JP6832800B2 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP6832800B2
JP6832800B2 JP2017121699A JP2017121699A JP6832800B2 JP 6832800 B2 JP6832800 B2 JP 6832800B2 JP 2017121699 A JP2017121699 A JP 2017121699A JP 2017121699 A JP2017121699 A JP 2017121699A JP 6832800 B2 JP6832800 B2 JP 6832800B2
Authority
JP
Japan
Prior art keywords
plasma processing
frequency
coil
winding
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017121699A
Other languages
English (en)
Other versions
JP2019009193A (ja
Inventor
林 大輔
大輔 林
健吾 金子
健吾 金子
克之 小泉
克之 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2017121699A priority Critical patent/JP6832800B2/ja
Priority to KR1020180070548A priority patent/KR102580823B1/ko
Priority to US16/012,959 priority patent/US11011347B2/en
Priority to CN202110199431.5A priority patent/CN113013014A/zh
Priority to TW107121379A priority patent/TWI791541B/zh
Priority to TW112100131A priority patent/TW202318477A/zh
Priority to CN201810645011.3A priority patent/CN109104807B/zh
Publication of JP2019009193A publication Critical patent/JP2019009193A/ja
Application granted granted Critical
Publication of JP6832800B2 publication Critical patent/JP6832800B2/ja
Priority to US17/322,241 priority patent/US11735392B2/en
Priority to KR1020230123191A priority patent/KR20230136895A/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32908Utilities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Particle Accelerators (AREA)

Description

本発明の種々の側面及び実施形態は、プラズマ処理装置に関するものである。
従来から、半導体ウエハなどの被処理基板に対してプラズマを用いて、エッチングなどのプラズマ処理を行うプラズマ処理装置が知られている。このようなプラズマ処理装置は、被処理基板を載置する載置台に、被処理基板を伝熱で所定温度に制御する温度制御機能を有している。この温度制御機能としては、載置台に通電により発熱する発熱体を組み込み、発熱体の発生するジュール熱を制御するヒータ方式が多く用いられている。
しかしながら、プラズマ処理装置は、ヒータ方式が採られると、プラズマを生成するために高周波電源より載置台に印加される高周波の一部がノイズとして発熱体からヒータ給電ラインに入り込む。
そこで、本出願人は、高周波のノイズを減衰または阻止するフィルタをヒータ給電ライン上に設ける技術を特許文献1に提案している。このフィルタは、空芯コイルと、空芯コイルを収容または包囲する筒形の外導体と、空芯コイルの各々の巻線ギャップに選択的に挿入される絶縁性の櫛歯部材とを有する。フィルタの空芯コイルには、巻線ギャップを変えることで、周波数−インピーダンス特性において、特定の1つまたは複数の並列共振周波数をシフトさせる有効区間がある。フィルタは、遮断対象のノイズの周波数に対応した並列共振周波数が得られるように空芯コイルに有効区間に巻線ギャップの櫛歯部材を挿入している。
特開2015−173027公報
しかしながら、プラズマ処理装置は、機種や載置台に印加される高周波の周波数などによってノイズの周波数が異なる。このため、特許文献1の技術では、それぞれのノイズの周波数に対応した異なる並列共振周波数を得るには、巻線ギャップの幅の異なるフィルタを作り直す必要がある。
本発明の一側面に係るプラズマ処理装置は、ノイズの周波数毎にフィルタを作り直す手間を軽減できるフィルタを備えたプラズマ処理装置を提供する。
開示するプラズマ処理装置は、1つの実施態様において、プラズマ処理が行われる処理容器内の所定の電気的部材に線路を介して電気的に接続される電力系または信号系の外部回路を有し、電気的部材から外部回路に向かって線路に入ってくるノイズを線路上に設けたフィルタによって減衰または阻止する。フィルタは、コイルと、筒形の外導体と、可動子とを有する。コイルは、一定の口径と一定のコイル長を有する。外導体は、コイルを収容または包囲し、コイルと組み合わさって複数の周波数で並列共振をなす分布定数線路を形成する。可動子は、コイルに対してコイルの長さ方向に存在する有効区間であって、コイルの巻線ギャップが変更されることで、フィルタの周波数−インピーダンス特性において特定の1つまたは複数の並列共振周波数に高いまたは低い周波数領域側へシフトが生じる1つまたは複数の有効区間内に配置され、コイルの各々の巻線ギャップを変更する。
開示するプラズマ処理装置の1つの態様によれば、ノイズの周波数毎にフィルタを作り直す手間を軽減できる。
図1は、プラズマ処理装置の構成の一例を示す図である。 図2は、発熱体の構成の一例を示す図である。 図3は、サセプタに電力を供給する回路構成の一例を示す図である。 図4は、空芯コイルの概略的な構成の一例を示す図である。 図5は、空芯コイル部分を上方から見た概略的な構成の一例を示す図である。 図6は、巻線ギャップのパターンの一例を示す図である。 図7Aは、「密1」のパターンでの並列共振周波数のシフトの一例を示す図である。 図7Bは、「密2」のパターンでの並列共振周波数のシフトの一例を示す図である。 図7Cは、「密3」のパターンでの並列共振周波数のシフトの一例を示す図である。 図7Dは、「密4」のパターンでの並列共振周波数のシフトの一例を示す図である。 図7Eは、「密5」のパターンでの並列共振周波数のシフトの一例を示す図である。 図7Fは、「密6」のパターンでの並列共振周波数のシフトの一例を示す図である。 図8Aは、「粗1」のパターンでの並列共振周波数のシフトの一例を示す図である。 図8Bは、「粗2」のパターンでの並列共振周波数のシフトの一例を示す図である。 図8Cは、「粗3」のパターンでの並列共振周波数のシフトの一例を示す図である。 図8Dは、「粗4」のパターンでの並列共振周波数のシフトの一例を示す図である。 図8Eは、「粗5」のパターンでの並列共振周波数のシフトの一例を示す図である。 図8Fは、「粗6」のパターンでの並列共振周波数のシフトの一例を示す図である。
以下、図面を参照して本願の開示するプラズマ処理装置の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付すこととする。また、本実施形態により開示する発明が限定されるものではない。各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
[プラズマ処理装置全体の構成]
図1は、プラズマ処理装置の構成の一例を示す図である。実施形態に係るプラズマ処理装置1は、下部2周波印加方式の容量結合型プラズマエッチング装置として構成されており、たとえばアルミニウムまたはステンレス鋼等の金属製の円筒型のチャンバ(処理容器)10を有している。チャンバ10は接地されている。
チャンバ10内には、被処理基板としてたとえば半導体ウエハWを載置する円板形状のサセプタ12が下部電極として水平に配置されている。このサセプタ12は、たとえばアルミニウムからなり、チャンバ10の底から垂直上方に延びるたとえばセラミック製の絶縁性筒状支持部14により非接地で支持されている。チャンバ10内には、絶縁性筒状支持部14の外周に沿ってチャンバ10の底から、垂直上方に延びる導電性の筒状支持部16と、チャンバ10の内壁との間に環状の排気路18とが形成されている。排気路18の底には、排気口20が設けられている。排気口20には、排気管22を介して排気装置24が接続されている。排気装置24は、ターボ分子ポンプなどの真空ポンプを有しており、チャンバ10内の処理空間を所望の真空度まで減圧することができる。チャンバ10の側壁には、半導体ウエハWの搬入出口を開閉するゲートバルブ26が取り付けられている。
サセプタ12には、第1および第2の高周波電源28,30がマッチングユニット32および給電棒34を介して電気的に接続されている。第1および第2の高周波電源28,30は、後述する制御部75からの制御により、それぞれ供給する高周波電力のパワーおよび周波数の変更が可能とされている。ここで、第1の高周波電源28は、主としてプラズマの生成に寄与する所定周波数(通常27MHz以上、好ましくは60MHz以上)の第1高周波HFを出力する。一方、第2の高周波電源30は、主としてサセプタ12上の半導体ウエハWに対するイオンの引き込みに寄与する所定周波数(通常13MHz以下)の第2高周波LFを出力する。マッチングユニット32には、第1および第2の高周波電源28,30とプラズマ負荷との間でインピーダンスの整合をとるための整合回路が収容されている。
給電棒34は、所定の外径を有する円筒形または円柱形の導体からなり、その上端がサセプタ12の下面中心部に接続され、その下端がマッチングユニット32に接続されている。また、チャンバ10の底面とマッチングユニット32との間には、給電棒34の周りを囲む円筒形の導体カバー35が設けられている。
サセプタ12は、半導体ウエハWよりも一回り大きな直径または口径を有している。サセプタ12の上面は、ウエハWと略同形状(円形)かつ略同サイズのウエハ載置部と、ウエハ載置部の外側に延在する環状の周辺部とに区画されている。サセプタ12は、ウエハ載置部の上に、処理対象の半導体ウエハWが載置される。環状周辺部の上には、半導体ウエハWの口径よりも大きな内径を有するリング状のフォーカスリング36が取り付けられる。フォーカスリング36は、半導体ウエハWの被エッチング材に応じて、たとえばSi,SiC,C,SiO2の中のいずれかの材質で構成されている。
サセプタ12上面のウエハ載置部には、ウエハ吸着用の静電チャック38および発熱体40が設けられている。静電チャック38は、サセプタ12の上面に一体形成または一体固着された膜状または板状の誘電体42の中にDC電極44が封入されている。DC電極44は、チャンバ10の外に配置される外付けの直流電源45がスイッチ46、高抵抗値の抵抗48およびDC高圧線50を介して電気的に接続されている。静電チャック38は、直流電源45からの高圧の直流電圧がDC電極44に印加されることにより、静電力で半導体ウエハWを吸着保持する。なお、DC高圧線50は、被覆線であり、円筒体の給電棒34の中を通り、サセプタ12を下から貫通して静電チャック38のDC電極44に接続されている。
発熱体40は、静電チャック38のDC電極44と一緒に誘電体42の中に封入された例えばスパイラル状の抵抗発熱線からなる。図2は、発熱体の構成の一例を示す図である。本実施形態では、発熱体40は、サセプタ12の半径方向において内側発熱線40(IN)と、外側発熱線40(OUT)とに2分割されている。内側発熱線40(IN)は、絶縁被覆された給電導体52(IN)、フィルタユニット54(IN)および電気ケーブル56(IN)を介して、チャンバ10の外に配置される専用のヒータ電源58(IN)に電気的に接続されている。外側発熱線40(OUT)は、絶縁被覆された給電導体52(OUT)、フィルタユニット54(OUT)および電気ケーブル56(OUT)を介して、チャンバ10の外に配置される専用のヒータ電源58(OUT)に電気的に接続されている。フィルタユニット54(IN),54(OUT)は、この実施形態における主要な特徴部分であり、その内部の構成および作用については後に詳細に説明する。
サセプタ12の内部には、たとえば円周方向に延びる環状の冷媒通路60が設けられている。冷媒通路60には、チラーユニット(図示せず)より冷媒供給管を介して所定温度の冷媒たとえば冷却水cwが循環供給される。プラズマ処理装置1は、循環供給する冷媒の温度によってサセプタ12の温度を下げる方向に制御可能とされている。プラズマ処理装置1は、サセプタ12に半導体ウエハWを熱的に結合させるために、伝熱ガス供給部(図示せず)からの伝熱ガスたとえばHeガスが、ガス供給管およびサセプタ12内部のガス通路62を介して静電チャック38と半導体ウエハWとの接触界面に供給される。
チャンバ10の天井には、サセプタ12と平行に向かい合って上部電極を兼ねるシャワーヘッド64が設けられている。シャワーヘッド64は、サセプタ12と向かい合う電極板66と、電極板66を上面側から着脱可能に支持する電極支持体68とを有する。電極支持体68の内部には、ガス室70が設けられている。電極板66および電極支持体68には、ガス室70からサセプタ12側に貫通する多数のガス吐出孔72が形成されている。電極板66とサセプタ12との間の空間SPが、プラズマ生成空間ないし処理空間となる。ガス室70の上部に設けられるガス導入口70aには、処理ガス供給部74からのガス供給管76が接続されている。電極板66はたとえばSi、SiCあるいはCからなる。電極支持体68はたとえばアルマイト処理されたアルミニウムからなる。
上記構成のプラズマ処理装置1は、制御部75によって、動作が統括的に制御される。制御部75は、例えば、コンピュータであり、プラズマ処理装置1の各部を制御する。たとえば、制御部75は、排気装置24、高周波電源28,30、直流電源45のスイッチ46、ヒータ電源58(IN),58(OUT)、チラーユニット(図示せず)、伝熱ガス供給部(図示せず)および処理ガス供給部74等を制御する。制御部75は、CPUを備えプラズマ処理装置1の各部を制御するプロセスコントローラ75Aと、ユーザインターフェース75Bと、記憶部75Cとが設けられている。
ユーザインターフェース75Bは、工程管理者がプラズマ処理装置1を管理するためにコマンドの入力操作を行うキーボードや、プラズマ処理装置1の稼働状況を可視化して表示するディスプレイ等から構成されている。
記憶部75Cには、プラズマ処理装置1で実行される各種処理をプロセスコントローラ75Aの制御にて実現するための制御プログラム(ソフトウェア)や処理条件データ等が記憶されたレシピが格納されている。なお、制御プログラムや処理条件データ等のレシピは、コンピュータで読取り可能なコンピュータ記憶媒体(例えば、ハードディスク、CD、フレキシブルディスク、半導体メモリ等)などに格納された状態のものを利用したり、又は、他の装置から、例えば専用回線を介して随時伝送させてオンラインで使用したりすることも可能である。
プロセスコントローラ75Aは、記憶部75Cに記憶された制御プログラムを読み出して実行することで、プラズマ処理装置1において所望の処理を実行する。例えば、プロセスコントローラ75Aは、レシピを記憶部75Cから呼び出し、レシピに基づいてプラズマ処理を実行することで、エッチングを行う。
プラズマ処理装置1では、エッチングを行なう場合、先ずゲートバルブ26を開状態にして加工対象の半導体ウエハWをチャンバ10内に搬入して、静電チャック38の上に載置する。そして、プラズマ処理装置1では、処理ガス供給部74よりエッチングガス(一般に混合ガス)を所定の流量でチャンバ10内に導入し、排気装置24によりチャンバ10内の圧力を設定値にする。さらに、プラズマ処理装置1では、第1および第2の高周波電源28,30をオンにして第1高周波HFおよび第2高周波LFをそれぞれ所定のパワーで出力させ、これらの高周波HF,LFをマッチングユニット32および給電棒34を介してサセプタ(下部電極)12に印加する。また、プラズマ処理装置1では、伝熱ガス供給部より静電チャック38と半導体ウエハWとの間の接触界面に伝熱ガス(Heガス)を供給するとともに、静電チャック用のスイッチ46をオンにして、静電吸着力により伝熱ガスを上記接触界面に閉じ込める。一方で、プラズマ処理装置1では、ヒータ電源58(IN),58(OUT)をオンにして、内側発熱体40(IN)および外側発熱体40(OUT)を各々独立したジュール熱で発熱させ、サセプタ12上面の温度ないし温度分布を設定値に制御する。プラズマ処理装置1では、シャワーヘッド64より吐出されたエッチングガスは、下部電極として機能するサセプタ12と、上部電極として機能するシャワーヘッド64との間で高周波の放電によってプラズマ化し、このプラズマで生成されるラジカルやイオンによって半導体ウエハW表面の被加工膜が所望のパターンにエッチングされる。
ところで、プラズマ処理装置1では、プラズマエッチングの最中に、高周波電源28,30よりサセプタ12に印加された第1および第2高周波HF,LFの一部が、サセプタ12に組み込まれている内側発熱線40(IN)および外側発熱線40(OUT)を介して給電導体52(IN),52(OUT)に高周波のノイズとして入り込んでくる。この2周波の高周波のノイズの何れかでもヒータ電源58(IN),58(OUT)に突入すると、ヒータ電源58(IN),58(OUT)は、動作ないし性能が害されるおそれがある。
この点に関しては、プラズマ処理装置1では、ヒータ電源58(IN),58(OUT)と内側発熱線40(IN)および外側発熱線40(OUT)とを電気的に結ぶヒータ給電ライン上にフィルタユニット54(IN),54(OUT)が設けられている。これらのフィルタユニット54(IN),54(OUT)は、以下に詳しく述べるように、内側発熱線40(IN)および外側発熱線40(OUT)からヒータ給電ライン上に入ってくる第1および第2高周波HF,LFのノイズのいずれに対しても、インピーダンスの十分に高いフィルタ遮断機能を低消費電力で効率的にかつ安定確実に発揮する。これにより、この実施形態のプラズマエッチング装置は、ヒータ方式のウエハ温度制御機能を改善するとともに、チャンバ10からサセプタ12内部の発熱体40を介してヒータ給電ライン上に第1および第2高周波HF,LFのパワーが漏れるのを効果的に防止または低減し、プラズマプロセスの再現性・信頼性を向上させている。
[フィルタユニット内の回路構成]
次に、フィルタユニット54(IN),54(OUT)内の回路構成を説明する。図3は、サセプタに電力を供給する回路構成の一例を示す図である。図3には、サセプタ12に設けられる発熱体40に電力を供給するためのヒータ給電部の概略的な回路構成が示されている。本実施形態では、発熱体40の内側発熱線40(IN)および外側発熱線40(OUT)のそれぞれに対して、実質的に同一の回路構成を有する個別のヒータ給電部を接続し、内側発熱線40(IN)および外側発熱線40(OUT)の発熱量または発熱温度を独立に制御している。外側発熱線40(OUT)、および、内側発熱線40(IN)に対するヒータ給電部は、実質的に同一の回路構成であるため、以下の説明では、内側発熱線40(IN)に対するヒータ給電部の構成および作用について述べる。外側発熱線40(OUT)に対するヒータ給電部の構成および作用は、同様である。
ヒータ電源58(IN)は、たとえばSSRを用いて商用周波数のスイッチング(ON/OFF)動作を行う交流出力型の電源であり、内側発熱体40(IN)と閉ループの回路で接続されている。より詳しくは、ヒータ電源58(IN)の一対の出力端子のうち、第1の出力端子は、第1の給電ライン(電源線)100(1)を介して内側発熱線40(IN)の第1の端子h1に電気的に接続され、第2の出力端子は、第2の給電ライン(電源線)100(2)を介して内側発熱線40(IN)の第2の端子h2に電気的に接続されている。
フィルタユニット54(IN)は、複数のフィルタ102が設けられている。例えば、フィルタユニット54(IN)は、第1の給電ライン100(1)の途中にフィルタ102(1)が設けられ、第2の給電ライン100(2)の途中にフィルタ102(2)が設けられている。フィルタ102(1),102(2)は、実質的に同一の構成である。
より詳しくは、フィルタ102(1),102(2)は、コンデンサ106(1),106(2)を介して接地された空芯コイル104(1),104(2)をそれぞれ有している。空芯コイル104(1),104(2)の一方の端子またはフィルタ端子T(1),T(2)は、一対の給電導体52(IN)を介して内側発熱線40(IN)の両端子h1,h2にそれぞれ接続されており、空芯コイル104(1),104(2)の他方の端子と接地電位の導電性部材(たとえばチャンバ10)との間にコンデンサ106(1),106(2)がそれぞれ接続されている。そして、空芯コイル104(1),104(2)とコンデンサ106(1),106(2)との間の接続点n(1),n(2)は、電気ケーブル(ペアケーブル)56(IN)を介してヒータ電源58(IN)の第1および第2の出力端子にそれぞれ接続されている。
かかる構成のヒータ給電部において、ヒータ電源58(IN)より出力される電流は、正極性のサイクルでは、第1の給電ライン100(1)、つまり電気ケーブル56(IN)、空芯コイル104(1)および給電導体52(IN)を通って一方の端子h1から内側発熱線40(IN)に入り、内側発熱線40(IN)の各部で通電によるジュール熱を発生させる。その後、電流は、他方の端子h2から出た後、第2の給電ライン100(2)、つまり給電導体52(IN)、空芯コイル104(2)および電気ケーブル56(IN)を通って帰還する。負極性のサイクルでは、同じ回路を上記と逆方向に電流が流れる。このヒータ交流出力の電流は、商用周波数であるため、空芯コイル104(1),104(2)のインピーダンスまたはその電圧降下は無視できるほど小さく、またコンデンサ106(1),106(2)を通ってアースへ抜ける漏れ電流も無視できるほど少ない。
フィルタユニット54(IN)は、フィルタ102(1)の空芯コイル104(1)と、フィルタ102(2)の空芯コイル104(2)とが並列にそれぞれ設けられている。空芯コイル104(1),104(2)は、それぞれ一定の口径と一定のコイル長を有するコイルとされている。例えば、空芯コイル104(1),104(2)は、電線またはコイル導体を円筒形に巻いた鉄芯無しのソレノイドコイルであり、ヒータ電源58(IN)から内側発熱線40(IN)に十分大きな(たとえば30A程度の)電流を流す給電線の機能に加えて、発熱(パワーロス)を防ぐ観点からフェライト等の磁芯を持たずに空芯で非常に大きなインダクタンスを得るために、さらには大きな線路長を得るために、太いコイル線またはコイル導体と大きなコイルサイズ(たとえば、直径が22〜45mm、長さ130〜280mm)を有している。空芯コイル104(1)および空芯コイル104(2)は、それぞれ個別に外導体110に収容されている。フィルタ102(1),102(2)は、空芯コイル104(1),104(2)の巻線ギャップをそれぞれ変更可能に構成されている。フィルタ102(1),102(2)は、実質的に同一の構成であるため、以下の説明では、空芯コイル104(1)に関する構成および作用について述べる。空芯コイル104(2)に関する構成および作用は、同様である。
図4は、空芯コイルの概略的な構成の一例を示す図である。図4には、フィルタ102(1)の空芯コイル104(1)の巻線が4ターン分示されている。なお、空芯コイル104(1)の巻き数は、4ターンに限定されるものではない。
空芯コイル104(1)には、コイルの巻線のターンごとに、複数の可動子120が設けられている。実施形態に係る空芯コイル104(1)には、コイルの巻線のターンごとに2つの可動子120が設けられている。図4では、コイルの巻線の各ターンに設けられたそれぞれの可動子120の符号に対して、ターン数を示す数字を(ターン数)として付している。例えば、可動子120(1)は、コイルの巻線の1ターン目に設けられた可動子120である。可動子120は、空芯コイル104(1)周辺の電界の乱れ、および、高周波による自己発熱を抑えるため、絶縁材質にて形成することが好ましい。可動子120に使用可能な絶縁材質としては、例えば、樹脂、セラミック系、ガラス系の部材が挙げられる。
可動子120は、空芯コイル104(1)側に巻線に太さに対応した凹部121が形成されており、凹部121に空芯コイル104(1)の巻線がはめ込まれている。可動子120は、空芯コイル104(1)の軸方向に対してそれぞれ個別に移動可能とされている。可動子120には、動力を伝達する動力伝達部(不図示)が設けられている。動力伝達部は、線膨張係数の低い材料で形成することが好ましい。例えば、動力伝達部は、セラミック系またはガラス系の材料で形成されている。動力伝達部は、空芯コイル104(1)の軸方向に移動する直動機構を介してモータなどの動力部(不図示)に接続され、動力部の動力により軸方向に移動する。動力部は、可動子を動作させる共に、可動子の位置の検出が可能とされている。例えば、動力部は、ステッピングモータ、または、サーボモータとされており、プロセスコントローラ75Aからの制御により指定された角度だけ回転すると共に、回転した回転角度をプロセスコントローラ75Aへフィードバックする。プロセスコントローラ75Aは、フィードバックされるモータの回転角度から可動子の位置を検出する。
フィルタ102(1)では、プロセスコントローラ75Aに制御に基づき、各可動子120が移動することにより、空芯コイル104(1)の巻線ギャップが変更可能とされている。
図5は、空芯コイル部分を上方から見た概略的な構成の一例を示す図である。空芯コイル104(1)には、コイルの巻線のターンごとに、巻線の周方向に対して180°の角度差で2つの可動子120が設けられている。また、空芯コイル104(1)には、コイルの巻線のターンごとに、それぞれ隣接するターンに対して巻線の周方向に対する配置位置を変えて2つの可動子120が設けられている。図5の例では、可動子120(1)、120(2)、120(3)、120(4)がそれぞれ180°の角度差で設けられている。また、可動子120(1)、120(2)、120(3)、120(4)が、周方向に対する配置位置を45°ずつ順に変えて設けられている。図5の例では、1ターン目から4ターン目の4ターン分の配置を示したが、5ターン目以降も同様の配置を繰り返して配置する。例えば、5ターン目の可動子120は、1ターン目の可動子120と同様に配置位置に配置する。なお、図4および図5では、空芯コイル104(1)に対して、ターンごとに可動子120を巻線の周方向に対して180°の角度差で2つ設けた場合を例示した。しかし、ターンごとに設ける可動子120の数、角度差はこれに限定されるものではない。例えば、空芯コイル104(1)に対して、ターンごとに可動子120を巻線の周方向に対して120°の角度差で3つ設けてもよい。
空芯コイル104(1)の周囲には、外導体110が設けられている。外導体110は、たとえばアルミニウムからなり、円筒形に構成されている。空芯コイル104(1)は、外導体110の中に同軸で収容されている。外導体110は、空芯コイル104(1)と組み合わさって複数の周波数で並列共振をなす分布定数線路を形成する。
一般的に、伝送線路の特性インピーダンスZoは、無損失の場合には単位長さあたりの静電容量C、インダクタンスLを用いて、Zo=√(L/C)で与えられる。また、波長λは、次の式(1)で与えられる。
λ=2π/(ω√(LC) ・・・・(1)
一般的な分布定数線路(特に同軸線路)では線路の中心が棒状の円筒導体であるのに対して、このフィルタユニット54(IN)では、円筒状の空芯コイルを中心導体にしている点が異なる。単位長さあたりのインダクタンスLは主にこの円筒状コイルに起因するインダクタンスが支配的になると考えられる。一方、単位長さあたりの静電容量は、コイル表面と外導体がなすコンデンサの静電容量Cで規定される。したがって、このフィルタユニット54(IN)においても、単位長さあたりのインダクタンスおよび静電容量をそれぞれL,Cとしたときに、特性インピーダンスZo=√(L/C)で与えられる分布定数線路が形成されていると考えることができる。
このような分布定数線路を有するフィルタユニットを端子T側からみると、反対側が大きな容量(たとえば5000pF)を有するコンデンサで疑似的に短絡されているため、一定の周波数間隔で大きなインピーダンスを繰り返すような周波数−インピーダンス特性が得られる。このようなインピーダンス特性は、波長と分布線路長が同等のときに得られる。
このフィルタユニット54(IN)では、空芯コイル104(1),104(2)の巻線長ではなく、軸方向のコイルの長さが分布線路長となる。そして、中心導体に空芯コイル104(1),104(2)を用いたことで、棒状の円筒導体の場合に比べてLをはるかに大きくしてλを小さくすることができるため、比較的短い線路長(コイルの長さ)でありながら波長と同等以上の実効長を実現することが可能であり、比較的短い周波数間隔で大きなインピーダンスをもつことを繰り返すようなインピーダンス特性を得ることができる。
また、本出願人が、特許文献1に開示したように、フィルタユニット54(IN)では、空芯コイル104(1)の巻線ギャップを変えることで、周波数−インピーダンス特性において、ピークとなる並列共振周波数をシフトさせることができる。また、空芯コイル104(1)には、周波数−インピーダンス特性において、ピークとなる特定の1つまたは複数の並列共振周波数をシフトさせる有効区間がある。
ここで、巻線ギャップを変えたことによる並列共振周波数の変化を説明する。図6は、巻線ギャップのパターンの一例を示す図である。フィルタ102(1)は、空芯コイル104(1)が22ターンの巻線のコイルであるものとし、各巻線間の間隔(巻線ギャップ)を個別に変更可能であるものとする。図6の「ターン番号」は、巻線の位置をターン数で示している。図6では、各パターンの巻線間の間隔を、間隔の両端となる2つの巻線のうち、ターン数の少ない方の巻線のターン番号に対応させて示している。例えば、ターン番号の「1」には、1ターン目と2ターン目の巻線間の間隔を示す。また、ターン番号の「21」は、21ターン目と22ターン目の巻線間の間隔を示す。「合計長」は、空芯コイル104(1)の軸方向のコイルの長さを示している。また、図6には、巻線ギャップの変更するパターン「標準」、「密1」〜「密6」、「粗1」〜「粗6」が示されている。「標準」は、標準とする巻線間の間隔を示している。図6の例では、空芯コイル104(1)の22ターンについて、それぞれ巻線の間隔が11mmの場合を標準としている。「標準」では、コイルの長さが231mmとなる。「密1」〜「密6」、「粗1」〜「粗6」は、それぞれ一部または全部の巻線間の間隔を変えた場合を示している。
例えば、「密1」では、ターン番号が「1」〜「6」、「16」〜「21」の巻線間の間隔を12.5mmとし、ターン番号が「7」〜「15」の巻線間の間隔を9mmとする。「密1」では、コイルの長さが231mmとなる。
「密2」では、ターン番号が「1」〜「4」、「10」〜「12」、「18」〜「21」の巻線間の間隔を12.5mmとし、ターン番号が「9」、「13」の巻線間の間隔を11.5mmとし、ターン番号が「5」〜「8」、「14」〜「17」の巻線間の間隔を9mmとする。「密2」では、コイルの長さが233mmとなる。
「密3」では、ターン番号が「1」、「2」、「6」〜「9」、「13」〜「16」、「20」、「21」の巻線間の間隔を12.5mmとし、ターン番号が「3」〜「5」、「10」〜「12」、「17」〜「19」の巻線間の間隔を9mmとする。「密3」では、コイルの長さが231mmとなる。
「密4」では、ターン番号が「1」、「2」、「6」、「7」、「10」〜「12」、「15」、「16」、「20」、「21」の巻線間の間隔を12.5mmとし、ターン番号が「5」、「17」の巻線間の間隔を11.5mmとし、ターン番号が「3」、「4」、「8」、「9」、「13」、「14」、「18」、「19」の巻線間の間隔を9mmとする。「密4」では、コイルの長さが233mmとなる。
「密5」では、ターン番号が「1」、「4」、「5」、「8」〜「10」、「12」〜「14」、「17」、「18」、「21」の巻線間の間隔を12.5mmとし、ターン番号が「2」、「3」、「6」、「7」、「11」、「15」、「16」、「19」、「20」の巻線間の間隔を9mmとする。「密5」では、コイルの長さが231mmとなる。
「密6」では、ターン番号が「1」、「3」、「4」、「7」、「8」、「11」、「14」、「15」、「18」、「19」、「21」の巻線間の間隔を12.5mmとし、ターン番号が「5」、「10」、「12」、「17」の巻線間の間隔を10mmとし、ターン番号が「2」、「6」、「9」、「13」、「16」、「20」の巻線間の間隔を9mmとする。「密6」では、コイルの長さが232mmとなる。
「粗1」では、ターン番号が「1」〜「6」、「16」〜「21」の巻線間の間隔を9mmとし、ターン番号が「7」〜「9」、「13」〜「15」の巻線間の間隔を13.5mmとし、ターン番号が「10」〜「12」の巻線間の間隔を14.5mmとする。「粗1」では、コイルの長さが233mmとなる。
「粗2」では、ターン番号が「1」〜「4」、「9」〜「13」、「18」〜「21」の巻線間の間隔を9mmとし、ターン番号が「5」〜「8」、「14」〜「17」の巻線間の間隔を14.5mmとする。「粗2」では、コイルの長さが233mmとなる。
「粗3」では、ターン番号が「1」、「2」、「6」〜「9」、「13」〜「16」、「20」、「21」の巻線間の間隔を9mmとし、ターン番号が「3」、「5」、「10」、「12」、「17」、「19」の巻線間の間隔を13.5mmとし、ターン番号が「4」、「11」、「18」の巻線間の間隔を14.5mmとする。「粗3」では、コイルの長さが233mmとなる。
「粗4」では、ターン番号が「1」、「2」、「5」〜「7」、「10」〜「12」、「15」〜「17」、「20」、「21」の巻線間の間隔を9mmとし、ターン番号が「3」、「4」、「8」、「9」、「13」、「14」、「18」、「19」の巻線間の間隔を14.5mmとする。「粗4」では、コイルの長さが233mmとなる。
「粗5」では、ターン番号が「1」、「4」、「5」、「8」〜「10」、「12」〜「14」、「17」、「18」、「21」の巻線間の間隔を9mmとし、ターン番号が「2」、「3」、「6」、「7」、「15」、「16」、「19」、「20」の巻線間の間隔を13.5mmとし、ターン番号が「11」の巻線間の間隔を14.5mmとする。「粗5」では、コイルの長さが231mmとなる。
「粗6」では、ターン番号が「1」、「3」、「4」、「7」、「8」、「10」〜「12」、「14」、「15」、「18」、「19」、「21」の巻線間の間隔を9mmとし、ターン番号が「2」、「5」、「6」、「9」、「12」、「16」、「17」、「20」の巻線間の間隔を14.5mmとする。「粗6」では、コイルの長さが233mmとなる。
「密1」〜「密6」のパターンは、「標準」のパターンと比較して、周波数−インピーダンス特性において、ピークとなる1つまたは複数の並列共振周波数が周波数の高い側へシフトする。「粗1」〜「粗6」のパターンは、「標準」のパターンと比較して、周波数−インピーダンス特性において、ピークとなる1つまたは複数の並列共振周波数が周波数の低い側へシフトする。
並列共振周波数のシフトを説明する。図7Aは、「密1」のパターンでの並列共振周波数のシフトの一例を示す図である。図7Aには、空芯コイル104(1)の巻線ギャップを「密1」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図7Aには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、規則的な周波数間隔でインピーダンスが角(つの)状にピークとなる並列多重共振の周波数−インピーダンス特性が得られる。また、フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「密1」のパターンでは、「標準」のパターンと比較して、矢印に示した2次の共振周波数が周波数の高い側へシフトする。
図7Bは、「密2」のパターンでの並列共振周波数のシフトの一例を示す図である。図7Bには、空芯コイル104(1)の巻線ギャップを「密2」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図7Bには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「密2」のパターンでは、「標準」のパターンと比較して、矢印に示した3次の共振周波数が周波数の高い側へシフトする。
図7Cは、「密3」のパターンでの並列共振周波数のシフトの一例を示す図である。図7Cには、空芯コイル104(1)の巻線ギャップを「密3」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図7Cには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「密3」のパターンでは、「標準」のパターンと比較して、矢印に示した4次の共振周波数が周波数の高い側へシフトする。
図7Dは、「密4」のパターンでの並列共振周波数のシフトの一例を示す図である。図7Dには、空芯コイル104(1)の巻線ギャップを「密4」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図7Dには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「密4」のパターンでは、「標準」のパターンと比較して、矢印に示した5次の共振周波数が周波数の高い側へシフトする。
図7Eは、「密5」のパターンでの並列共振周波数のシフトの一例を示す図である。図7Eには、空芯コイル104(1)の巻線ギャップを「密5」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図7Eには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「密5」のパターンでは、「標準」のパターンと比較して、矢印に示した6次の共振周波数が周波数の高い側へシフトする。
図7Fは、「密6」のパターンでの並列共振周波数のシフトの一例を示す図である。図7Fには、空芯コイル104(1)の巻線ギャップを「密6」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図7Fには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「密6」のパターンでは、「標準」のパターンと比較して、7次の共振周波数が周波数の高い側へシフトする。
図8Aは、「粗1」のパターンでの並列共振周波数のシフトの一例を示す図である。図8Aには、空芯コイル104(1)の巻線ギャップを「粗1」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図8Aには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「粗1」のパターンでは、「標準」のパターンと比較して、矢印に示した2次の共振周波数が周波数の低い側へシフトする。
図8Bは、「粗2」のパターンでの並列共振周波数のシフトの一例を示す図である。図8Bには、空芯コイル104(1)の巻線ギャップを「粗2」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図8Bには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「粗2」のパターンでは、「標準」のパターンと比較して、矢印に示した3次の共振周波数が周波数の低い側へシフトする。
図8Cは、「粗3」のパターンでの並列共振周波数のシフトの一例を示す図である。図8Cには、空芯コイル104(1)の巻線ギャップを「粗3」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図8Cには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「粗3」のパターンでは、「標準」のパターンと比較して、矢印に示した4次の共振周波数が周波数の低い側へシフトする。
図8Dは、「粗4」のパターンでの並列共振周波数のシフトの一例を示す図である。図8Dには、空芯コイル104(1)の巻線ギャップを「粗4」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図8Dには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「粗4」のパターンでは、「標準」のパターンと比較して、矢印に示した5次の共振周波数が周波数の低い側へシフトする。
図8Eは、「粗5」のパターンでの並列共振周波数のシフトの一例を示す図である。図8Eには、空芯コイル104(1)の巻線ギャップを「粗5」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図8Eには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「粗5」のパターンでは、「標準」のパターンと比較して、矢印に示した6次の共振周波数が周波数の低い側へシフトする。
図8Fは、「粗6」のパターンでの並列共振周波数のシフトの一例を示す図である。図8Fには、空芯コイル104(1)の巻線ギャップを「粗6」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。また、図8Fには、空芯コイル104(1)の巻線ギャップを「標準」のパターンとした場合のフィルタ102(1)の周波数−インピーダンス特性が示されている。フィルタ102(1)は、空芯コイル104(1)の巻線ギャップを一部変更することで、1つまたは複数の共振周波数がシフトする。例えば、「粗6」のパターンでは、「標準」のパターンと比較して、矢印に示した7次の共振周波数が周波数の低い側へシフトする。
このように、空芯コイル104(1)には、特定のN次(Nは自然数)の並列共振周波数をシフトさせる有効区間がそれぞれ存在する。例えば、空芯コイル104(1)のターン番号が「7」〜「15」の区間は、周波数−インピーダンス特性において、2次の並列共振周波数を高い側へシフトする有効区間である。なお、有効区間は、空芯コイル104(1)の巻き数や、コイル長などによって変化する。有効区間は、空芯コイルにおいて、特定のN次(Nは自然数)の並列共振周波数に対してN個存在する。
プラズマ処理装置1は、機種やサセプタ12に印加される高周波の周波数などによってノイズの周波数が異なる。しかし、本実施形態に係るプラズマ処理装置1は、可動子120を動作させて空芯コイル104(1)の巻線ギャップを変更するにより、フィルタ102(1)の共振周波数をシフトさせることができるため、ノイズの周波数に対応するように共振周波数をシフトさせることで、フィルタ102(1)によりノイズを減衰または阻止するができる。これにより、プラズマ処理装置1は、ノイズの周波数毎にフィルタ102(1)を作り直す手間を軽減できる。
プラズマ処理装置1は、空芯コイル104(1)の各々の巻線ギャップの指定を外部から受付けてもよい。例えば、プラズマ処理装置1は、ユーザインターフェース75Bから空芯コイル104(1)の各々の巻線ギャップの指定を受付け、プロセスコントローラ75Aが、指定された巻線ギャップとなるように、各可動子120を移動させる動力部を制御してもよい。また、例えば、プラズマ処理装置1は、空芯コイル104(1)の各々の巻線ギャップを示すギャップ情報を記憶部75Cに記憶する。例えば、プラズマ処理装置1は、ギャップ情報として、図6に示した「標準」、「密1」〜「密6」、「粗1」〜「粗6」のようなパターンを記憶する。プラズマ処理装置1は、ユーザインターフェース75Bから巻線ギャップのパターンの指定を受付け、プロセスコントローラ75Aが、指定されたパターンの巻線ギャップとなるように、各可動子120を移動させる動力部を制御して各可動子120を移動させてもよい。
また、プラズマ処理装置1は、ノイズを減衰または阻止するように、空芯コイル104(1)の各々の巻線ギャップを自動で変更してもよい。プラズマ処理装置1は、機種やサセプタ12に印加される高周波の周波数などによって、給電導体52(IN),52(OUT)に発生のノイズの周波数が異なるが、それぞれ発生する周波数が定まっている。プラズマ処理装置1は、ノイズの周波数、または、サセプタ12に印加される交流電力の周波数に対応して、ノイズを減衰または阻止に適した並列共振周波数が生じるコイルの各々の巻線ギャップを示すギャップ情報を記憶部75Cに記憶する。例えば、プラズマ処理装置1は、ギャップ情報として、ノイズの周波数、または、サセプタ12に印加される第1の高周波電源28および第2の高周波電源30の高周波の周波数の組み合わせに対応して、空芯コイル104(1)の各々の巻線ギャップを記憶する。空芯コイル104(1)の各々の巻線ギャップは、図6に示した「標準」、「密1」〜「密6」、「粗1」〜「粗6」のようなパターンとして記憶してもよい。プロセスコントローラ75Aは、ギャップ情報に基づき、ノイズの周波数、または、サセプタ12に印加される高周波の周波数の組み合わせに対応した巻線ギャップとなるように各可動子120を移動させる動力部を制御して各可動子120を移動させてもよい。プラズマ処理装置1は、給電導体52(IN),52(OUT)に発生のノイズを実際に測定してノイズの周波数を求めてもよい。また、プラズマ処理装置1は、サセプタ12に印加される交流電力の周波数等から演算によりノイズの周波数を求めてもよい。また、プラズマ処理装置1は、サセプタ12に印加される交流電力の周波数等に対応して予めノイズの周波数を記憶させてもよい。例えば、プラズマ処理装置1は、第1の高周波電源28および第2の高周波電源30の高周波の周波数の組み合わせごとに、発生するノイズの周波数を記憶部75Cに記憶してもよい。また、プラズマ処理装置1は、例えば、プラズマ処理においてサセプタ12に印加される交流電力の周波数が変更されるタイミングなど、フィルタ102(1)の特性の変更するタイミングを示すタイミング情報と、変更する特性に応じたコイルの各々の巻線ギャップを示すギャップ情報を記憶部75Cに記憶する。プロセスコントローラ75Aは、タイミング情報により示される変更タイミングで、ギャップ情報に基づき、各可動子120を移動させる動力部を制御して各可動子120を移動させてもよい。
このように、本実施形態に係るプラズマ処理装置1は、各可動子120を移動させることで、フィルタ102(1)を作り直すことなくノイズに対するフィルタ102(1)の特性を動的に変更できる。これにより、プラズマ処理装置1は、プラズマ処理ごと、あるいは、プラズマ処理中に、フィルタ102(1)の特性を動的に変更することもできる。例えば、プラズマ処理装置1は、プラズマ処理中に、サセプタ12に印加する高周波の周波数が変化し、発生するノイズの周波数が変化するものとする。この場合でも、プラズマ処理装置1は、ノイズを減衰または阻止するように、フィルタ102(1)の特性をプラズマ処理中に変更することができる。
[効果]
以上説明したように、本実施形態に係るプラズマ処理装置1は、プラズマ処理が行われるチャンバ10内の内側発熱線40(IN)および外側発熱線40に、内側発熱線40(IN)および外側発熱線40(OUT)を介して電気的に接続されるヒータ電源58(IN),58(OUT)を有する。プラズマ処理装置1は、内側発熱線40(IN)および外側発熱線40からヒータ電源58(IN),58(OUT)に向かって内側発熱線40(IN)および外側発熱線40(OUT)に入ってくるノイズを、内側発熱線40(IN)および外側発熱線40(OUT)上に設けたフィルタ102によって減衰または阻止している。フィルタ102は、空芯コイル104(1)と、外導体110と、可動子120とを有する。空芯コイル104は、一定の口径と一定のコイル長を有する。外導体110は、筒形とされ、空芯コイル104(1)を収容または包囲し、空芯コイル104(1)と組み合わさって複数の周波数で並列共振をなす分布定数線路を形成する。可動子120は、フィルタ102(1)の周波数−インピーダンス特性において特定の1つまたは複数の並列共振周波数に高いまたは低い周波数領域側へシフトが生じる1つまたは複数の有効区間内に配置され、空芯コイル104(1)の各々の巻線ギャップを変更する。これにより、プラズマ処理装置1は、ノイズの周波数毎にフィルタを作り直す手間を軽減できる。
また、本実施形態に係るプラズマ処理装置1は、可動子120が、空芯コイル104(1)の巻線のターンごとに、それぞれ隣接するターンに対して巻線の周方向に対する配置位置を変えて設けられている。これにより、プラズマ処理装置1は、空芯コイル104(1)の巻線のターンごとに可動子120の配置する場合に、ターンごとに、空芯コイル104(1)の軸方向に対して、可動子120の配置可能な空間を広く確保できる。
また、本実施形態に係るプラズマ処理装置1は、可動子120を絶縁材質で形成している。これにより、プラズマ処理装置1は、空芯コイル104(1)周辺の電界の乱れ、および、高周波による自己発熱を抑えることができる。
また、本実施形態に係るプラズマ処理装置1は、可動子120が空芯コイル104(1)のターンごとに、空芯コイル104(1)の周方向に対して所定の角度差で複数設けられ、ターンごとに同期して巻線ギャップを変更する動作を行う。これにより、プラズマ処理装置1は、ターンごとに巻線ギャップを変更できる。
また、本実施形態に係るプラズマ処理装置1は、可動子120が空芯コイル104(1)のターンごとに、空芯コイル104(1)の周方向に対して180°の角度差で2つ設けられている。これにより、プラズマ処理装置1は、ターンごとに巻線ギャップを精度よく制御できる。
また、本実施形態に係るプラズマ処理装置1は、可動子120へ動力を伝達する動力伝達部が、セラミック系またはガラス系の材料で形成されている。これにより、プラズマ処理装置1は、空芯コイル104(1)の発熱や自己誘導熱の位置精度への影響を抑制できる。
また、本実施形態に係るプラズマ処理装置1は、空芯コイル104(1)の軸方向に移動する直動機構を介して、可動子の位置の検出可能な動力部が接続されている。これにより、プラズマ処理装置1は、動力部により、可動子120を動作させる共に、可動子の位置の検出できる。
また、本実施形態に係るプラズマ処理装置1は、ノイズの周波数、または、プラズマ処理で印加される交流電力の周波数に対応して、ノイズを減衰または阻止に適した並列共振周波数が生じる空芯コイル104(1)の各々の巻線ギャップを示すギャップ情報を記憶部75Cに記憶する。プラズマ処理装置1は、プロセスコントローラ75Aが、記憶部75Cに記憶されたギャップ情報に基づき、線路に入るノイズの周波数、または、プラズマ処理で印加される交流電力の周波数に対応した巻線ギャップとなるように可動子120を制御する。これにより、プラズマ処理装置1は、発生するノイズの周波数が変わる場合でも、ノイズを減衰または阻止できる。
[他の実施形態または変形例]
上記の実施形態では、ヒータ給電線等の電源線用のフィルタに本発明を適用した場合を例に説明した。しかし、本発明は、ヒータ給電線等の電源線用のフィルタに限定されるものでは決してなく、チャンバ内に設けられる所定の電気的部材とチャンバの外に設けられる電力系または信号系の外部回路とを電気的に接続する一対の線路または単一の線路上に設けられる任意のフィルタまたは伝送回路に適用可能である。
特に、実施形態のプラズマ処理装置1は、共振周波数の調整を必要とする他の任意のコイルに対しても、上記と同様の可動子120を装着することで、共振周波数の左シフト調整または右シフト調整を行うことができる。たとえば、高周波電源28,30とチャンバ10内のサセプタ12との間の高周波給電ライン上にノイズを減衰または阻止するフィルタを設ける場合、当該フィルタに本発明を適用してもよい。また、高周波電源28,30とチャンバ10内のサセプタ12との間の高周波給電ライン上に、高周波電源とプラズマ負荷との間でインピーダンスの整合をとるための整合回路に本発明を適用してもよい。
上記実施形態は、空芯コイル104(1)の巻線の各ターンに可動子120を設けた場合を例に説明したが、これに限定されるものではない。可動子120は、シフトさせる次数の並列共振周波数に対して有効区間内となる巻線のターンにのみ設けてもよい。また、可動子120は、有効区間内の巻線の各ターンに必ずしも設けなくてもよい。例えば、可動子120は、有効区間の両端となる巻線のターンにそれぞれ設けてもよい。これにより、巻線に配置する可動子120の数を減らずことができる。
上記実施形態は、チャンバ10内のサセプタ12にプラズマ生成用の第1高周波HFとイオン引き込み用の第2高周波LFとを重畳して印加する下部2周波印加方式の容量結合型プラズマエッチング装置において、サセプタ12に組み込まれる発熱体40とチャンバ10の外に設置されるヒータ電源58とを電気的に接続する一対の給電ライン100(1),ライン100(2)上に両周波数のノイズを減衰させるためのフィルタに係わるものであった。しかしながら、上部電極として機能するシャワーヘッド64にプラズマ生成用の第1高周波HFを印加し、サセプタ12にイオン引き込み用の第2高周波LFを印加する上下部2周波印加方式の容量結合型プラズマエッチング装置、あるいはサセプタ12に単一の高周波を印加する下部1周波印加方式の容量結合型プラズマエッチング装置においても、上記実施形態のフィルタまたはフィルタユニットをそのまま好適に適用することができる。
本発明は、容量結合型のプラズマエッチング装置に限定されず、マイクロ波プラズマエッチング装置や、誘導結合プラズマエッチング装置、ヘリコン波プラズマエッチング装置等にも適用可能であり、さらにはプラズマCVD、プラズマ酸化、プラズマ窒化、スパッタリングなどの他のプラズマ処理装置にも適用可能である。また、本発明における被処理基板は半導体ウエハに限るものではなく、フラットパネルディスプレイ、有機EL、太陽電池用の各種基板や、フォトマスク、CD基板、プリント基板等も可能である。
1 プラズマ処理装置
10 チャンバ
12 サセプタ(下部電極)
28 (プラズマ生成用)高周波電源
30 (イオン引き込み用)高周波電源
40(IN) 内側発熱線
40(OUT) 外側発熱線
54(IN),54(OUT) フィルタユニット
58(IN),58(OUT) ヒータ電源
75 制御部
75A プロセスコントローラ
75B ユーザインターフェース
75C 記憶部
100(1),100(2) 給電ライン
102,102(1),102(2) フィルタ
104(1),104(2) 空芯コイル
106(1),106(2) コンデンサ
110 外導体
120 可動子

Claims (11)

  1. プラズマ処理が行われる処理容器内の所定の電気的部材に線路を介して電気的に接続される電力系または信号系の外部回路を有し、前記電気的部材から前記外部回路に向かって前記線路に入ってくるノイズを前記線路上に設けたフィルタによって減衰または阻止するプラズマ処理装置であって、
    前記フィルタが、
    一定の口径と一定のコイル長を有するコイルと、
    前記コイルを収容または包囲し、前記コイルと組み合わさって複数の周波数で並列共振をなす分布定数線路を形成する筒形の外導体と、
    前記コイルに対して前記コイルの長さ方向に存在する有効区間であって、前記コイルの巻線ギャップが変更されることで、前記フィルタの周波数−インピーダンス特性において特定の1つまたは複数の並列共振周波数に高いまたは低い周波数領域側へシフトが生じる1つまたは複数の前記有効区間内に配置され、前記コイルの巻線のターンごとに、それぞれ隣接するターンに対して巻線の周方向に対する配置位置を変えて設けられ、前記コイルの各々の巻線ギャップを変更する可動子と、
    を有することを特徴とするプラズマ処理装置。
  2. 前記可動子は、絶縁材質で形成されている
    ことを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記可動子は、前記コイルの巻線のターンごとに、巻線の周方向に対して所定の角度差で複数設けられ、ターンごとに同期して巻線ギャップを変更する動作を行う
    ことを特徴とする請求項1または2に記載のプラズマ処理装置。
  4. 前記可動子は、前記コイルの巻線のターンごとに、巻線の周方向に対して180°の角度差で2つ、または、巻線の周方向に対して120°の角度差で3つ設けられている
    ことを特徴とする請求項に記載のプラズマ処理装置。
  5. 前記可動子は、前記有効区間の両端となる巻線のターンにそれぞれ設けられている
    ことを特徴とする請求項1または2に記載のプラズマ処理装置。
  6. 前記可動子へ動力を伝達する動力伝達部は、セラミック系またはガラス系の材料で形成されている
    ことを特徴とする請求項1からの何れか1つに記載のプラズマ処理装置。
  7. 前記プラズマ処理装置は、
    前記可動子に直動機構を介して接続され、前記可動子を動作させる共に、前記可動子の位置の検出する動力部
    をさらに有することを特徴とする請求項1からの何れか1つに記載のプラズマ処理装置。
  8. 前記プラズマ処理装置は、
    前記ノイズの周波数、または、プラズマ処理で印加される交流電力の周波数に対応して、ノイズを減衰または阻止に適した並列共振周波数が生じる前記コイルの各々の巻線ギャップを示すギャップ情報を記憶した記憶部と、
    前記記憶部に記憶されたギャップ情報に基づき、前記線路に入るノイズの周波数、または、プラズマ処理で印加される交流電力の周波数に対応した巻線ギャップとなるように前記可動子を制御する制御部と、
    をさらに有することを特徴とする請求項1からの何れか1つに記載のプラズマ処理装置。
  9. 前記有効区間は、前記コイルにおいて、特定のN次(Nは自然数)の前記並列共振周波数に対してN個存在する
    ことを特徴とする請求項1からの何れか1つに記載のプラズマ処理装置。
  10. 前記電気的部材は、プラズマ処理のために所定周波数の高周波を印加される高周波電極の内部または周囲に設けられる発熱体であり、
    前記外部回路は、前記発熱体に発熱用の電力を供給するためのヒータ電源であり、
    前記線路は、前記ヒータ電源と前記発熱体とを電気的に接続する給電ラインである、
    ことを特徴とする請求項1からの何れか1つに記載のプラズマ処理装置。
  11. 前記電気的部材は、被処理基板を支持する載置台の中に設けられる高周波電極であり、
    前記外部回路は、前記高周波電極にプラズマ処理に用いる高周波を供給するための高周波電源を含み、
    前記線路上に、前記高周波電源とプラズマ負荷との間でインピーダンスの整合をとるための整合回路が設けられる、
    ことを特徴とする請求項1からの何れか1つに記載のプラズマ処理装置。
JP2017121699A 2017-06-21 2017-06-21 プラズマ処理装置 Active JP6832800B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2017121699A JP6832800B2 (ja) 2017-06-21 2017-06-21 プラズマ処理装置
US16/012,959 US11011347B2 (en) 2017-06-21 2018-06-20 Plasma processing apparatus
KR1020180070548A KR102580823B1 (ko) 2017-06-21 2018-06-20 플라즈마 처리 장치
TW107121379A TWI791541B (zh) 2017-06-21 2018-06-21 電漿處理裝置
CN202110199431.5A CN113013014A (zh) 2017-06-21 2018-06-21 等离子体处理装置、基板处理装置以及滤波器装置
TW112100131A TW202318477A (zh) 2017-06-21 2018-06-21 濾波器裝置、基板處理裝置及電漿處理裝置
CN201810645011.3A CN109104807B (zh) 2017-06-21 2018-06-21 等离子体处理装置
US17/322,241 US11735392B2 (en) 2017-06-21 2021-05-17 Plasma processing apparatus
KR1020230123191A KR20230136895A (ko) 2017-06-21 2023-09-15 플라즈마 처리 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121699A JP6832800B2 (ja) 2017-06-21 2017-06-21 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2019009193A JP2019009193A (ja) 2019-01-17
JP6832800B2 true JP6832800B2 (ja) 2021-02-24

Family

ID=64692784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121699A Active JP6832800B2 (ja) 2017-06-21 2017-06-21 プラズマ処理装置

Country Status (5)

Country Link
US (2) US11011347B2 (ja)
JP (1) JP6832800B2 (ja)
KR (2) KR102580823B1 (ja)
CN (2) CN109104807B (ja)
TW (2) TWI791541B (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
KR20210076154A (ko) 2018-11-09 2021-06-23 어플라이드 머티어리얼스, 인코포레이티드 프로세싱 챔버를 위한 라디오 주파수 필터 시스템
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
KR20210107716A (ko) 2019-01-22 2021-09-01 어플라이드 머티어리얼스, 인코포레이티드 펄스 전압 파형을 제어하기 위한 피드백 루프
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
JP6995073B2 (ja) * 2019-03-12 2022-01-14 株式会社Kokusai Electric 基板処理装置及び半導体装置の製造方法、プログラム
KR102183258B1 (ko) * 2019-04-18 2020-11-26 주식회사 티씨케이 SiC 소재 및 이의 제조방법
KR102278082B1 (ko) * 2019-05-22 2021-07-19 세메스 주식회사 필터 유닛과 그를 포함하는 기판 처리 장치 및 기판 처리 방법
US11239056B2 (en) * 2019-07-29 2022-02-01 Advanced Energy Industries, Inc. Multiplexed power generator output with channel offsets for pulsed driving of multiple loads
KR102593142B1 (ko) 2020-05-19 2023-10-25 세메스 주식회사 기판 처리 장치 및 그의 페라이트 코어 온도 제어 방법
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11361940B2 (en) * 2020-10-13 2022-06-14 Applied Materials, Inc. Push-pull power supply for multi-mesh processing chambers
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
CN112689376B (zh) * 2021-03-15 2021-06-18 四川大学 一种采用压电材料的微波等离子体射流激发装置
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570135A (en) * 1982-02-22 1986-02-11 Elmec Corporation Delay line
JPS6350108A (ja) * 1986-08-19 1988-03-03 Matsushita Electric Ind Co Ltd Lcフイルタ
JP2577599B2 (ja) * 1988-03-10 1997-02-05 ティーディーケイ株式会社 ラインフィルタの製造方法
JPH05175706A (ja) * 1991-12-20 1993-07-13 Murata Mfg Co Ltd 誘電体フィルタ及びその特性調整方法
JP2605752Y2 (ja) * 1992-06-01 2000-08-07 船井電機株式会社 Lcフィルタ
FR2747252A1 (fr) * 1996-04-03 1997-10-10 Philips Electronics Nv Appareil comprenant au moins un dispositif d'inductance reglable
JP2000133542A (ja) * 1998-10-23 2000-05-12 Sony Corp 可変インダクタ治具
JP2001160522A (ja) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp 空芯コイル及び空芯コイル付き回路基板の製造方法
KR200250402Y1 (ko) * 2001-06-18 2001-11-16 (주)창화디지트로닉스 고감도 자기 감응 장치
JP3846881B2 (ja) * 2003-04-04 2006-11-15 日本エー・エス・エム株式会社 プラズマ処理装置及びシリコン酸化膜を形成する方法
JP5007499B2 (ja) * 2005-10-21 2012-08-22 株式会社村田製作所 ノイズフィルタアレイ
US7777152B2 (en) * 2006-06-13 2010-08-17 Applied Materials, Inc. High AC current high RF power AC-RF decoupling filter for plasma reactor heated electrostatic chuck
WO2011082238A1 (en) * 2009-12-29 2011-07-07 Synventive Molding Solutions, Inc. Heating apparatus for fluid flow channel
US8883024B2 (en) * 2010-10-18 2014-11-11 Tokyo Electron Limited Using vacuum ultra-violet (VUV) data in radio frequency (RF) sources
CN102487572B (zh) * 2010-12-02 2015-06-24 理想能源设备(上海)有限公司 等离子加工装置
CN202231892U (zh) * 2011-09-14 2012-05-23 周久健 电感线圈位移式调节物料管加热的自动调温系统
CN202535319U (zh) * 2012-03-29 2012-11-14 东莞美信科技有限公司 网络信号滤波器
JP6001932B2 (ja) * 2012-06-19 2016-10-05 東京エレクトロン株式会社 プラズマ処理装置及びフィルタユニット
JP6081292B2 (ja) * 2012-10-19 2017-02-15 東京エレクトロン株式会社 プラズマ処理装置
JP2014090337A (ja) * 2012-10-30 2014-05-15 Hitachi Media Electoronics Co Ltd 帯域可変フィルタ
US9401264B2 (en) * 2013-10-01 2016-07-26 Lam Research Corporation Control of impedance of RF delivery path
JP5765400B2 (ja) * 2013-03-15 2015-08-19 Tdk株式会社 コモンモードフィルタ
JP6050722B2 (ja) * 2013-05-24 2016-12-21 東京エレクトロン株式会社 プラズマ処理装置及びフィルタユニット
JP6218650B2 (ja) 2014-03-11 2017-10-25 東京エレクトロン株式会社 プラズマ処理装置
JP6560909B2 (ja) * 2015-01-19 2019-08-14 株式会社日立ハイテクノロジーズ プラズマ処理方法およびプラズマ処理装置
JP2017101761A (ja) * 2015-12-03 2017-06-08 テクノエクセル株式会社 電磁弁制御装置および電磁弁システム
CN206040428U (zh) * 2016-07-11 2017-03-22 梅州市成就电子科技有限公司 一种贴片电感空芯线圈绕线装置

Also Published As

Publication number Publication date
KR20180138543A (ko) 2018-12-31
CN113013014A (zh) 2021-06-22
US11735392B2 (en) 2023-08-22
CN109104807A (zh) 2018-12-28
TW201906504A (zh) 2019-02-01
JP2019009193A (ja) 2019-01-17
TWI791541B (zh) 2023-02-11
US20210280385A1 (en) 2021-09-09
KR102580823B1 (ko) 2023-09-19
US20180374672A1 (en) 2018-12-27
TW202318477A (zh) 2023-05-01
US11011347B2 (en) 2021-05-18
CN109104807B (zh) 2021-03-05
KR20230136895A (ko) 2023-09-27

Similar Documents

Publication Publication Date Title
JP6832800B2 (ja) プラズマ処理装置
JP6027374B2 (ja) プラズマ処理装置及びフィルタユニット
TWI472267B (zh) Plasma processing device
JP5042661B2 (ja) プラズマ処理装置及びフィルタユニット
JP5643062B2 (ja) プラズマ処理装置
JP6050722B2 (ja) プラズマ処理装置及びフィルタユニット
JP6081292B2 (ja) プラズマ処理装置
WO2013190805A1 (ja) プラズマ処理装置及びフィルタユニット
JP6138581B2 (ja) プラズマ処理装置
JP5734353B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250