施例,所述碳化硅(SiC)层的导热率可以是200W/mk以下。
根据本发明的一实施例,所述碳化硅(SiC)层,根据以下公式1计算的X射线衍射分析的衍射强度比(I)可以是0.5以下,
[公式1]
衍射强度比(I)=((200)面的峰值强度+(220)面的峰值强度+(311)面的峰值强度)/(111)面的峰值强度。
根据本发明的一实施例,所述碳化硅(SiC)层,根据以下公式2计算的X射线衍射分析的衍射强度比(I)可以是0.5以下,
[公式2]
衍射强度比(I)=((200)面的峰值强度+(220)面的峰值强度)/(111)面的峰值强度。
根据本发明的一实施例,所述碳化硅(SiC)层的厚度可以是2mm以上。
根据本发明的一实施例,涉及一种碳化硅(SiC)材料的制备方法,包括以下步骤:准备基板;在所述基板上使用化学气相沉积(CVD)方法来形成碳化硅(SiC)层,并且,在所述碳化硅(SiC)层的至少一部分上形成有平均晶粒尺寸为3.5μm以下并在X射线衍射分析中(111)面优先生长的低导热率区域。
发明的效果
根据本发明,可以提供一种化学气相沉积(CVD)碳化硅(SiC)材料,其可以通过调整平均晶粒尺寸来呈现相对于传统的化学气相沉积(CVD)碳化硅(SiC)材料具有低导热率的特性。
根据本发明,由于根据制程条件的变化以简单的方法调整导热率,因此可以以经济的方式提供可适用于需要低温的半导体制程的化学气相沉积(CVD)碳化硅(SiC)材料。根据本发明,由于可以在大规模集成电路(LSI)等微制程的半导体制造过程中在晶圆上形成均匀的温度分布,因此可以实现均匀的蚀刻到晶圆边缘,并提高晶圆的收率及质量。
附图说明
图1a为显示在根据本发明实施例2中制备的碳化硅(SiC)材料的扫描电镜(SEM)图像。
图1b为显示在根据本发明实施例2中制备的碳化硅(SiC)材料的X射线衍射(XRD)图谱分析结果。
图2a为显示在根据本发明的比较例1中制备的碳化硅(SiC)材料的扫描电镜(SEM)图像。
图2b为显示在根据本发明的比较例1中制备的碳化硅(SiC)材料的X射线衍射(XRD)图谱分析结果。
图3为显示在根据本发明的实施例和对比例中制备的碳化硅(SiC)材料的平均晶粒尺寸及导热率的测量结果。
具体实施方式
以下,参照附图对本发明的实施例进行详细说明。然而,能够对实施例进行多种变更,并且,本申请的权利范围并非受到上述实施例的限制或限定。对所有实施例的全部更改、其等同物乃至其替代物均包括在权利要求范围。
实施例中使用的用语仅用于说明特定实施例,而非限定实施例。单数的表现除了在内容中明确指明之外,包括复数含义。在本说明书中使用的“包括”或者“具有”等用语应理解为存在说明书中记载的特征、数值、步骤、操作、构成要素、部件或者这些组合,而不预先排除一个或者其以上的其他特征或者数值、步骤、操作、构成要素、部件或者这些组合的存在,或者其附加可能性。
除额外定义之外,在这里所使用的包括技术或者科学用语在内的所有用语具有本发明领域普通技术人员理解的一般含义。通常使用的词典定义的用语应解释为相关技术领域中的含义,除了在本说明书明确定义之外,不能解释成理想的或者过于形式的含义。
此外,参照附图进行说明中,与附图标记无关,相同的构成要素赋予相同的附图标记,并且省略重复说明。在说明实施例的过程中,当判断对于相关公知功能或者构成的具体说明不必要地混淆实施例的要旨时,省略对其进行详细说明。
本发明涉及一种碳化硅(SiC)材料,根据本发明的一实施例,所述碳化硅(SiC)材料可以包括在至少一部分形成有低导热率区域的碳化硅(SiC)层。所述碳化硅(SiC)层可以通过形成低导热率区域来提供具有均匀温度分布的区域。
所述低导热率区域可以是所述碳化硅(SiC)层面积的50%以上及100%以下。
可以通过调整所述碳化硅(SiC)层的平均晶粒尺寸来形成所述低导热率区域,例如,在通过化学气相沉积(CVD)方法的沉积制程中,可以通过调整由制程温度、原料供应速度等制程变化引起的生长速度来稍微调整平均晶粒尺寸,并降低导热率。即,可以通过减小所述低导热率区域的平均晶粒尺寸来增加晶界的形成,从而形成抑制传热的结构,并显示出低导热率。
相对于整个所述碳化硅(SiC)层的平均晶粒尺寸或最大晶粒尺寸,所述低导热率区域的平均晶粒尺寸可以比较小。例如,所述低导热率区域的平均晶粒尺寸可以是3.5μm以下;0.01μm至3.5μm;0.1μm至3.5μm;或0.5μm至3.5μm。当包括在所述低导热率区域的平均晶粒尺寸范围内时,可以形成低导热率,并在所述低导热率区域内形成均匀的温度分布。所述晶粒尺寸可以指晶粒的面积、长度、粒径或直径。
所述低导热率区域是在X射线衍射分析中(111)面优先生长,并且,可以根据(111)面的优先生长来形成能够提高碳化硅(SiC)材料在等离子体环境中的稳定性和寿命的低导热率区域。即,在所述碳化硅(SiC)层中,与不包括所述低导热率区域的区域相比,可以实现相对较高的(111)面的优先生长。
例如,可以显示出根据以下公式1和/或公式2的X射线衍射分析的衍射强度比(I)。所述线衍射分析的衍射强度比(I)可以是0.5以下;0.001至0.3以下;0.01至0.3;或0.1至0.2:
[公式1]
衍射强度比(I)=((200)面的峰值强度+(220)面的峰值强度+(311)面的峰值强度)/(111)面的峰值强度;
[公式2]
衍射强度比(I)=((200)面的峰值强度+(220)面的峰值强度)/(111)面的峰值强度。
相对于整个所述碳化硅(SiC)层的最大导热率或平均导热率,所述低导热率区域的导热率可以比较低,例如,可以是200W/mk以下;20W/mk至200W/mk;或80W/mk至200W/mk。所述低导热率区域的温度偏差可以是1℃以下;0.8℃以下;或0.5℃以下。当包括在所述低导热率及温度偏差范围内时,可以显示出均匀的温度分布,并在半导体制造制程中提高产品的质量、收率等。
所述碳化硅(SiC)层可以形成为2mm以上;10mm以上;或50mm以上的厚度,并且,可以通过化学气相沉积(CVD)方法来沉积单个或多个层。当形成所述多个层时,可以形成相同或不同的层,其中,多个层的成分、厚度、低导热率区域的平均晶粒尺寸、导热率、晶面的生长方向等可以相同或不同。此时,当在形成所述多个层的碳化硅(SiC)层形成低导热率区域时,随着电阻偏差的缩小和结构变得均匀,可以预期层间明显边界变模糊的效果。
所述碳化硅(SiC)材料是用于制造半导体的等离子体处理装置的部件的材料,例如,可以是应用于需要低制程温度的非存储器的制造过程(即大规模集成电路(LSI)半导体制造过程)的用于放置晶圆的环。所述碳化硅(SiC)材料可以在需要形成均匀的温度分布的部分形成低导热率区域,并且,低导热率区域可以形成在所述用于放置晶圆的环中与晶圆直接接触的区域。由于可以在大规模集成电路(LSI)半导体制造过程中在整个晶圆上形成均匀的温度分布,因此可以实现均匀的蚀刻到晶圆边缘,并提高晶圆的收率及质量。
根据本发明的一实施例,涉及一种碳化硅(SiC)材料,其包括具有低导热率特性的碳化硅(SiC)层。
所述碳化硅(SiC)层的平均晶粒尺寸可以是3.5μm以下;或0.01μm至3.5μm;0.1μm至3.5μm;或0.5μm至3.5μm。当包括在所述平均晶粒尺寸范围内时,可以形成低导热率,并形成均匀的温度分布。
所述碳化硅(SiC)层的导热率可以是200W/mk以下;20W/mk至200W/mk;或80W/mk至200W/mk。或者,所述碳化硅(SiC)层的温度偏差可以是1℃以下;0.8℃以下;或0.5℃以下。当包括在所述低导热率及温度偏差范围内时,可以显示出均匀的温度分布,并在半导体制造制程中提高产品的质量、收率等。
所述碳化硅(SiC)层是在X射线衍射分析中(111)面优先生长,并且,可以根据(111)面的优先生长在等离子体环境中提供稳定的低导热率材料。例如,可以显示出根据以下公式1和/或公式2的X射线衍射分析的衍射强度比(I)。所述线衍射分析的衍射强度比(I)可以是0.5以下;0.001至0.3以下;0.01至0.3;或0.1至0.2:
[公式1]
衍射强度比(I)=((200)面的峰值强度+(220)面的峰值强度+(311)面的峰值强度)/(111)面的峰值强度;
[公式2]
衍射强度比(I)=((200)面的峰值强度+(220)面的峰值强度)/(111)面的峰值强度。
所述碳化硅(SiC)层可以形成为2mm以上;10mm以上;或50mm以上的厚度,并且,可以通过化学气相沉积(CVD)方法来沉积单个或多个层。当形成所述多个层时,可以形成相同或不同的层,其中,层的成分、厚度、低导热率区域的平均晶粒尺寸、导热率、晶面的生长方向等可以相同或不同。此时,当在形成所述多个层的碳化硅(SiC)层形成低导热率区域时,随着电阻偏差的缩小和结构变得均匀,可以预期层间明显边界变模糊的效果。
本发明涉及一种根据本发明的碳化硅(SiC)材料的制备方法,根据本发明的一实施例,可以包括以下步骤:准备基板;在所述基板上使用化学气相沉积(CVD)方法来形成碳化硅(SiC)层。
只要可适用于碳化硅(SiC)层或碳化硅(SiC)材料的制备,所述准备基板步骤可以无限制地应用。
在所述基板上使用化学气相沉积(CVD)方法来形成碳化硅(SiC)层的步骤中,整个碳化硅(SiC)层可以具有低导热率特性,或者可以在至少一部分上形成有低导热率区域。即,可以通过调整化学气相沉积(CVD)方法的沉积制程条件,例如,可以通过调节制程温度及原料供应流量等而控制生长速度来稍微调整平均晶粒尺寸,并可以增加晶界(例如,30%以上)来降低导热率。
可以适当地选择所述制程温度以调整平均晶粒尺寸,例如,相对于通过传统的化学气相沉积(CVD)方法的碳化硅(SiC)层的沉积温度,可以是较低的温度,或相对于形成所述碳化硅(SiC)层步骤的最大或平均制程温度,可以是较低的温度。可以适当地选择所述原料供应流量以调整平均晶粒尺寸,例如,相对于在通过传统的化学气相沉积(CVD)方法的沉积碳化硅(SiC)层时适用的供应流量或形成所述碳化硅(SiC)层步骤的最大或平均供应流量,可以是90%以下;60%以下;或50%以下。
在所述基板上使用化学气相沉积(CVD)方法来形成碳化硅(SiC)层的步骤中,相对于在通过传统的化学气相沉积(CVD)方法的沉积碳化硅(SiC)层时适用的生长速度,可以是较低的生长速度;或相对于形成所述碳化硅(SiC)层步骤的最大或平均生长速度,可以是较低的生长速度。
实施例1
通过化学气相沉积(CVD)方法在基板上沉积碳化硅(SiC)层(厚度为2mm),从而制备了形成有碳化硅(SiC)层的化学气相沉积(CVD)碳化硅(SiC)材料,其中,所述碳化硅(SiC)层具有0.5μm至3μm晶粒尺寸(平均晶粒尺寸:0.82μm,采用ASTM E112测量方法)。
实施例2
通过化学气相沉积(CVD)方法在基板上沉积碳化硅(SiC)层(厚度为2mm),从而制备了形成有碳化硅(SiC)层的化学气相沉积(CVD)碳化硅(SiC)材料,其中,所述碳化硅(SiC)层具有0.5μm至3μm晶粒尺寸(平均晶粒尺寸:2.2μm,采用ASTM E112测量方法)。
比较例1
通过化学气相沉积(CVD)方法在基板上沉积碳化硅(SiC)层(厚度为2mm),从而制备了形成有碳化硅(SiC)层的化学气相沉积(CVD)碳化硅(SiC)材料,其中,所述碳化硅(SiC)层具有3μm至15μm晶粒尺寸(平均晶粒尺寸:7.4μm,采用ASTM E112测量方法)。
比较例2
通过化学气相沉积(CVD)方法在基板上沉积碳化硅(SiC)层(厚度为2mm),从而制备了形成有碳化硅(SiC)层的化学气相沉积(CVD)碳化硅(SiC)材料,其中,所述碳化硅(SiC)层具有3μm至15μm晶粒尺寸(平均晶粒尺寸:9.07μm,采用ASTM E112测量方法)。
评价例1
测量了实施例2及对比例1的化学气相沉积(CVD)碳化硅(SiC)材料的扫描电镜(SEM)和X射线衍射(XRD)并显示在图1(图1a及图1b、实施例2)、图2(图2a及图2b、比较例1)。
通过使用“Rigaku DMAX200”设备,以测量范围为10至80°、扫描速度(scan speed)为10及扫描步骤(scan step)为0.05,对X射线衍射(XRD)进行了测量。参照图1,实施例2的化学气相沉积(CVD)碳化硅(SiC)材料的晶粒尺寸范围为0.5μm至3μm,(111)面优先生长,由此可以确定根据公式1的衍射强度比(I)为0.01。
此外,对比例1的化学气相沉积(CVD)碳化硅(SiC)材料是一种常用的材料,其晶粒尺寸为3至15μm(平均7.4μm),(111)面优先生长,但由于(200)、(220)、(311)面的峰值强度为5000cps以上,因此可以确定它超过根据本发明的公式1的衍射强度比(I)的范围。
评价例2
测量了在实施例及比较例中制备的化学气相沉积(CVD)碳化硅(SiC)材料的导热率并显示在图3及表1。使用ASTM E122方法来测量了化学气相沉积(CVD)碳化硅(SiC)材料的晶粒尺寸。通过使用“耐驰(NETZSCH)社,型号LFA447 NanoFlash”的分析设备,根据KS标准准备了试样并测量了导热率。
参照图3,当平均晶粒尺寸为2.2μm以下时,其呈现低导热率特性;当平均晶粒尺寸为5μm以上时,超过200W/mK;在8μm以上时,超过300W/mK,可见,随着晶粒尺寸的增大,导热率也增大。
[表1]
实施例1 实施例2 比较例1 比较例2
低导热率(W/mK) 94 153 247 329
平均晶粒尺寸(μm) 0.82 2.2 7.4 9.07
在本发明中,通过化学气相沉积(CVD)沉积过程中的制程变化,将生长速度降低为低于比较例,从而将平均晶粒尺寸细化到3mm以下,并且,可以通过诱导(111)优先生长来提供具有80W/mK至200W/mK的低导热率的化学气相沉积(CVD)碳化硅(SiC)材料。
以上,通过有限的附图对实施例进行了说明,本领域的普通技术人员能够对上述记载进行多种修改与变形。例如,所说明的技术以与所说明的方法不同的顺序执行,和/或所说明的构成要素以与所说明的方法不同的形态结合或组合,或者,由其他构成要素或等同物进行替换或置换也能够获得相同的效果。
由此,其他体现、其他实施例及权利要求范围的均等物全部属于专利权利要求的范围。

Claims (16)

1.一种碳化硅材料,包括:
碳化硅层,其中,所述碳化硅层包括平均晶粒尺寸为3.0μm以下并在X射线衍射分析中(111)面优先生长的低导热率区域,
所述低导热率区域,
根据以下公式1计算的X射线衍射分析的衍射强度比I为0.5以下,
[公式1]
衍射强度比I=((200)面的峰值强度+(220)面的峰值强度+(311)面的峰值强度)/(111)面的峰值强度。
2.根据权利要求1所述的碳化硅材料,
所述低导热率区域的平均晶粒尺寸为0.5至3.0μm。
3.根据权利要求1所述的碳化硅材料,
所述低导热率区域,
根据以下公式2计算的X射线衍射分析的衍射强度比I为0.5以下,
[公式2]
衍射强度比I=((200)面的峰值强度+(220)面的峰值强度)/(111)面的峰值强度。
4.根据权利要求1或权利要求3所述的碳化硅材料,
所述衍射强度比I为0.001至0.3。
5.根据权利要求1所述的碳化硅材料,
所述低导热率区域的导热率为200W/mk以下。
6.根据权利要求1所述的碳化硅材料,
所述低导热率区域通过化学气相沉积方法来进行沉积。
7.根据权利要求1所述的碳化硅材料,
所述碳化硅材料是用于制造半导体非存储器的等离子体处理装置的部件的材料。
8.根据权利要求1所述的碳化硅材料,
所述碳化硅材料是用于放置晶圆的环,
所述低导热率区域形成在放置晶圆的区域。
9.根据权利要求1所述的碳化硅材料,
所述低导热率区域的温度偏差为1℃以下。
10.根据权利要求1所述的碳化硅材料,
所述低导热率区域是所述碳化硅层面积的50%以上及100%以下。
11.根据权利要求1所述的碳化硅材料,
所述碳化硅层的厚度为2mm以上。
12.一种碳化硅材料,包括:
碳化硅层,其平均晶粒尺寸为3.0μm以下,并在X射线衍射分析中(111)面优先生长,
所述碳化硅层,
根据以下公式1计算的X射线衍射分析的衍射强度比I为0.5以下,
[公式1]
衍射强度比I=((200)面的峰值强度+(220)面的峰值强度+(311)面的峰值强度)/(111)面的峰值强度。
13.根据权利要求12所述的碳化硅材料,
所述碳化硅层的导热率为200W/mk以下。
14.根据权利要求12所述的碳化硅材料,
所述碳化硅层,
根据以下公式2计算的X射线衍射分析的衍射强度比I为0.5以下,
[公式2]
衍射强度比I=((200)面的峰值强度+(220)面的峰值强度)/(111)面的峰值强度。
15.根据权利要求12所述的碳化硅材料,
所述碳化硅层的厚度为2mm以上。
16.一种碳化硅材料的制备方法,包括以下步骤:
准备基板;
在所述基板上使用化学气相沉积方法来形成碳化硅层,
在所述碳化硅层的至少一部分上形成有平均晶粒尺寸为3.0μm以下并在X射线衍射分析中(111)面优先生长的低导热率区域,
所述低导热率区域,
根据以下公式1计算的X射线衍射分析的衍射强度比I为0.5以下,
[公式1]
衍射强度比I=((200)面的峰值强度+(220)面的峰值强度+(311)面的峰值强度)/(111)面的峰值强度。
CN202080015359.XA 2019-04-18 2020-03-25 碳化硅材料及其制备方法 Active CN113424298B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190045602A KR102183258B1 (ko) 2019-04-18 2019-04-18 SiC 소재 및 이의 제조방법
KR10-2019-0045602 2019-04-18
PCT/KR2020/004075 WO2020213847A1 (ko) 2019-04-18 2020-03-25 Sic 소재 및 이의 제조방법

Publications (2)

Publication Number Publication Date
CN113424298A CN113424298A (zh) 2021-09-21
CN113424298B true CN113424298B (zh) 2022-09-20

Family

ID=72838316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080015359.XA Active CN113424298B (zh) 2019-04-18 2020-03-25 碳化硅材料及其制备方法

Country Status (7)

Country Link
US (1) US11658060B2 (zh)
JP (1) JP7430199B2 (zh)
KR (1) KR102183258B1 (zh)
CN (1) CN113424298B (zh)
SG (1) SG11202110438WA (zh)
TW (1) TWI747238B (zh)
WO (1) WO2020213847A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183258B1 (ko) * 2019-04-18 2020-11-26 주식회사 티씨케이 SiC 소재 및 이의 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792372A (en) 1987-01-30 1998-08-11 Baxter International, Inc. Enhanced yield collection systems and methods for obtaining concentrated platelets from platelet-rich plasma
US5879450A (en) * 1997-08-13 1999-03-09 City University Of Hong Kong Method of heteroepitaxial growth of beta silicon carbide on silicon
JPH1179846A (ja) * 1997-09-01 1999-03-23 Tokai Carbon Co Ltd 炭化珪素成形体
JP3790029B2 (ja) * 1997-09-30 2006-06-28 東海カーボン株式会社 SiCダミーウエハ
JPH11199323A (ja) * 1998-01-14 1999-07-27 Tokai Carbon Co Ltd ダミーウエハ
US6562183B1 (en) 1999-04-07 2003-05-13 Ngk Insulators, Ltd. Anti-corrosive parts for etching apparatus
JP2000355779A (ja) * 1999-04-07 2000-12-26 Ngk Insulators Ltd エッチング装置用耐蝕部品
JP4071919B2 (ja) 2000-06-20 2008-04-02 東海カーボン株式会社 SiC被覆黒鉛部材およびその製造方法
US8409351B2 (en) * 2007-08-08 2013-04-02 Sic Systems, Inc. Production of bulk silicon carbide with hot-filament chemical vapor deposition
US9725822B2 (en) * 2010-12-24 2017-08-08 Toyo Tanso Co., Ltd. Method for epitaxial growth of monocrystalline silicon carbide using a feed material including a surface layer containing a polycrystalline silicon carbide with a 3C crystal polymorph
JP5267709B2 (ja) * 2011-09-14 2013-08-21 株式会社豊田中央研究所 高耐熱部材、その製造方法、黒鉛ルツボおよび単結晶インゴットの製造方法
JP2016204735A (ja) 2015-04-28 2016-12-08 イビデン株式会社 セラミック構造体およびセラミック構造体の製造方法
US10273190B2 (en) * 2015-09-03 2019-04-30 Sumitomo Osaka Cement Co., Ltd. Focus ring and method for producing focus ring
KR101866869B1 (ko) 2016-08-18 2018-06-14 주식회사 티씨케이 SiC 소재 및 SiC 복합 소재
KR20180071695A (ko) * 2016-12-20 2018-06-28 주식회사 티씨케이 층간 경계를 덮는 증착층을 포함하는 반도체 제조용 부품 및 그 제조방법
CN106835071A (zh) * 2017-01-23 2017-06-13 武汉理工大学 一种cvd碳化硅材料的制备方法
US11404620B2 (en) 2017-05-19 2022-08-02 Nitto Denko Corporation Method of producing semiconductor sintered body, electrical/electronic member, and semiconductor sintered body
JP6832800B2 (ja) * 2017-06-21 2021-02-24 東京エレクトロン株式会社 プラズマ処理装置
KR102183258B1 (ko) * 2019-04-18 2020-11-26 주식회사 티씨케이 SiC 소재 및 이의 제조방법

Also Published As

Publication number Publication date
WO2020213847A1 (ko) 2020-10-22
US11658060B2 (en) 2023-05-23
US20220148907A1 (en) 2022-05-12
TWI747238B (zh) 2021-11-21
SG11202110438WA (en) 2021-10-28
JP2022522223A (ja) 2022-04-14
KR102183258B1 (ko) 2020-11-26
TW202039914A (zh) 2020-11-01
KR20200122648A (ko) 2020-10-28
CN113424298A (zh) 2021-09-21
JP7430199B2 (ja) 2024-02-09

Similar Documents

Publication Publication Date Title
CN1218374C (zh) 基于ⅲ族氮化物的半导体基片及其制造方法
CN108884593B (zh) 多晶SiC基板及其制造方法
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
WO2018131449A1 (ja) SiCエピタキシャルウェハ及びその製造方法
JPWO2005116307A1 (ja) 炭化ケイ素単結晶ウェハの製造方法
CN113424298B (zh) 碳化硅材料及其制备方法
US20220278206A1 (en) BIAXIALLY ORIENTED SiC COMPOSITE SUBSTRATE AND SEMICONDUCTOR DEVICE COMPOSITE SUBSTRATE
EP3026693A1 (en) Pretreatment method for base substrate, and method for manufacturing laminate using pretreated base substrate
DE112020003863T5 (de) Durchmessererweiterung von aluminiumnitridkristallen
JP2008290895A (ja) 炭化珪素単結晶の製造方法
KR102159224B1 (ko) 포커스 링, 그 제조 방법, 및 기판 처리 장치
JP5733258B2 (ja) 窒化物半導体エピタキシャルウェハの製造方法
CN108369901B (zh) SiC外延晶片的制造方法
EP4286568A1 (en) Sic substrate and sic epitaxial wafer
US10985042B2 (en) SiC substrate, SiC epitaxial wafer, and method of manufacturing the same
KR102110409B1 (ko) HVPE 성장법을 이용하여 펄스 모드로 성장된 α-Ga2O3 박막의 제조 방법
JP2022510159A (ja) ダイヤモンド基板の製造方法
CN114573350B (zh) 碳化钽复合材料
KR102314020B1 (ko) 육방정계 질화붕소/그래핀 2차원 복합 소재 제조방법
US20170369986A1 (en) Method for preparing copper thin film by using single crystal copper target
CN109562948B (zh) SiC材料及SiC复合材料
CN205313714U (zh) 一种改善硅基氮化物各圈波长均值的石墨盘
WO2019023170A1 (en) CRYSTALLINE FILMS OBTAINED FROM A CRYSTAL SILICON GERM LAYER PREPARED BY ALUMINUM-INDUCED CRYSTALLIZATION
KR102176894B1 (ko) 질화 알루미늄 단결정
CN108140668B (zh) 半导体器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant