KR102580823B1 - 플라즈마 처리 장치 - Google Patents

플라즈마 처리 장치 Download PDF

Info

Publication number
KR102580823B1
KR102580823B1 KR1020180070548A KR20180070548A KR102580823B1 KR 102580823 B1 KR102580823 B1 KR 102580823B1 KR 1020180070548 A KR1020180070548 A KR 1020180070548A KR 20180070548 A KR20180070548 A KR 20180070548A KR 102580823 B1 KR102580823 B1 KR 102580823B1
Authority
KR
South Korea
Prior art keywords
coil
frequency
plasma processing
winding
processing device
Prior art date
Application number
KR1020180070548A
Other languages
English (en)
Other versions
KR20180138543A (ko
Inventor
다이스케 하야시
겐고 가네코
가츠유키 고이즈미
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20180138543A publication Critical patent/KR20180138543A/ko
Priority to KR1020230123191A priority Critical patent/KR20230136895A/ko
Application granted granted Critical
Publication of KR102580823B1 publication Critical patent/KR102580823B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32908Utilities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

플라즈마 처리 장치는 처리 용기 내의 소정의 전기적 부재에 선로를 통해서 전기적으로 접속되는 외부 회로와, 상기 전기적 부재로부터 상기 외부 회로를 향해서 상기 선로에 들어오는 노이즈를 감쇠 또는 저지하기 위해, 상기 선로 상에 마련된 필터를 포함한다. 상기 필터는, 일정한 구경과 일정한 코일 길이를 갖는 코일과, 상기 코일을 수용 또는 포위하고, 상기 코일과 조합해서 복수의 주파수로 병렬 공진을 이루는 분포 정수 선로를 형성하는 통형의 외측 도체와, 상기 코일에 대해서 상기 코일의 길이 방향으로 존재하는 유효 구간에 있어서, 상기 코일의 권선 갭이 변경됨으로써, 상기 필터의 주파수-임피던스 특성에 있어서 특정의 하나 또는 복수의 병렬 공진 주파수에 높은 또는 낮은 주파수 영역측으로 시프트가 생기는 1개 또는 복수의 상기 유효 구간 내에 배치되고, 상기 코일의 각각의 권선 갭을 변경하는 가동자를 갖는다.

Description

플라즈마 처리 장치{PLASMA PROCESSING APPARATUS}
본 발명의 여러 측면 및 실시 형태는 플라즈마 처리 장치에 관한 것이다.
종래부터, 반도체 웨이퍼 등의 피처리 기판에 대해서 플라즈마를 이용해서, 에칭 등의 플라즈마 처리를 행하는 플라즈마 처리 장치가 알려져 있다. 이러한 플라즈마 처리 장치는 피처리 기판을 탑재하는 탑재대에, 피처리 기판에 전열(傳熱)해서 소정 온도로 제어하는 온도 제어 기능을 갖고 있다. 이 온도 제어 기능으로서는, 탑재대에 통전에 의해 발열하는 발열체를 넣어, 발열체가 발생하는 주울 열을 제어하는 히터 방식이 많이 이용되고 있다.
그렇지만, 플라즈마 처리 장치는 히터 방식을 채용하면, 플라즈마를 생성하기 위해서 고주파 전원으로부터 탑재대에 인가되는 고주파의 일부가 노이즈로서 발열체로부터 히터 급전 라인으로 유입된다.
그래서, 본 출원인은 고주파의 노이즈를 감쇠 또는 저지하는 필터를 히터 급전 라인 상에 마련하는 기술을 특허문헌 1에 제안하고 있다. 이 필터는 공심 코일과, 공심 코일을 수용 또는 포위하는 통형(筒形)의 외측 도체와, 공심 코일의 각각의 권선 갭에 선택적으로 삽입되는 절연성의 콤 투스(comb tooth) 부재를 가진다. 필터의 공심 코일에는, 권선 갭을 변경함으로써, 주파수-임피던스 특성에 있어, 특정의 하나 또는 복수의 병렬 공진 주파수를 시프트시키는 유효 구간이 있다. 필터는, 차단 대상의 노이즈의 주파수에 대응한 병렬 공진 주파수를 얻을 수 있도록 공심 코일의 유효 구간에 권선 갭의 콤 투스(Comb tooth) 부재를 삽입하고 있다.
일본 공개 특허 공보 제 2015-173027 호
그렇지만, 플라즈마 처리 장치는 기종이나 탑재대에 인가되는 고주파의 주파수 등에 의해 노이즈의 주파수가 상이하다. 이 때문에, 특허문헌 1의 기술에서는, 각각의 노이즈의 주파수에 대응한 상이한 병렬 공진 주파수를 얻으려면, 권선 갭의 폭이 상이한 필터를 재구성할 필요가 있다.
본 발명의 일측면에 따른 플라즈마 처리 장치는 노이즈의 주파수마다 필터를 재구성하는 수고를 경감할 수 있는 필터를 구비한 플라즈마 처리 장치를 제공한다.
개시하는 플라즈마 처리 장치는, 하나의 실시 형태에 있어서, 플라즈마 처리가 행해지는 처리 용기 내의 소정의 전기적 부재에 선로를 거쳐서 전기적으로 접속되는 전력계 또는 신호계의 외부 회로를 갖고, 전기적 부재로부터 외부 회로를 향해 선로에 들어오는 노이즈를 선로 상에 마련한 필터에 의해 감쇠 또는 저지한다. 필터는 코일과, 통형의 외측 도체와, 가동자(可動子)를 갖는다. 코일은 일정한 구경과 일정한 코일 길이를 갖는다. 외측 도체는 코일을 수용 또는 포위하고, 코일과 조합되어 복수의 주파수에서 병렬 공진을 이루는 분포 정수 선로를 형성한다. 가동자는, 코일에 대해서 코일의 길이 방향으로 존재하는 유효 구간에 있어서, 코일의 권선 갭이 변경됨으로써, 필터의 주파수-임피던스 특성에 있어 특정의 하나 또는 복수의 병렬 공진 주파수에 높거나 낮은 주파수 영역 측으로 시프트가 생기는 하나 또는 복수의 유효 구간 내에 배치되고, 코일의 각각의 권선 갭을 변경한다.
개시하는 플라즈마 처리 장치의 일 형태에 따르면, 노이즈의 주파수마다 필터를 재구성하는 수고를 경감할 수 있다.
도 1은 플라즈마 처리 장치의 구성의 일례를 나타내는 도면이다.
도 2는 발열체의 구성의 일례를 나타내는 도면이다.
도 3은 서셉터에 전력을 공급하는 회로 구성의 일례를 나타내는 도면이다.
도 4는 공심 코일의 개략적인 구성의 일례를 나타내는 도면이다.
도 5는 공심 코일 부분을 위쪽에서 본 개략적인 구성의 일례를 나타내는 도면이다.
도 6은 권선 갭의 패턴의 일례를 나타내는 도면이다.
도 7a는 「밀(密 : dense) 1」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 7b는 「밀 2」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 7c는 「밀 3」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 7d는 「밀 4」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 7e는 「밀 5」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 7f는 「밀 6」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 8a는 「조(粗 : sparse) 1」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 8b는 「조 2」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 8c는 「조 3」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 8d는 「조 4」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 8e는 「조 5」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
도 8f는 「조 6」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다.
이하, 도면을 참조해서 본원의 플라즈마 처리 장치의 실시 형태에 대해 상세하게 설명한다. 또한, 각 도면에 있어서 동일 또는 상당한 부분에 대해서는 동일한 부호를 부여하고 한다. 또, 본 실시 형태에 의해 개시하는 발명이 한정되는 것은 아니다. 각 실시 형태는 처리 내용을 모순시키지 않는 범위에서 적절히 조합하는 것이 가능하다.
[플라즈마 처리 장치 전체의 구성]
도 1은 플라즈마 처리 장치의 구성의 일례를 나타내는 도면이다. 실시 형태에 따른 플라즈마 처리 장치(1)는 하부 2 주파 인가 방식의 용량 결합형 플라즈마 에칭 장치로서 구성되어 있고, 예를 들어 알루미늄 또는 스테인리스강 등의 금속제의 원통형의 챔버(처리 용기)(10)를 가지고 있다. 챔버(10)는 접지되어 있다.
챔버(10) 내에는, 피처리 기판으로서 예를 들어 반도체 웨이퍼(W)를 탑재하는 원판 형상의 서셉터(12)가 하부 전극으로서 수평으로 배치되어 있다. 이 서셉터(12)는 예를 들어 알루미늄으로 이루어지고, 챔버(10)의 바닥으로부터 수직 상방으로 연장하는 예를 들어 세라믹제의 절연성 하우징 형상 지지부(14)에 의해 비접지로 지지되어 있다. 챔버(10) 내에는, 절연성 하우징 형상 지지부(14)의 외주를 따라 챔버(10)의 바닥으로부터 수직 상방으로 연장하는 도전성의 하우징 형상 지지부(16)와 챔버(10)의 내벽의 사이에 환상의 배기로(18)가 형성되어 있다. 배기로(18)의 바닥에는, 배기구(20)가 마련되어 있다. 배기구(20)에는, 배기관(22)을 통해서 배기 장치(24)가 접속되어 있다. 배기 장치(24)는 터보 분자 펌프 등의 진공 펌프를 갖고 있고, 챔버(10) 내의 처리 공간을 소망의 진공도까지 감압할 수 있다. 챔버(10)의 측벽에는, 반도체 웨이퍼(W)의 반입출구를 개폐하는 게이트 밸브(26)가 부착되어 있다.
서셉터(12)에는, 제 1 및 제 2 고주파 전원(28, 30)이 매칭 유닛(32) 및 급전봉(34)을 통해서 전기적으로 접속되어 있다. 제 1 및 제 2 고주파 전원(28, 30)은 후술하는 제어부(75)로부터의 제어에 의해, 각각 공급하는 고주파 전력의 파워 및 주파수의 변경이 가능하게 되어 있다. 여기서, 제 1 고주파 전원(28)은 주로 플라즈마의 생성에 기여하는 소정 주파수(통상 27MHz 이상, 바람직하게는 60MHz 이상)의 제 1 고주파(HF)를 출력한다. 한편, 제 2 고주파 전원(30)은 주로 서셉터(12) 상의 반도체 웨이퍼(W)에 대한 이온의 인입에 기여하는 소정 주파수(통상 13MHz 이하)의 제 2 고주파(LF)를 출력한다. 매칭 유닛(32)에는, 제 1 및 제 2 고주파 전원(28, 30)과 플라즈마 부하의 사이에 임피던스의 정합을 취하기 위한 정합 회로가 수용되어 있다.
급전봉(34)은 소정의 외경을 갖는 원통형 또는 원 기둥형의 도체로 이루어지고, 또한 그 상단이 서셉터(12)의 하면 중심부에 접속되고, 그 하단이 매칭 유닛(32)에 접속되어 있다. 또, 챔버(10)의 저면과 매칭 유닛(32)의 사이에는, 급전봉(34)의 주위를 둘러싸는 원통형의 도체 커버(35)가 마련되어 있다.
서셉터(12)는 반도체 웨이퍼(W)보다 한 단계 큰 직경 또는 구경을 갖고 있다. 서셉터(12)의 상면은, 웨이퍼(W)와 대략 동일 형상(원형) 또한 대략 동일 사이즈의 웨이퍼 탑재부와, 웨이퍼 탑재부의 외측으로 연장하는 환상의 주변부로 구획되어 있다. 서셉터(12)는 웨이퍼 탑재부 위에 처리 대상의 반도체 웨이퍼(W)가 탑재된다. 환상 주변부 위에는, 반도체 웨이퍼(W)의 구경보다 큰 내경을 갖는 링 형상의 포커스 링(36)이 부착된다. 포커스 링(36)은 반도체 웨이퍼(W)의 피에칭재에 따라서, 예를 들어 Si, SiC, C, SiO2 중 어느 하나의 재질로 구성되어 있다.
서셉터(12) 상면의 웨이퍼 탑재부에는, 웨이퍼 흡착용의 정전 척(38) 및 발열체(40)가 마련되어 있다. 정전 척(38)은 서셉터(12)의 상면에 일체로 형성 또는 일체로 고착된 막 형상 또는 판 형상의 유전체(42) 내에 DC 전극(44)이 봉입되어 있다. DC 전극(44)은 챔버(10)의 밖에 배치되는 외부 부착의 직류 전원(45)이 스위치(46), 고저항값의 저항(48) 및 DC 고압선(50)을 통해서 전기적으로 접속되어 있다. 정전 척(38)은 직류 전원(45)으로부터의 고압의 직류 전압이 DC 전극(44)에 인가됨으로써, 정전력으로 반도체 웨이퍼(W)를 흡착 유지한다. 또한, DC 고압선(50)은 피복선이며, 원통체의 급전봉(34) 내를 지나, 서셉터(12)를 아래로부터 관통해서 정전 척(38)의 DC 전극(44)에 접속되어 있다.
발열체(40)는 정전 척(38)의 DC 전극(44)과 함께 유전체(42) 내에 봉입된 예를 들면 스파이럴 형상의 저항 발열선으로 이루어진다. 도 2는 발열체의 구성의 일례를 나타내는 도면이다. 본 실시 형태에서는, 발열체(40)는 서셉터(12)의 반경 방향에 있어서 내측 발열선(40(IN))과 외측 발열선(40(OUT))으로 2분할되어 있다. 내측 발열선(40(IN))은 절연 피복된 급전 도체(52(IN)), 필터 유닛(54(IN)) 및 전기 케이블(56(IN))을 통해서, 챔버(10)의 밖에 배치되는 전용의 히터 전원(58(IN))에 전기적으로 접속되어 있다. 외측 발열선(40(OUT))은 절연 피복된 급전 도체(52(OUT)), 필터 유닛(54(OUT)) 및 전기 케이블(56)(OUT)을 통해서, 챔버(10)의 밖에 배치되는 전용의 히터 전원(58(OUT))에 전기적으로 접속되어 있다. 필터 유닛(54(IN)) 및 (54(OUT))는 이 실시 형태에 있어서의 주요 특징 부분이며, 그 내부의 구성 및 작용에 대해서는 나중에 상세하게 설명한다.
서셉터(12)의 내부에는, 예를 들어 원주 방향으로 연장하는 환상의 냉매 통로(60)가 마련되어 있다. 냉매 통로(60)에는, 칠러 유닛(도시하지 않음)으로부터 냉매 공급관을 거쳐서 소정 온도의 냉매 예를 들어 냉각수(cw)가 순환 공급된다. 플라즈마 처리 장치(1)는 순환 공급하는 냉매의 온도에 의해 서셉터(12)의 온도를 내리는 방향으로 제어 가능하게 되어 있다. 플라즈마 처리 장치(1)는 서셉터(12)에 반도체 웨이퍼(W)를 열적으로 결합시키기 위해서, 전열(傳熱) 가스 공급부(도시하지 않음)로부터의 전열 가스 예를 들어 He 가스가 가스 공급관 및 서셉터(12) 내부의 가스 통로(62)를 통해서 정전 척(38)과 반도체 웨이퍼(W)의 접촉 계면에 공급된다.
챔버(10)의 천정에는, 서셉터(12)와 평행하게 대향해서 상부 전극을 겸하는 샤워 헤드(64)가 마련되어 있다. 샤워 헤드(64)는 서셉터(12)와 대향하는 전극판(66)과, 전극판(66)을 상면측으로부터 착탈 가능하게 지지하는 전극 지지체(68)를 갖는다. 전극 지지체(68)의 내부에는, 가스실(70)이 마련되어 있다. 전극판(66) 및 전극 지지체(68)에는, 가스실(70)로부터 서셉터(12) 측으로 관통하는 다수의 가스 토출 구멍(72)이 형성되어 있다. 전극판(66)과 서셉터(12)의 사이의 공간(SP)이 플라즈마 생성 공간 내지 처리 공간으로 된다. 가스실(70)의 상부에 마련되는 가스 도입구(70a)에는, 처리 가스 공급부(74)로부터의 가스 공급관(76)이 접속되어 있다. 전극판(66)은 예를 들어 Si, SiC 혹은 C로 이루어진다. 전극 지지체(68)는 예를 들어 알루마이트 처리된 알루미늄으로 이루어진다.
상기 구성의 플라즈마 처리 장치(1)는 제어부(75)에 의해 동작이 통괄적으로 제어된다. 제어부(75)는 예를 들면, 컴퓨터이며, 플라즈마 처리 장치(1)의 각 부를 제어한다. 예를 들어, 제어부(75)는 배기 장치(24), 고주파 전원(28, 30), 직류 전원(45)의 스위치(46), 히터 전원(58(IN), 58(OUT)), 칠러 유닛(도시하지 않음), 전열 가스 공급부(도시하지 않음) 및 처리 가스 공급부(74) 등을 제어한다. 제어부(75)는 CPU를 구비하는 플라즈마 처리 장치(1)의 각 부를 제어하는 프로세스 콘트롤러(75A)와, 유저 인터페이스(75B)와, 기억부(75C)가 마련되어 있다.
유저 인터페이스(75B)는 공정 관리자가 플라즈마 처리 장치(1)를 관리하기 위해서 커멘드의 입력 조작을 행하는 키보드나, 플라즈마 처리 장치(1)의 가동 상황을 가시화해서 표시하는 디스플레이 등으로 구성되어 있다.
기억부(75C)에는, 플라즈마 처리 장치(1)에서 실행되는 각종 처리를 프로세스 콘트롤러(75A)의 제어로 실현시키기 위한 제어 프로그램(소프트웨어)이나 처리 조건 데이터 등이 기억된 레시피가 저장되어 있다. 또한, 제어 프로그램이나 처리 조건 데이터 등의 레시피는 컴퓨터로 판독 가능한 컴퓨터 기억 매체(예를 들면, 하드 디스크, CD, 플렉시블 디스크, 반도체 메모리 등) 등에 저장된 상태의 것을 이용하거나 또는 다른 장치로부터 예를 들면 전용 회선을 통해서 수시 전송시켜 온라인으로 사용하는 것도 가능하다.
프로세스 콘트롤러(75A)는 기억부(75C)에 기억된 제어 프로그램을 판독해서 실행함으로써, 플라즈마 처리 장치(1)에 있어서 소망의 처리를 실행한다. 예를 들면, 프로세스 콘트롤러(75A)는 레시피를 기억부(75C)로부터 호출하고, 레시피에 근거해서 플라즈마 처리를 실행함으로써, 에칭을 행한다.
플라즈마 처리 장치(1)에서는, 에칭을 행하는 경우, 먼저 게이트 밸브(26)를 개방 상태로 해서 가공 대상의 반도체 웨이퍼(W)를 챔버(10) 내에 반입해서, 정전 척(38) 위에 탑재한다. 그리고, 플라즈마 처리 장치(1)에서는, 처리 가스 공급부(74)로부터 에칭 가스(일반적으로 혼합 가스)를 소정의 유량으로 챔버(10) 내에 도입하고, 배기 장치(24)에 의해 챔버(10) 내의 압력을 설정치로 한다. 또한, 플라즈마 처리 장치(1)에서는, 제 1 및 제 2 고주파 전원(28, 30)을 온으로 해서 제 1 고주파(HF) 및 제 2 고주파(LF)를 각각 소정의 파워로 출력시키고, 이들 고주파(HF, LF)를 매칭 유닛(32) 및 급전봉(34)을 통해서 서셉터(하부 전극)(12)에 인가한다. 또, 플라즈마 처리 장치(1)에서는, 전열 가스 공급부로부터 정전 척(38)과 반도체 웨이퍼(W)의 사이의 접촉 계면에 전열 가스(He 가스)를 공급함과 아울러, 정전 척용의 스위치(46)를 온으로 해서, 정전 흡착력에 의해 전열 가스를 상기 접촉 계면에 가둔다. 한편, 플라즈마 처리 장치(1)에서는, 히터 전원(58(IN), 58(OUT))을 온으로 해서, 내측 발열체(40)(IN) 및 외측 발열체(40(OUT))를 각각 독립한 주울 열로 발열시켜, 서셉터(12) 상면의 온도 내지 온도 분포를 설정치로 제어한다. 플라즈마 처리 장치(1)에서는, 샤워 헤드(64)로부터 토출된 에칭 가스는 하부 전극으로서 기능하는 서셉터(12)와 상부 전극으로서 기능하는 샤워 헤드(64)의 사이에 고주파의 방전에 의해 플라즈마화하고, 이 플라즈마로 생성되는 라디칼이나 이온에 의해 반도체 웨이퍼(W) 표면의 피가공막이 소망의 패턴으로 에칭된다.
그런데, 플라즈마 처리 장치(1)에서는, 플라즈마 에칭의 한창 중간에, 고주파 전원(28, 30)으로부터 서셉터(12)에 인가된 제 1 및 제 2 고주파(HF, LF)의 일부가 서셉터(12)에 매립되어 있는 내측 발열선(40(IN)) 및 외측 발열선(40(OUT))을 거쳐서 급전 도체(52(IN), 52(OUT))에 고주파의 노이즈로서 인입된다. 이 2 주파의 고주파의 노이즈 중 어느 것이라도 히터 전원(58(IN), 58(OUT))에 돌입하면, 히터 전원(58(IN), 58(OUT))은 동작 내지 성능이 해쳐질 우려가 있다.
이 점에 관해서는, 플라즈마 처리 장치(1)에서는, 히터 전원(58(IN), 58(OUT))과 내측 발열선(40(IN)) 및 외측 발열선(40(OUT))을 전기적으로 연결하는 히터 급전 라인 상에 필터 유닛(54(IN), 54(OUT))이 마련되어 있다. 이들 필터 유닛(54(IN), 54(OUT))은 이하에 상세히 설명하는 바와 같이, 내측 발열선(40(IN)) 및 외측 발열선(40(OUT))으로부터 히터 급전 라인 상에 들어오는 제 1 및 제 2 고주파(HF, LF)의 노이즈의 어느 것에 대해서도, 임피던스가 충분히 높은 필터 차단 기능을 저소비 전력으로 효율적으로 또한 안정적으로 확실히 발휘한다. 이것에 의해, 이 실시 형태의 플라즈마 에칭 장치는, 히터 방식의 웨이퍼 온도 제어 기능을 개선함과 아울러, 챔버(10)로부터 서셉터(12) 내부의 발열체(40)를 통해서 히터 급전 라인 상에 제 1 및 제 2 고주파(HF, LF)의 파워가 누설되는 것을 효과적으로 방지 또는 저감해서, 플라즈마 프로세스의 재현성·신뢰성을 향상시키고 있다.
[필터 유닛 내의 회로 구성]
다음으로, 필터 유닛(54(IN), 54(OUT)) 내의 회로 구성을 설명한다. 도 3은 서셉터에 전력을 공급하는 회로 구성의 일례를 나타내는 도면이다. 도 3에는, 서셉터(12)에 마련되는 발열체(40)에 전력을 공급하기 위한 히터 급전부의 개략적인 회로 구성이 도시되어 있다. 본 실시 형태에서는, 발열체(40)의 내측 발열선(40(IN)) 및 외측 발열선(40(OUT))의 각각에 대해서, 실질적으로 동일한 회로 구성을 갖는 개별의 히터 급전부를 접속하고, 내측 발열선(40(IN)) 및 외측 발열선(40(OUT))의 발열량 또는 발열 온도를 독립적으로 제어하고 있다. 외측 발열선(40(OUT)) 및 내측 발열선(40(IN))에 대한 히터 급전부는 실질적으로 동일한 회로 구성이기 때문에, 이하의 설명에서는, 내측 발열선(40(IN))에 대한 히터 급전부의 구성 및 작용에 대해 말한다. 외측 발열선(40(OUT))에 대한 히터 급전부의 구성 및 작용은 마찬가지이다.
히터 전원(58(IN))은 예를 들어 SSR를 이용해서 상용 주파수의 스위칭(ON/OFF) 동작을 행하는 교류 출력형의 전원이며, 내측 발열체(40)(IN)와 폐루프의 회로로 접속되어 있다. 보다 상세하게는, 히터 전원(58(IN))의 한 쌍의 출력 단자 중 제 1 출력 단자는 제 1 급전 라인(전원선)(100(1))을 통해서 내측 발열선(40(IN))의 제 1 단자(h1)에 전기적으로 접속되고, 제 2 출력 단자는 제 2 급전 라인(전원선)(100(2))을 통해서 내측 발열선(40(IN))의 제 2 단자(h2)에 전기적으로 접속되어 있다.
필터 유닛(54(IN))은 복수의 필터(102)가 마련되어 있다. 예를 들면, 필터 유닛(54(IN))은 제 1 급전 라인(100(1))의 도중에 필터(102(1))가 마련되고, 제 2 급전 라인(100(2))의 도중에 필터(102(2))가 마련되어 있다. 필터(102(1), 102(2))는 실질적으로 동일한 구성이다.
보다 자세하게는, 필터(102(1), 102(2))는 콘덴서(106(1), 106(2))를 통해서 접지된 공심 코일(104(1), 104(2))을 각각 갖고 있다. 공심 코일(104(1), 104(2))의 한쪽의 단자 또는 필터 단자(T(1), T(2))는 한 쌍의 급전 도체(52(IN))를 통해서 내측 발열선(40(IN))의 양 단자(h1, h2)에 각각 접속되어 있고, 공심 코일(104(1), 104(2))의 다른 쪽의 단자와 접지 전위의 도전성 부재(예를 들어 챔버(10))의 사이에 콘덴서(106(1), 106(2))가 각각 접속되어 있다. 그리고, 공심 코일(104(1), 104(2))과 콘덴서(106(1), 106(2))의 사이의 접속점(n(1), n(2))은 전기 케이블(페어 케이블)(56(IN))을 통해서 히터 전원(58(IN))의 제 1 및 제 2 출력 단자에 각각 접속되어 있다.
이러한 구성의 히터 급전부에 있어서, 히터 전원(58(IN))으로부터 출력되는 전류는 정(+) 극성의 사이클에서는, 제 1 급전 라인(100(1)), 즉 전기 케이블(56(IN)), 공심 코일(104(1)) 및 급전 도체(52(IN))를 통해서 한쪽의 단자(h1)로부터 내측 발열선(40(IN))에 들어가고, 내측 발열선(40(IN))의 각 부에서 통전에 의한 주울 열을 발생시킨다. 그 후, 전류는 다른 쪽의 단자(h2)로부터 나온 후, 제 2 급전 라인(100(2)), 즉 급전 도체(52(IN)), 공심 코일(104(2)) 및 전기 케이블(56(IN))을 통해서 귀환한다. 부(-) 극성의 사이클에서는, 동일 회로를 상기와 역방향으로 전류가 흐른다. 이 히터 교류 출력의 전류는 상용 주파수이기 때문에, 공심 코일(104(1), 104(2))의 임피던스 또는 그 전압 강하는 무시할 수 있을 만큼 작고, 또 콘덴서(106(1), 106(2))를 통해서 어스로 빠지는 누설 전류도 무시할 수 있을 만큼 적다.
필터 유닛(54(IN))은 필터(102(1))의 공심 코일(104(1))과, 필터(102(2))의 공심 코일(104(2))이 병렬로 각각 마련되어 있다. 공심 코일(104(1), 104(2))은 각각 일정한 구경과 일정한 코일 길이를 갖는 코일로 되어 있다. 예를 들면, 공심 코일(104(1), 104(2))은 전선 또는 코일 도체를 원통형에 감은 철심이 없는 솔레노이드 코일이며, 히터 전원(58(IN))으로부터 내측 발열선(40(IN))에 충분히 큰(예를 들어 30A 정도의) 전류를 흘리는 급전선의 기능에 더해서, 발열(파워 로스)을 막는 관점에서 페라이트 등의 자심을 갖지 않고 공심으로 매우 큰 인덕턴스를 얻기 위해서, 또한 큰 선로 길이를 얻기 위해서, 굵은 코일선 또는 코일 도체와 큰 코일 사이즈(예를 들어, 직경이 22~45mm, 길이 130~280mm)를 갖고 있다. 공심 코일(104(1)) 및 공심 코일(104(2))은 각각 개별적으로 외측 도체(110)에 수용되어 있다. 필터(102(1), 102(2))는 공심 코일(104(1), 104(2))의 권선 갭을 각각 변경 가능하게 구성되어 있다. 필터(102(1), 102(2))는 실질적으로 동일한 구성이기 때문에, 이하의 설명에서는, 공심 코일(104(1))에 관한 구성 및 작용에 대해 설명한다. 공심 코일(104(2))에 관한 구성 및 작용은 마찬가지이다.
도 4는 공심 코일의 개략적인 구성의 일례를 나타내는 도면이다. 도 4에는, 필터(102(1))의 공심 코일(104(1))의 코일이 4턴분이 도시되어 있다. 또한, 공심 코일(104(1))의 권수는 4 턴으로 한정되는 것은 아니다.
공심 코일(104(1))에는, 코일의 권선의 턴마다, 복수의 가동자(120)가 마련되어 있다. 실시 형태에 따른 공심 코일(104(1))에는, 코일의 권선의 턴마다 2개의 가동자(120)가 마련되어 있다. 도 4에서는, 코일의 권선의 각 턴에 마련된 각각의 가동자(120)의 부호에 대해서, 턴수를 나타내는 숫자를 (턴수)로서 부여하고 있다. 예를 들면, 가동자(120(1))는 코일의 권선의 1턴째에 마련된 가동자(120)이다. 가동자(120)는 공심 코일(104(1)) 주변의 전계의 산란 및 고주파에 의한 자기 발열을 억제하기 위해서, 절연 재질로 형성하는 것이 바람직하다. 가동자(120)에 사용 가능한 절연 재질로서는, 예를 들면, 수지, 세라믹계, 유리계의 부재를 들 수 있다.
가동자(120)는 공심 코일(104(1)) 측에 권선의 굵기에 대응한 오목부(121)가 형성되어 있고, 오목부(121)에 공심 코일(104(1))의 권선이 끼워 넣어져 있다. 가동자(120)는 공심 코일(104(1))의 축 방향에 대해서 각각 개별적으로 이동 가능하게 되어 있다. 가동자(120)에는, 동력을 전달하는 동력 전달부가 마련되어 있다. 동력 전달부는 선팽창 계수가 낮은 재료로 형성하는 것이 바람직하다. 예를 들면, 동력 전달부는 세라믹계 또는 유리계의 재료로 형성되어 있다. 동력 전달부는 공심 코일(104(1))의 축 방향으로 이동하는 직동 기구(linear motion mechanism)를 통해서 모터 등의 동력부(도시 생략)에 접속되고, 동력부의 동력에 의해 축 방향으로 이동한다. 동력부는 가동자를 동작시킴과 아울러, 가동자의 위치의 검출이 가능하게 되어 있다. 예를 들면, 동력부는 스텝 모터 또는 서보 모터로 되어 있고, 프로세스 콘트롤러(75A)로부터의 제어에 의해 지정된 각도만큼 회전함과 아울러, 회전한 회전 각도를 프로세스 콘트롤러(75A)에 피드백한다. 프로세스 콘트롤러(75A)는 피드백되는 모터의 회전 각도로부터 가동자의 위치를 검출한다.
필터(102(1))에서는, 프로세스 콘트롤러(75A)의 제어에 근거해서, 각 가동자(120)가 이동함으로써, 공심 코일(104(1))의 권선 갭이 변경 가능하게 되어 있다.
도 5는 공심 코일 부분을 상방에서 본 개략적인 구성의 일례를 나타내는 도면이다. 공심 코일(104(1))에는, 코일의 권선의 턴마다, 권선의 둘레 방향에 대해서 180°의 각도 차로 2개의 가동자(120)가 마련되어 있다. 또, 공심 코일(104(1))에는, 코일의 권선의 턴마다, 각각 인접하는 턴에 대해서 권선의 둘레 방향에 대한 배치 위치를 변경해서 2개의 가동자(120)가 마련되어 있다. 도 5의 예에서는, 2개의 가동자(120(1), 120(2), 120(3), 120(4))가 각각 180°의 각도 차로 마련되어 있다. 또, 가동자(120(1), 120(2), 120(3), 120(4))가 둘레 방향에 대한 배치 위치를 45°씩 차례로 변경해서 마련되어 있다. 도 5의 예에서는, 1 턴째로부터 4 턴째의 4 턴분의 배치를 나타냈지만, 5 턴째 이후도 마찬가지의 배치를 반복해서 배치한다. 예를 들면, 5 턴째의 가동자(120)는 1 턴째의 가동자(120)와 마찬가지로 배치 위치에 배치한다. 또한, 도 4 및 도 5에서는, 공심 코일(104(1))에 대해서, 턴마다 가동자(120)를 권선의 둘레 방향에 대해서 180°의 각도 차로 2개 마련한 경우를 예시했다. 그러나, 턴마다 마련하는 가동자(120)의 수, 각도 차는 이것으로 한정되는 것은 아니다. 예를 들면, 공심 코일(104(1))에 대해서, 턴마다 가동자(120)를 권선의 둘레 방향에 대해서 120°의 각도 차로 3개 마련해도 좋다.
공심 코일(104(1))의 주위에는, 외측 도체(110)가 마련되어 있다. 외측 도체(110)는 예를 들어 알루미늄으로 이루어지고, 원통형으로 구성되어 있다. 공심 코일(104(1))은 외측 도체(110) 내에 동축으로 수용되어 있다. 외측 도체(110)는 공심 코일(104(1))과 조합해서 복수의 주파수로 병렬 공진을 이루는 분포 정수 선로를 형성한다.
일반적으로, 전송 선로의 특성 임피던스(Zo)는 무손실의 경우에는 단위 길이당 정전 용량(C), 인덕턴스(L)를 이용해서, Zo=√(L/C)로 주어진다. 또, 파장(λ)은 다음의 식 (1)로 주어진다.
λ=2π/(ω√(LC)····(1)
일반적인 분포 정수 선로(특히 동축 선로)에서는 선로의 중심이 봉 형상의 원통 도체인 것에 대해, 이 필터 유닛(54(IN))에서는, 원통형의 공심 코일을 중심 도체로 하고 있다는 점이 상이하다. 단위 길이당 인덕턴스(L)는 주로 이 원통형 코일에 기인하는 인덕턴스가 지배적으로 된다고 생각된다. 한편, 단위 길이당의 정전 용량은 코일 표면과 외측 도체가 이루는 콘덴서의 정전 용량(C)으로 규정된다. 따라서, 이 필터 유닛(54(IN))에 있어서도, 단위 길이당 인덕턴스 및 정전 용량을 각각 L, C로 했을 때에, 특성 임피던스 Zo=√(L/C)로 주어지는 분포 정수 선로가 형성되고 있다고 생각할 수 있다.
이러한 분포 정수 선로를 갖는 필터 유닛을 단자 T측에서 보면, 반대측이 큰 용량(예를 들어 5000pF)을 갖는 콘덴서로 의사적으로 단락되어 있기 때문에, 일정한 주파수 간격으로 큰 임피던스를 반복하도록 한 주파수-임피던스 특성이 얻어진다. 이러한 임피던스 특성은 파장과 분포 선로 길이가 동등할 때에 얻어진다.
이 필터 유닛(54(IN))에서는, 공심 코일(104(1), 104(2))의 코일 길이가 아니고, 축 방향의 코일의 길이가 분포 선로 길이로 된다. 그리고, 중심 도체에 공심 코일(104(1), 104(2))을 이용함으로써, 봉 형상의 원통 도체의 경우에 비해 L를 훨씬 크게 해서 λ를 작게 할 수 있기 때문에, 비교적 짧은 선로 길이(코일의 길이)이면서 파장과 동등 이상의 실효 길이를 실현하는 것이 가능하고, 비교적 짧은 주파수 간격으로 큰 임피던스를 갖는 것을 반복하도록 한 임피던스 특성을 얻을 수 있다.
또한, 본 출원인이 특허문헌 1에 개시한 바와 같이, 필터 유닛(54(IN))에서는, 공심 코일(104(1))의 권선 갭을 변경함으로써, 주파수-임피던스 특성에 있어서, 피크로 되는 병렬 공진 주파수를 시프트시킬 수 있다. 또, 공심 코일(104(1))에는, 주파수-임피던스 특성에 있어서, 피크로 되는 특정의 하나 또는 복수의 병렬 공진 주파수를 시프트시키는 유효 구간이 있다.
여기서, 권선 갭을 변경하는 것에 의한 병렬 공진 주파수의 변화를 설명한다. 도 6은 권선 갭의 패턴의 일례를 나타내는 도면이다. 필터(102(1))는 공심 코일(104(1))이 22 턴의 권선의 코일인 것으로 하고, 각 권선 간의 간격(권선 갭)을 개별적으로 변경 가능한 것으로 한다. 도 6의 「턴 번호」는 코일의 위치를 턴수로 나타내고 있다. 도 6에서는, 각 패턴의 권선간의 간격을, 간격의 양단이 되는 2개의 코일 중, 턴수가 적은 쪽의 권선의 턴 번호에 대응시켜 나타내고 있다. 예를 들면, 턴 번호의 「1」에는, 1 턴째과 2 턴째의 권선간의 간격을 나타낸다. 또, 턴 번호의 「21」은 21 턴째과 22 턴째의 권선간의 간격을 나타낸다. 「합계 길이」는 공심 코일(104(1))의 축 방향의 코일의 길이를 나타내고 있다. 또, 도 6에는, 권선 갭의 변경하는 패턴 「표준」, 「조밀(密 : dense) 1」~ 「밀 6」, 「조(粗 : sparse) 1」~ 「조 6」이 도시되어 있다. 「표준」은 표준으로 하는 권선간의 간격을 나타내고 있다. 도 6의 예에서는, 공심 코일(104(1))의 22 턴에 대해, 각각 코일의 간격이 11mm인 경우를 표준으로 하고 있다. 「표준」에서는, 코일의 길이가 231mm로 된다. 「밀 1」~ 「밀 6」, 「조 1」~ 「조 6」은 각각 일부 또는 전부의 권선간의 간격을 변경한 경우를 나타내고 있다.
예를 들면, 「밀 1」에서는, 턴 번호가 「1」~ 「6」, 「16」~ 「21」의 권선간의 간격을 12.5mm로 하고, 턴 번호가 「7」~ 「15」의 권선간의 간격을 9mm로 한다. 「밀 1」에서는, 코일의 길이가 231mm로 된다.
「밀 2」에서는, 턴 번호가 「1」~ 「4」, 「10」~ 「12」, 「18」~ 「21」의 권선간의 간격을 12.5mm로 하고, 턴 번호가 「9」, 「13」의 권선간의 간격을 11.5mm로 하고, 턴 번호가 「5」~ 「8」, 「14」~ 「17」의 권선간의 간격을 9mm로 한다. 「밀 2」에서는, 코일의 길이가 233mm로 된다.
「밀 3」에서는, 턴 번호가 「1」, 「2」, 「6」~ 「9」, 「13」~ 「16」, 「20」, 「21」의 권선간의 간격을 12.5mm로 하고, 턴 번호가 「3」~ 「5」, 「10」~ 「12」, 「17」~ 「19」의 권선간의 간격을 9mm로 한다. 「밀 3」에서는, 코일의 길이가 231mm로 된다.
「밀 4」에서는, 턴 번호가 「1」, 「2」, 「6」, 「7」, 「10」~ 「12」, 「15」, 「16」, 「20」, 「21」의 권선간의 간격을 12.5mm로 하고, 턴 번호가 「5」, 「17」의 권선간의 간격을 11.5mm로 하고, 턴 번호가 「3」, 「4」, 「8」, 「9」, 「13」, 「14」, 「18」, 「19」의 권선간의 간격을 9mm로 한다. 「밀 4」에서는, 코일의 길이가 233mm로 된다.
「밀 5」에서는, 턴 번호가 「1」, 「4」, 「5」, 「8」~ 「10」, 「12」~ 「14」, 「17」, 「18」, 「21」의 권선간의 간격을 12.5mm로 하고, 턴 번호가 「2」, 「3」, 「6」, 「7」, 「11」, 「15」, 「16」, 「19」, 「20」인 권선간의 간격을 9mm로 한다. 「밀 5」에서는, 코일의 길이가 231mm로 된다.
「밀 6」에서는, 턴 번호가 「1」, 「3」, 「4」, 「7」, 「8」, 「11」, 「14」, 「15」, 「18」, 「19」, 「21」인 권선간의 간격을 12.5mm로 하고, 턴 번호가 「5」, 「10」, 「12」, 「17」인 권선간의 간격을 10mm로 하고, 턴 번호가 「2」, 「6」, 「9」, 「13」, 「16」, 「20」인 권선간의 간격을 9mm로 한다. 「밀 6」에서는, 코일의 길이가 232mm로 된다.
「조 1」에서는, 턴 번호가 「1」~ 「6」, 「16」~ 「21」인 권선간의 간격을 9mm로 하고, 턴 번호가 「7」~ 「9」, 「13」~ 「15」인 권선간의 간격을 13.5mm로 하고, 턴 번호가 「10」~ 「12」인 권선간의 간격을 14.5mm로 한다. 「조 1」에서는, 코일의 길이가 233mm로 된다.
「조 2」에서는, 턴 번호가 「1」~ 「4」, 「9」~ 「13」, 「18」~ 「21」인 권선간의 간격을 9mm로 하고, 턴 번호가 「5」~ 「8」, 「14」~ 「17」인 권선간의 간격을 14.5mm로 한다. 「조 2」에서는, 코일의 길이가 233mm로 된다.
「조 3」에서는, 턴 번호가 「1」, 「2」, 「6」~ 「9」, 「13」~ 「16」, 「20」, 「21」인 권선간의 간격을 9mm로 하고, 턴 번호가 「3」, 「5」, 「10」, 「12」, 「17」, 「19」인 권선간의 간격을 13.5mm로 하고, 턴 번호가 「4」, 「11」, 「18」인 권선간의 간격을 14.5mm로 한다. 「조 3」에서는, 코일의 길이가 233mm로 된다.
「조 4」에서는, 턴 번호가 「1」, 「2」, 「5」~ 「7」, 「10」~ 「12」, 「15」~ 「17」, 「20」, 「21」인 권선간의 간격을 9mm로 하고, 턴 번호가 「3」, 「4」, 「8」, 「9」, 「13」, 「14」, 「18」, 「19」인 권선간의 간격을 14.5mm로 한다. 「조 4」에서는, 코일의 길이가 233mm로 된다.
「조 5」에서는, 턴 번호가 「1」, 「4」, 「5」, 「8」~ 「10」, 「12」~ 「14」, 「17」, 「18」, 「21」인 권선간의 간격을 9mm로 하고, 턴 번호가 「2」, 「3」, 「6」, 「7」, 「15」, 「16」, 「19」, 「20」인 권선간의 간격을 13.5mm로 하고, 턴 번호가 「11」인 권선간의 간격을 14.5mm로 한다. 「조 5」에서는, 코일의 길이가 231mm로 된다.
「조 6」에서는, 턴 번호가 「1」, 「3」, 「4」, 「7」, 「8」, 「10」~ 「12」, 「14」, 「15」, 「18」, 「19」, 「21」인 권선간의 간격을 9mm로 하고, 턴 번호가 「2」, 「5」, 「6」, 「9」, 「12」, 「16」, 「17」, 「20」인 권선간의 간격을 14.5mm로 한다. 「조 6」에서는, 코일의 길이가 233mm로 된다.
「밀 1」~ 「밀 6」의 패턴은, 「표준」의 패턴과 비교해서, 주파수-임피던스 특성에 있어서, 피크로 되는 1개 또는 복수의 병렬 공진 주파수가, 주파수가 높은 쪽으로 시프트한다. 「조 1」~ 「조 6」의 패턴은, 「표준」의 패턴과 비교해서, 주파수-임피던스 특성에 있어서, 피크로 되는 1개 또는 복수의 병렬 공진 주파수가, 주파수가 낮은 쪽으로 시프트한다.
병렬 공진 주파수의 시프트를 설명한다. 도 7a는 「밀 1」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 7a에는, 공심 코일(104(1))의 권선 갭을 「밀 1」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 7a에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 규칙적인 주파수 간격으로 임피던스가 각(뿔) 형상으로 피크로 되는 병렬 다중 공진의 주파수-임피던스 특성이 얻어진다. 또, 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「밀 1」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 2차의 공진 주파수가, 주파수가 높은 쪽으로 시프트한다.
도 7b는 「밀 2」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 7b에는, 공심 코일(104(1))의 권선 갭을 「밀 2」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 7b에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「밀 2」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 3차의 공진 주파수가, 주파수가 높은 쪽으로 시프트한다.
도 7c는 「밀 3」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 7c에는, 공심 코일(104(1))의 권선 갭을 「밀 3」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 7c에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「밀 3」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 4차의 공진 주파수가, 주파수가 높은 쪽으로 시프트한다.
도 7d는 「밀 4」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 7d에는, 공심 코일(104(1))의 권선 갭을 「밀 4」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 7d에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「밀 4」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 5차의 공진 주파수가, 주파수가 높은 쪽으로 시프트한다.
도 7e는 「밀 5」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 7e에는, 공심 코일(104(1))의 권선 갭을 「밀 5」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 7e에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「밀 5」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 6차의 공진 주파수가, 주파수가 높은 쪽으로 시프트한다.
도 7f는 「밀 6」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 7f에는, 공심 코일(104(1))의 권선 갭을 「밀 6」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 7f에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「밀 6」의 패턴에서는, 「표준」의 패턴과 비교해서, 7차의 공진 주파수가, 주파수가 높은 쪽으로 시프트한다.
도 8a는 「조 1」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 8a에는, 공심 코일(104(1))의 권선 갭을 「조 1」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 8a에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「조 1」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 2차의 공진 주파수가, 주파수가 낮은 쪽으로 시프트한다.
도 8b는 「조 2」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 8b에는, 공심 코일(104(1))의 권선 갭을 「조 2」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 8b에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「조 2」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 3차의 공진 주파수가, 주파수가 낮은 쪽으로 시프트한다.
도 8c는 「조 3」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 8c에는, 공심 코일(104(1))의 권선 갭을 「조 3」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 8c에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「조 3」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 4차의 공진 주파수가, 주파수가 낮은 쪽으로 시프트한다.
도 8d는 「조 4」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 8d에는, 공심 코일(104(1))의 권선 갭을 「조 4」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 8d에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「조 4」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 5차의 공진 주파수가, 주파수가 낮은 쪽으로 시프트한다.
도 8e는 「조 5」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 8e에는, 공심 코일(104(1))의 권선 갭을 「조 5」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 8e에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「조 5」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 6차의 공진 주파수가, 주파수가 낮은 쪽으로 시프트한다.
도 8f는 「조 6」의 패턴에서의 병렬 공진 주파수의 시프트의 일례를 나타내는 도면이다. 도 8f에는, 공심 코일(104(1))의 권선 갭을 「조 6」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 또, 도 8f에는, 공심 코일(104(1))의 권선 갭을 「표준」의 패턴으로 한 경우의 필터(102(1))의 주파수-임피던스 특성이 나타나 있다. 필터(102(1))는 공심 코일(104(1))의 권선 갭을 일부 변경함으로써, 1개 또는 복수의 공진 주파수가 시프트한다. 예를 들면, 「조 6」의 패턴에서는, 「표준」의 패턴과 비교해서, 화살표로 나타낸 7차의 공진 주파수가, 주파수가 낮은 쪽으로 시프트한다.
이와 같이, 공심 코일(104(1))에는, 특정의 N차(N은 자연수)의 병렬 공진 주파수를 시프트시키는 유효 구간이 각각 존재한다. 예를 들면, 공심 코일(104(1))의 턴 번호가 「7」~ 「15」인 구간은, 주파수-임피던스 특성에 있어서, 2차의 병렬 공진 주파수를 높은 쪽으로 시프트하는 유효 구간이다. 또한, 유효 구간은 공심 코일(104(1))의 권수나 코일 길이 등에 따라 변화한다. 유효 구간은 공심 코일에 있어서, 특정의 N차(N은 자연수)의 병렬 공진 주파수에 대해서 N개 존재한다.
플라즈마 처리 장치(1)는 기종이나 서셉터(12)에 인가되는 고주파의 주파수 등에 따라 노이즈의 주파수가 상이하다. 그러나, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 가동자(120)를 동작시켜 공심 코일(104(1))의 권선 갭을 변경함으로써, 필터(102(1))의 공진 주파수를 시프트시킬 수 있기 때문에, 노이즈의 주파수에 대응하도록 공진 주파수를 시프트시킴으로써, 필터(102(1))에 의해 노이즈를 감쇠 또는 저지할 수 있다. 이것에 의해, 플라즈마 처리 장치(1)는 노이즈의 주파수마다 필터(102(1))를 재구성하는 수고를 경감할 수 있다.
플라즈마 처리 장치(1)는 공심 코일(104(1))의 각각의 권선 갭의 지정을 외부로부터 접수해도 좋다. 예를 들면, 플라즈마 처리 장치(1)는 유저 인터페이스(75B)로부터 공심 코일(104(1))의 각각의 권선 갭의 지정을 접수하고, 프로세스 콘트롤러(75A)가, 지정된 권선 갭으로 되도록, 각 가동자(120)를 이동시키는 동력부를 제어해도 좋다. 또, 예를 들면, 플라즈마 처리 장치(1)는 공심 코일(104(1))의 각각의 권선 갭을 나타내는 갭 정보를 기억부(75C)에 기억한다. 예를 들면, 플라즈마 처리 장치(1)는 갭 정보로서 도 6에 나타낸 「표준」, 「밀 1」~ 「밀 6」, 「조 1」~ 「조 6」과 같은 패턴을 기억한다. 플라즈마 처리 장치(1)는 유저 인터페이스(75B)로부터 권선 갭의 패턴의 지정을 접수하고, 프로세스 콘트롤러(75A)가, 지정된 패턴의 권선 갭으로 되도록, 각 가동자(120)를 이동시키는 동력부를 제어해서 각 가동자(120)를 이동시켜도 좋다.
또, 플라즈마 처리 장치(1)는 노이즈를 감쇠 또는 저지하도록, 공심 코일(104(1))의 각각의 권선 갭을 자동으로 변경해도 좋다. 플라즈마 처리 장치(1)는 기종이나 서셉터(12)에 인가되는 고주파의 주파수 등에 따라서, 급전 도체(52(IN), 52(OUT))에 발생하는 노이즈의 주파수가 상이하지만, 각각 발생하는 주파수가 정해져 있다. 플라즈마 처리 장치(1)는 노이즈의 주파수 또는 서셉터(12)에 인가되는 교류 전력의 주파수에 대응해서, 노이즈를 감쇠 또는 저지에 적합한 병렬 공진 주파수가 생기는 코일의 각각의 권선 갭을 나타내는 갭 정보를 기억부(75C)에 기억한다. 예를 들면, 플라즈마 처리 장치(1)는 갭 정보로서 노이즈의 주파수 또는 서셉터(12)에 인가되는 제 1 고주파 전원(28) 및 제 2 고주파 전원(30)의 고주파의 주파수의 조합에 대응해서, 공심 코일(104(1))의 각각의 권선 갭을 기억한다. 공심 코일(104(1))의 각각의 권선 갭은 도 6에 나타낸 「표준」, 「밀 1」~ 「밀 6」, 「조 1」~ 「조 6」과 같은 패턴으로서 기억해도 좋다. 프로세스 콘트롤러(75A)는, 갭 정보에 근거해서, 노이즈의 주파수 또는 서셉터(12)에 인가되는 고주파의 주파수의 조합에 대응한 권선 갭으로 되도록 각 가동자(120)를 이동시키는 동력부를 제어해서 각 가동자(120)를 이동시켜도 좋다. 플라즈마 처리 장치(1)는 급전 도체(52(IN), 52(OUT))에 발생하는 노이즈를 실제로 측정해서 노이즈의 주파수를 구해도 좋다. 또, 플라즈마 처리 장치(1)는 서셉터(12)에 인가되는 교류 전력의 주파수 등으로부터 연산에 의해 노이즈의 주파수를 구해도 좋다. 또, 플라즈마 처리 장치(1)는 서셉터(12)에 인가되는 교류 전력의 주파수 등에 대응해서 미리 노이즈의 주파수를 기억시켜도 좋다. 예를 들면, 플라즈마 처리 장치(1)는 제 1 고주파 전원(28) 및 제 2 고주파 전원(30)의 고주파의 주파수의 조합마다, 발생하는 노이즈의 주파수를 기억부(75C)에 기억해도 좋다. 또, 플라즈마 처리 장치(1)는 예를 들면, 플라즈마 처리에 있어서 서셉터(12)에 인가되는 교류 전력의 주파수가 변경되는 타이밍 등, 필터(102(1))의 특성이 변경하는 타이밍을 나타내는 타이밍 정보와, 변경하는 특성에 따른 코일의 각각의 권선 갭을 나타내는 갭 정보를 기억부(75C)에 기억한다. 프로세스 콘트롤러(75A)는, 타이밍 정보에 의해 나타나는 변경 타이밍에서, 갭 정보에 근거해서, 각 가동자(120)를 이동시키는 동력부를 제어해서 각 가동자(120)를 이동시켜도 좋다.
이와 같이, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 각 가동자(120)를 이동시킴으로써, 필터(102(1))를 재구성하지 않고 노이즈에 대한 필터(102(1))의 특성을 동적으로 변경할 수 있다. 이것에 의해, 플라즈마 처리 장치(1)는, 플라즈마 처리마다 혹은 플라즈마 처리중에, 필터(102(1))의 특성을 동적으로 변경할 수도 있다. 예를 들면, 플라즈마 처리 장치(1)는 플라즈마 처리중에, 서셉터(12)에 인가하는 고주파의 주파수가 변화하고, 발생하는 노이즈의 주파수가 변화하는 것으로 한다. 이 경우에도, 플라즈마 처리 장치(1)는 노이즈를 감쇠 또는 저지하도록, 필터(102(1))의 특성을 플라즈마 처리중에 변경할 수 있다.
[효과]
이상 설명한 바와 같이, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 플라즈마 처리가 행해지는 챔버(10) 내의 내측 발열선(40(IN)) 및 외측 발열선(40)에, 내측 발열선(40(IN)) 및 외측 발열선(40(OUT))을 통해서 전기적으로 접속되는 히터 전원(58(IN), 58(OUT))을 갖는다. 플라즈마 처리 장치(1)는 내측 발열선(40(IN)) 및 외측 발열선(40)으로부터 히터 전원(58(IN), 58(OUT))을 향해 내측 발열선(40(IN)) 및 외측 발열선(40(OUT))에 들어오는 노이즈를, 내측 발열선(40(IN)) 및 외측 발열선(40(OUT)) 상에 마련한 필터(102)에 의해 감쇠 또는 저지하고 있다. 필터(102)는 공심 코일(104(1))과, 외측 도체(110)와, 가동자(120)를 갖는다. 공심 코일(104)은 일정한 구경과 일정한 코일 길이를 갖는다. 외측 도체(110)는 통형으로 되고, 공심 코일(104(1))을 수용 또는 포위하고, 공심 코일(104(1))과 조합해서 복수의 주파수로 병렬 공진을 이루는 분포 정수 선로를 형성한다. 가동자(120)는 필터(102(1))의 주파수-임피던스 특성에 있어서 특정의 하나 또는 복수의 병렬 공진 주파수에 높은 또는 낮은 주파수 영역측으로 시프트가 생기는 1개 또는 복수의 유효 구간 내에 배치되고, 공심 코일(104(1))의 각각의 권선 갭을 변경한다. 이것에 의해, 플라즈마 처리 장치(1)는 노이즈의 주파수마다 필터를 재구성하는 수고를 경감할 수 있다.
또, 본 실시 형태에 따른 플라즈마 처리 장치(1)는, 가동자(120)가, 공심 코일(104(1))의 권선의 턴마다, 각각 인접하는 턴에 대해서 권선의 둘레 방향에 대한 배치 위치를 변경해서 마련되어 있다. 이것에 의해, 플라즈마 처리 장치(1)는 공심 코일(104(1))의 권선의 턴마다 가동자(120)를 배치하는 경우에, 턴마다, 공심 코일(104(1))의 축 방향에 대해서, 가동자(120)의 배치 가능한 공간을 넓게 확보할 수 있다.
또, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 가동자(120)를 절연 재질로 형성하고 있다. 이것에 의해, 플라즈마 처리 장치(1)는 공심 코일(104(1)) 주변의 전계의 산란 및 고주파에 의한 자기 발열을 억제할 수 있다.
또, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 가동자(120)가 공심 코일(104(1))의 턴마다, 공심 코일(104(1))의 둘레 방향에 대해서 소정의 각도 차로 복수 마련되고, 턴마다 동기해서 권선 갭을 변경하는 동작을 행한다. 이것에 의해, 플라즈마 처리 장치(1)는 턴마다 권선 갭을 변경할 수 있다.
또, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 가동자(120)가 공심 코일(104(1))의 턴마다, 공심 코일(104(1))의 둘레 방향에 대해서 180°의 각도 차로 2개 마련되어 있다. 이것에 의해, 플라즈마 처리 장치(1)는 턴마다 권선 갭을 정밀도 좋게 제어할 수 있다.
또, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 가동자(120)에 동력을 전달하는 동력 전달부가 세라믹계 또는 유리계의 재료로 형성되어 있다. 이것에 의해, 플라즈마 처리 장치(1)는 공심 코일(104(1))의 발열이나 자기 유도열의 위치 정밀도에 대한 영향을 억제할 수 있다.
또, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 공심 코일(104(1))의 축 방향으로 이동하는 직동 기구를 통해서, 가동자의 위치의 검출 가능한 동력부가 접속되어 있다. 이것에 의해, 플라즈마 처리 장치(1)는 동력부에 의해 가동자(120)를 동작시킴과 아울러, 가동자의 위치를 검출할 수 있다.
또, 본 실시 형태에 따른 플라즈마 처리 장치(1)는 노이즈의 주파수 또는 플라즈마 처리에서 인가되는 교류 전력의 주파수에 대응해서, 노이즈를 감쇠 또는 저지에 적합한 병렬 공진 주파수가 생기는 공심 코일(104(1))의 각각의 권선 갭을 나타내는 갭 정보를 기억부(75C)에 기억한다. 플라즈마 처리 장치(1)는 프로세스 콘트롤러(75A)가 기억부(75C)에 기억된 갭 정보에 근거해서, 선로에 들어가는 노이즈의 주파수 또는 플라즈마 처리에서 인가되는 교류 전력의 주파수에 대응한 권선 갭으로 되도록 가동자(120)를 제어한다. 이것에 의해, 플라즈마 처리 장치(1)는 발생하는 노이즈의 주파수가 변경되는 경우에도, 노이즈를 감쇠 또는 저지할 수 있다.
[다른 실시 형태 또는 변형예]
상기 실시 형태에서는, 히터 급전선 등의 전원선용의 필터에 본 발명을 적용한 경우를 예로 설명했다. 그러나, 본 발명은 히터 급전선 등의 전원선용의 필터로 한정되는 것은 결코 아니고, 챔버 내에 마련되는 소정의 전기적 부재와 챔버의 밖에 마련되는 전력계 또는 신호계의 외부 회로를 전기적으로 접속하는 한 쌍의 선로 또는 단일의 선로 상에 마련되는 임의의 필터 또는 전송 회로에 적용 가능하다.
특히, 실시 형태의 플라즈마 처리 장치(1)는 공진 주파수의 조정을 필요로 하는 다른 임의의 코일에 대해서도, 상기와 마찬가지의 가동자(120)를 장착함으로써, 공진 주파수의 좌측 시프트 조정 또는 우측 시프트 조정을 행할 수 있다. 예를 들어, 고주파 전원(28, 30)과 챔버(10) 내의 서셉터(12)의 사이의 고주파 급전 라인 상에 노이즈를 감쇠 또는 저지하는 필터를 마련하는 경우, 해당 필터에 본 발명을 적용해도 좋다. 또, 고주파 전원(28, 30)과 챔버(10) 내의 서셉터(12)의 사이의 고주파 급전 라인 상에, 고주파 전원과 플라즈마 부하의 사이에서 임피던스의 정합을 취하기 위한 정합 회로에 본 발명을 적용해도 좋다.
상기 실시 형태는 공심 코일(104(1))의 권선의 각 턴에 가동자(120)를 마련한 경우를 예로 설명했지만, 이것으로 한정되는 것은 아니다. 가동자(120)는 시프트시키는 차수의 병렬 공진 주파수에 대해서 유효 구간 내로 되는 권선의 턴에만 마련해도 좋다. 또, 가동자(120)는 유효 구간 내의 권선의 각 턴에 반드시 마련하지 않아도 좋다. 예를 들면, 가동자(120)는 유효 구간의 양단으로 되는 권선의 턴에 각각 마련해도 좋다. 이것에 의해, 코일에 배치하는 가동자(120)의 수를 감소시키지 않을 수 있다.
상기 실시 형태는 챔버(10) 내의 서셉터(12)에 플라즈마 생성용의 제 1 고주파(HF)와 이온 인입용의 제 2 고주파(LF)를 중첩해서 인가하는 하부 2 주파 인가 방식의 용량 결합형 플라즈마 에칭 장치에 있어서, 서셉터(12)에 매립되는 발열체(40)와 챔버(10)의 밖에 설치되는 히터 전원(58)을 전기적으로 접속하는 한 쌍의 급전 라인(100(1)), 라인(100(2)) 상에 양 주파수의 노이즈를 감쇠시키기 위한 필터와 관계된 것이었다. 그렇지만, 상부 전극으로서 기능하는 샤워 헤드(64)에 플라즈마 생성용의 제 1 고주파(HF)를 인가하고, 서셉터(12)에 이온 인입용의 제 2 고주파(LF)를 인가하는 상하부 2 주파 인가 방식의 용량 결합형 플라즈마 에칭 장치, 혹은 서셉터(12)에 단일의 고주파를 인가하는 하부 1 주파 인가 방식의 용량 결합형 플라즈마 에칭 장치에 있어서도, 상기 실시 형태의 필터 또는 필터 유닛을 그대로 매우 적합하게 적용할 수 있다.
본 발명은 용량 결합형의 플라즈마 에칭 장치로 한정되지 않고, 마이크로파 플라즈마 에칭 장치나, 유도 결합 플라즈마 에칭 장치, 헬리콘파 플라즈마 에칭 장치 등에도 적용 가능하고, 또 플라즈마 CVD, 플라즈마 산화, 플라즈마 질화, 스퍼터링 등의 다른 플라즈마 처리 장치에도 적용 가능하다. 또, 본 발명에 있어서의 피처리 기판은 반도체 웨이퍼에 한정되는 것이 아니고, 플랫 패널 디스플레이, 유기 EL, 태양 전지용의 각종 기판이나, 포토마스크, CD 기판, 프린트 기판 등도 가능하다.
1 : 플라즈마 처리 장치 10 : 챔버
12 : 서셉터(하부 전극) 28 : 플라즈마 생성용 고주파 전원
30 : 이온 인입용 고주파 전원 40(IN) : 내측 발열선
40(OUT) : 외측 발열선 54(IN), 54(OUT) : 필터 유닛
58(IN), 58(OUT) : 히터 전원 75 : 제어부
75A : 프로세스 콘트롤러 75B : 유저 인터페이스
75C : 기억부 100(1), 100(2) : 급전 라인
102, 102(1), 102(2) : 필터 104(1), 104(2) : 공심 코일
106(1), 106(2) : 콘덴서 110 : 외측 도체
120 : 가동자

Claims (12)

  1. 플라즈마 처리가 행해지는 처리 용기 내의 소정의 전기적 부재에 선로를 통해서 전기적으로 접속되는 전력계 또는 신호계의 외부 회로를 갖고, 상기 전기적 부재로부터 상기 외부 회로를 향해서 상기 선로에 들어오는 노이즈를 상기 선로 상에 마련한 필터에 의해 감쇠 또는 저지하는 플라즈마 처리 장치로서,
    상기 필터가,
    일정한 구경과 일정한 코일 길이를 갖는 코일과,
    상기 코일을 수용 또는 포위하고, 상기 코일과 조합해서 복수의 주파수에서 병렬 공진을 이루는 분포 정수 선로를 형성하는 통형의 외측 도체와,
    상기 코일에 대해서 상기 코일의 길이 방향으로 존재하는 유효 구간에 있어서, 상기 코일의 권선 갭이 변경됨으로써, 상기 필터의 주파수-임피던스 특성에 있어서 특정의 하나 또는 복수의 병렬 공진 주파수에 높은 또는 낮은 주파수 영역측으로 시프트가 생기는 1개 또는 복수의 상기 유효 구간 내에 배치되고, 상기 코일의 각각의 권선 갭을 변경하는 가동자를 가지며,
    상기 가동자에는, 동력부로부터 상기 가동자로 동력을 전달하도록 구성된 동력 전달부가 마련되어 있고,
    상기 가동자는, 상기 동력을 이용하여 각각 이동함으로써 상기 코일의 각각의 권선 갭을 변경하도록 구성되는 것을 특징으로 하는 플라즈마 처리 장치.
  2. 제 1 항에 있어서,
    상기 가동자는 상기 코일의 권선의 턴마다, 각각 인접하는 턴에 대해서 권선의 둘레 방향에 대한 배치 위치를 변경해서 마련되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 가동자는 절연 재질로 형성되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 가동자는 상기 코일의 권선의 턴마다, 권선의 둘레 방향에 대해서 소정의 각도 차로 복수 마련되고, 턴마다 동기해서 권선 갭을 변경하는 동작을 행하는 것을 특징으로 하는 플라즈마 처리 장치.
  5. 제 4 항에 있어서,
    상기 가동자는 상기 코일의 권선의 턴마다, 권선의 둘레 방향에 대해서 180°의 각도 차로 2개 또는 권선의 둘레 방향에 대해서 120°의 각도 차로 3개 마련되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 가동자는 상기 유효 구간의 양단으로 되는 권선의 턴에 각각 마련되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  7. 제 1 항 또는 제 2 항에 있어서,
    상기 동력 전달부는 세라믹계 또는 유리계의 재료로 형성되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  8. 제 1 항 또는 제 2 항에 있어서,
    상기 동력부는, 상기 가동자에 직동 기구(linear motion mechanism)를 통해서 접속되고, 상기 가동자를 동작시킴과 아울러, 상기 가동자의 위치를 검출하는 것을 특징으로 하는 플라즈마 처리 장치.
  9. 제 1 항 또는 제 2 항에 있어서,
    상기 플라즈마 처리 장치는,
    상기 노이즈의 주파수 또는 플라즈마 처리에서 인가되는 교류 전력의 주파수에 대응해서, 노이즈를 감쇠 또는 저지에 적합한 병렬 공진 주파수가 생기는 상기 코일의 각각의 권선 갭을 나타내는 갭 정보를 기억한 기억부와,
    상기 기억부에 기억된 갭 정보에 근거해서, 상기 선로에 들어가는 노이즈의 주파수 또는 플라즈마 처리에서 인가되는 교류 전력의 주파수에 대응한 권선 갭으로 되도록 상기 가동자를 제어하는 제어부
    를 더 갖는 것을 특징으로 하는 플라즈마 처리 장치.
  10. 제 1 항 또는 제 2 항에 있어서,
    상기 유효 구간은 상기 코일에 있어서, 특정의 N차(N은 자연수)의 상기 병렬 공진 주파수에 대해서 N개 존재하는 것을 특징으로 하는 플라즈마 처리 장치.
  11. 제 1 항 또는 제 2 항에 있어서,
    상기 전기적 부재는, 플라즈마 처리를 위해서 소정 주파수의 고주파가 인가되는 고주파 전극의 내부 또는 주위에 마련되는 발열체이고,
    상기 외부 회로는, 상기 발열체에 발열용의 전력을 공급하기 위한 히터 전원이며,
    상기 선로는, 상기 히터 전원과 상기 발열체를 전기적으로 접속하는 급전 라인인
    것을 특징으로 하는 플라즈마 처리 장치.
  12. 제 1 항 또는 제 2 항에 있어서,
    상기 전기적 부재는, 피처리 기판을 지지하는 탑재대 내에 마련되는 고주파 전극이며,
    상기 외부 회로는, 상기 고주파 전극에 플라즈마 처리에 이용하는 고주파를 공급하기 위한 고주파 전원을 포함하고,
    상기 선로 상에, 상기 고주파 전원과 플라즈마 부하의 사이에서 임피던스의 정합을 취하기 위한 정합 회로가 마련되는
    것을 특징으로 하는 플라즈마 처리 장치.
KR1020180070548A 2017-06-21 2018-06-20 플라즈마 처리 장치 KR102580823B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230123191A KR20230136895A (ko) 2017-06-21 2023-09-15 플라즈마 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2017-121699 2017-06-21
JP2017121699A JP6832800B2 (ja) 2017-06-21 2017-06-21 プラズマ処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230123191A Division KR20230136895A (ko) 2017-06-21 2023-09-15 플라즈마 처리 장치

Publications (2)

Publication Number Publication Date
KR20180138543A KR20180138543A (ko) 2018-12-31
KR102580823B1 true KR102580823B1 (ko) 2023-09-19

Family

ID=64692784

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020180070548A KR102580823B1 (ko) 2017-06-21 2018-06-20 플라즈마 처리 장치
KR1020230123191A KR20230136895A (ko) 2017-06-21 2023-09-15 플라즈마 처리 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230123191A KR20230136895A (ko) 2017-06-21 2023-09-15 플라즈마 처리 장치

Country Status (5)

Country Link
US (2) US11011347B2 (ko)
JP (1) JP6832800B2 (ko)
KR (2) KR102580823B1 (ko)
CN (2) CN109104807B (ko)
TW (2) TW202318477A (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
WO2020096723A1 (en) 2018-11-09 2020-05-14 Applied Materials, Inc. Radio frequency filter system for a processing chamber
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
WO2020154310A1 (en) 2019-01-22 2020-07-30 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
JP6995073B2 (ja) * 2019-03-12 2022-01-14 株式会社Kokusai Electric 基板処理装置及び半導体装置の製造方法、プログラム
KR102183258B1 (ko) * 2019-04-18 2020-11-26 주식회사 티씨케이 SiC 소재 및 이의 제조방법
KR102278082B1 (ko) * 2019-05-22 2021-07-19 세메스 주식회사 필터 유닛과 그를 포함하는 기판 처리 장치 및 기판 처리 방법
US11239056B2 (en) * 2019-07-29 2022-02-01 Advanced Energy Industries, Inc. Multiplexed power generator output with channel offsets for pulsed driving of multiple loads
KR102593142B1 (ko) 2020-05-19 2023-10-25 세메스 주식회사 기판 처리 장치 및 그의 페라이트 코어 온도 제어 방법
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11361940B2 (en) * 2020-10-13 2022-06-14 Applied Materials, Inc. Push-pull power supply for multi-mesh processing chambers
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
CN112689376B (zh) * 2021-03-15 2021-06-18 四川大学 一种采用压电材料的微波等离子体射流激发装置
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097197A (ja) * 2013-10-01 2015-05-21 ラム リサーチ コーポレーションLam Research Corporation Rf伝送路のインピーダンスの制御

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570135A (en) * 1982-02-22 1986-02-11 Elmec Corporation Delay line
JPS6350108A (ja) * 1986-08-19 1988-03-03 Matsushita Electric Ind Co Ltd Lcフイルタ
JP2577599B2 (ja) * 1988-03-10 1997-02-05 ティーディーケイ株式会社 ラインフィルタの製造方法
JPH05175706A (ja) * 1991-12-20 1993-07-13 Murata Mfg Co Ltd 誘電体フィルタ及びその特性調整方法
JP2605752Y2 (ja) * 1992-06-01 2000-08-07 船井電機株式会社 Lcフィルタ
FR2747252A1 (fr) * 1996-04-03 1997-10-10 Philips Electronics Nv Appareil comprenant au moins un dispositif d'inductance reglable
JP2000133542A (ja) * 1998-10-23 2000-05-12 Sony Corp 可変インダクタ治具
JP2001160522A (ja) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp 空芯コイル及び空芯コイル付き回路基板の製造方法
KR200250402Y1 (ko) * 2001-06-18 2001-11-16 (주)창화디지트로닉스 고감도 자기 감응 장치
JP3846881B2 (ja) * 2003-04-04 2006-11-15 日本エー・エス・エム株式会社 プラズマ処理装置及びシリコン酸化膜を形成する方法
JP5007499B2 (ja) * 2005-10-21 2012-08-22 株式会社村田製作所 ノイズフィルタアレイ
US7777152B2 (en) * 2006-06-13 2010-08-17 Applied Materials, Inc. High AC current high RF power AC-RF decoupling filter for plasma reactor heated electrostatic chuck
US8328549B2 (en) * 2009-12-29 2012-12-11 Synventive Molding Solutions, Inc. Heating apparatus for fluid flow channel
US8883024B2 (en) * 2010-10-18 2014-11-11 Tokyo Electron Limited Using vacuum ultra-violet (VUV) data in radio frequency (RF) sources
CN102487572B (zh) * 2010-12-02 2015-06-24 理想能源设备(上海)有限公司 等离子加工装置
CN202231892U (zh) * 2011-09-14 2012-05-23 周久健 电感线圈位移式调节物料管加热的自动调温系统
CN202535319U (zh) * 2012-03-29 2012-11-14 东莞美信科技有限公司 网络信号滤波器
JP6001932B2 (ja) * 2012-06-19 2016-10-05 東京エレクトロン株式会社 プラズマ処理装置及びフィルタユニット
JP6081292B2 (ja) * 2012-10-19 2017-02-15 東京エレクトロン株式会社 プラズマ処理装置
JP2014090337A (ja) * 2012-10-30 2014-05-15 Hitachi Media Electoronics Co Ltd 帯域可変フィルタ
JP5765400B2 (ja) * 2013-03-15 2015-08-19 Tdk株式会社 コモンモードフィルタ
JP6050722B2 (ja) * 2013-05-24 2016-12-21 東京エレクトロン株式会社 プラズマ処理装置及びフィルタユニット
JP6218650B2 (ja) * 2014-03-11 2017-10-25 東京エレクトロン株式会社 プラズマ処理装置
JP6560909B2 (ja) * 2015-01-19 2019-08-14 株式会社日立ハイテクノロジーズ プラズマ処理方法およびプラズマ処理装置
JP2017101761A (ja) * 2015-12-03 2017-06-08 テクノエクセル株式会社 電磁弁制御装置および電磁弁システム
CN206040428U (zh) * 2016-07-11 2017-03-22 梅州市成就电子科技有限公司 一种贴片电感空芯线圈绕线装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097197A (ja) * 2013-10-01 2015-05-21 ラム リサーチ コーポレーションLam Research Corporation Rf伝送路のインピーダンスの制御

Also Published As

Publication number Publication date
US11735392B2 (en) 2023-08-22
US11011347B2 (en) 2021-05-18
JP6832800B2 (ja) 2021-02-24
TW201906504A (zh) 2019-02-01
CN109104807A (zh) 2018-12-28
US20210280385A1 (en) 2021-09-09
TW202318477A (zh) 2023-05-01
JP2019009193A (ja) 2019-01-17
TWI791541B (zh) 2023-02-11
CN109104807B (zh) 2021-03-05
CN113013014A (zh) 2021-06-22
KR20180138543A (ko) 2018-12-31
KR20230136895A (ko) 2023-09-27
US20180374672A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR102580823B1 (ko) 플라즈마 처리 장치
JP6027374B2 (ja) プラズマ処理装置及びフィルタユニット
TWI810290B (zh) 濾波器裝置及電漿處理裝置
TWI472267B (zh) Plasma processing device
JP5643062B2 (ja) プラズマ処理装置
US9530619B2 (en) Plasma processing apparatus and filter unit
JP6001932B2 (ja) プラズマ処理装置及びフィルタユニット
JP5042661B2 (ja) プラズマ処理装置及びフィルタユニット
KR102293504B1 (ko) 플라즈마 처리 장치
JP6081292B2 (ja) プラズマ処理装置
JP6138581B2 (ja) プラズマ処理装置
JP5734353B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant