CN106835071A - 一种cvd碳化硅材料的制备方法 - Google Patents

一种cvd碳化硅材料的制备方法 Download PDF

Info

Publication number
CN106835071A
CN106835071A CN201710049992.0A CN201710049992A CN106835071A CN 106835071 A CN106835071 A CN 106835071A CN 201710049992 A CN201710049992 A CN 201710049992A CN 106835071 A CN106835071 A CN 106835071A
Authority
CN
China
Prior art keywords
substrate
dep
laser
preparation
presoma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710049992.0A
Other languages
English (en)
Inventor
涂溶
徐青芳
章嵩
张联盟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710049992.0A priority Critical patent/CN106835071A/zh
Publication of CN106835071A publication Critical patent/CN106835071A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种CVD碳化硅材料的制备方法,包含如下步骤:将基板置于冷壁式化学气相沉积腔体中的加热台上,将真空度调至10Pa以下,预热基板,保温。以稀释气Ar将前驱体HMDS带入反应腔体,调节反应腔体压强(Pdep)至400~800Pa;打开激光,照射基板,激光波长为808nm;调节激光功率,使基板温度升(Tdep)至1100~1200℃,沉积薄膜,保温;停止通入HMDS和Ar,关闭激光,抽真空至10Pa以下,并自然冷却至室温。本发明的有益效果是:沉积碳化硅材料的同时,抑制了杂质碳的生成,提高材料的电阻率、击穿电场强度和抗腐蚀等理化性能;电阻率可高于含有杂质碳的碳化硅材料2个数量级。

Description

一种CVD碳化硅材料的制备方法
技术领域
本发明涉及一种高质量CVD碳化硅材料的制备方法,属于化学气相沉积法制备无机材料领域。
背景技术
碳化硅具有高击穿电场强度、高电子迁移率和耐腐蚀等理化性能,因此特别适合应用于制备高温、高频、高压、大功率半导器件,同时还可应用于辐射环境中,是具有广阔应用前景的第三代半导体。
CVD碳化硅材料是指以化学气相沉积法制备的碳化硅块体材料,这种碳化硅材料相比传统烧结和压坯法制备的材料具有如下优点:1)可在较低温度下制备高致密度碳化硅块体材料;2)制备中仅通过前驱体反应合成材料,而不需要烧结助剂,可制成高纯度碳化硅块体材料;3)通过对工艺的控制,可制备指定晶体取向的碳化硅块体材料;4)可涂覆于其它基底材料表面,易制备曲面材料。
化学气相沉积法(CVD)生长碳化硅材料工艺中,为控制材料成分、提高沉积速率,常采用活性高的小分子为前驱体,如SiH4+CH4,或SH4+C3H8,或CH4+SiCl4等,并以H2为稀释气。然而,高活性小分子前驱体和H2均易燃易爆,生产过程安全性差。采用活性低、安全性高的大分子六甲基二硅烷((CH3)3-Si-Si-(CH3)3,HMDS)为前驱体,并以惰性气体Ar为稀释气,可安全高效沉积SiC薄膜。但前驱体HMDS中C/Si原子数量比为3,而碳化硅的C/Si比为1。前驱体中C/Si比高于所沉积材料中的C/Si比,可导致所沉积的碳化硅中含有杂质碳。碳的导电性较高,因此碳化硅材料中存在杂质碳,可显著降低碳化硅材料的击穿电场强度、电阻率、抗弯强度和抗腐蚀能力等理化性能。
发明内容
为克服上述现有技术的不足,本发明提供了一种CVD碳化硅材料的制备方法。采用激光化学气相沉积法,控制大分子前驱体HMDS的反应进程,以惰性气体Ar气为稀释气,通过调节沉积参数,安全高效沉积碳化硅材料的同时,消除材料中的杂质碳。
本发明解决上述技术问题所采用的技术方案是:一种CVD碳化硅材料的制备方法,其特征在于包括以下步骤:
(1)将基板置于冷壁式化学气相沉积腔体中的加热台上,将真空度调至10Pa以下,加热基板,并保温;
(2)以稀释气将前驱体带入反应腔体,调节反应腔体内压强(Pdep)至400~800Pa;
(3)打开激光,照射基板;
(4)调节激光功率,使基板温度(Tdep)升至1100~1200℃沉积薄膜,保温10min;
(5)停止通入稀释气和前驱体,关闭激光,抽真空至10Pa以下,材料自然冷却至室温。
按上述方案,步骤(1)中加热基板温度为600℃,保温时间30min。
按上述方案,步骤(2)采用Ar为稀释气,HMDS为前驱体。
按上述方案,步骤(3)采用的激光波长为808nm。
本发明的有益效果是:安全高效沉积碳化硅材料的同时,抑制了杂质碳的生成,从而提高材料的电阻率、击穿电场强度和抗腐蚀等理化性能。本发明制备的不含杂质碳的碳化硅材料,其电阻率可高于含有杂质碳的碳化硅材料2个数量级。
附图说明
图1为Tdep=1250℃,其它制备参数与本发明实施例1相同时所沉积的材料,及本发明实施例1所沉积材料的XRD图谱。
图2(a)、(c)为Tdep=1250℃,其它制备参数与实施例1相同时,所沉积碳化硅材料断面扫描电子显微镜图(SEM)和电子能谱(EDX);图2(b)、(d)为本发明实施例1所沉积碳化硅材料的断面SEM像和EDX。
图3为Tdep=1250℃,其它制备参数与实施例1相同时,所沉积的碳化硅材料,和本发明实施例1所制备的碳化硅材料,电阻率随材料温度变化的规律。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐述本发明的内容,本发明不仅仅局限于下面的实施例。
实施例1
(1)将基板置于冷壁式化学气相沉积腔体中的加热台上,将腔体内真空度调至10Pa以下,加热基板至600℃,保温30min;
(2)以稀释气Ar将前驱体HMDS带入反应腔体内,调节Pdep至600Pa;
(3)打开激光,照射基板,激光波长为808nm;
(4)调节激光功率,使Tdep升至1200℃,保温10min;
(5)停止通入HMDS和Ar,关闭激光,抽真空至10Pa以下,材料自然冷却至室温。
如图1所示,Tdep=1250℃,其它制备参数与本发明实施例1相同时所沉积的材料,其XRD图谱既含有SiC衍射峰,还含有单质碳衍射峰,表明材料为碳化硅,并且含单质碳。本发明实施例一所沉积的材料,其XRD谱图中仅出现碳化硅的衍射峰,而不含杂质碳的衍射峰,表明材料为碳化硅,并且不含单质碳。
图2(a)和(b)中,虚线为碳化硅材料与基板界面处,虚线上方为沉积的碳化硅材料。沿图2(a)和(b)中实线,作EDX分析,结果分别如图2(c)和(d)所示。图2(c)显示,沿图2(a)中实线,C原子信号峰顶,对应Si原子信号峰谷,表明材料中有杂质碳生成。图2(d)显示,沿图2(b)中实线,Si原子和C原子的比例保持为1:1,表明薄膜中不含杂质碳。EDX测试结果与XRD测试结果一致。
据报道HMDS分解并沉积为SiC的反应过程如下所示:
步骤一:(CH3)3-Si-Si-(CH3)3→(CH3)3-Si-Si-(CH3)2 ++CH3 -
步骤二:(CH3)3-Si-Si-(CH3)2 ++CH3 -→(CH3)n-Si-H4-n(n=1~3)+CnHm
步骤三:(CH3)n-Si-H4-n(n=1~3)→SiC(solid)+CnHm
图2(a)中碳化硅材料含有杂质碳,可能的原因是其沉积温度较高,为1250℃,HMDS反应步骤三中的Si-C键打开,导致形成过多的甲基,沉积到材料中,引起材料碳原子过多,从而形成杂质碳。而实施例1的沉积温度适中,为1200℃,可使HMDS恰好分解,按照步骤三进行,形成不含杂质碳的碳化硅材料。
因为,Tdep=1200℃时,碳化硅材料不含杂质碳,而Tdep=1250℃时,碳化硅材料含杂质碳,因此Tdep=1200℃时所沉积碳化硅材料的电阻率,可高于Tdep=1250℃时所沉积的碳化硅材料2个数量级。
实施例2
(1)将基板置于冷壁式化学气相沉积腔体中的加热台上,将腔体内真空度调至10Pa以下,加热基板至600℃,保温30min;
(2)以稀释气Ar将前躯体HMDS带入反应腔体,调节Pdep至800Pa;
(3)打开激光,照射基板,激光波长为808nm;
(4)调节激光功率,使Tdep升至1100℃,保温10min;
(5)停止通入HMDS和Ar,关闭激光,抽真空至10Pa以下,材料自然冷却至室温。
实施例3
(1)将基板置于冷壁式化学气相沉积腔体中的加热台上,将腔体内真空度调至10Pa以下,加热基板至600℃,保温30min;
(2)以稀释气Ar将前驱体HMDS带入反应腔体内,调节Pdep至400Pa;
(3)打开激光,照射基板,激光波长为808nm;
(4)调节激光功率,使Tdep升至1150℃,保温10min;
(5)停止通入HMDS和Ar,关闭激光,抽真空至10Pa以下,材料自然冷却至室温。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明。对于本领域的技术人员来说,本发明可以有各种修改和变化,凡在本发明的精神和原则内所做的任何修改,等同替换、改进等,均应在本发明的保护范围内。

Claims (3)

1.一种CVD碳化硅材料的制备方法,其特征在于包括以下步骤:
(1)将基板置于冷壁式化学气相沉积腔体中的加热台上,将真空度调至10Pa以下,加热基板,并保温;
(2)以稀释气将前驱体带入反应腔体,调节反应腔体内压强(Pdep)至400~800Pa;
(3)打开激光,激光波长为808nm,照射基板;
(4)调节激光功率,使基板温度(Tdep)升至1100~1200℃沉积薄膜,保温10min;
(5)停止通入稀释气和前驱体,关闭激光,抽真空至10Pa以下,材料自然冷却至室温。
2.根据权利要求1所描述的一种CVD碳化硅材料的制备方法,其特征在于步骤(1)中加热基板温度为600℃,保温时间30min。
3.根据权利要求1所描述的一种CVD碳化硅材料的制备方法,其特征在于步骤(2)采用Ar为稀释气,HMDS为前驱体。
CN201710049992.0A 2017-01-23 2017-01-23 一种cvd碳化硅材料的制备方法 Pending CN106835071A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710049992.0A CN106835071A (zh) 2017-01-23 2017-01-23 一种cvd碳化硅材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710049992.0A CN106835071A (zh) 2017-01-23 2017-01-23 一种cvd碳化硅材料的制备方法

Publications (1)

Publication Number Publication Date
CN106835071A true CN106835071A (zh) 2017-06-13

Family

ID=59120982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710049992.0A Pending CN106835071A (zh) 2017-01-23 2017-01-23 一种cvd碳化硅材料的制备方法

Country Status (1)

Country Link
CN (1) CN106835071A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107513698A (zh) * 2017-09-08 2017-12-26 武汉理工大学 一种立方碳化硅涂层的制备方法
CN110218987A (zh) * 2019-07-24 2019-09-10 合肥百思新材料研究院有限公司 一种冷壁法cvd沉积设备及其工作方法
CN113424298A (zh) * 2019-04-18 2021-09-21 韩国东海炭素株式会社 碳化硅材料及其制备方法
CN114150292A (zh) * 2021-12-14 2022-03-08 武汉理工大学 一种抗热震碳化硅纳米多孔涂层材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087909A (zh) * 2014-07-04 2014-10-08 武汉理工大学 一种立方碳化硅薄膜的制备方法
CN104498897A (zh) * 2014-12-12 2015-04-08 武汉理工大学 一种碳化硅薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087909A (zh) * 2014-07-04 2014-10-08 武汉理工大学 一种立方碳化硅薄膜的制备方法
CN104498897A (zh) * 2014-12-12 2015-04-08 武汉理工大学 一种碳化硅薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONG ZHANG ET.AL.: "Ultra-fast epitaxial growth of β-SiC films on α(4H)-SiC using hexamethyldisilane (HMDS) at low temperature", 《CERAMICS INTERNATIONAL》 *
朱云洲等: "以HMDS为前驱体沉积SiC涂层的研究", 《稀有金属材料与工程》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107513698A (zh) * 2017-09-08 2017-12-26 武汉理工大学 一种立方碳化硅涂层的制备方法
CN107513698B (zh) * 2017-09-08 2019-03-08 武汉理工大学 一种立方碳化硅涂层的制备方法
CN113424298A (zh) * 2019-04-18 2021-09-21 韩国东海炭素株式会社 碳化硅材料及其制备方法
US11658060B2 (en) 2019-04-18 2023-05-23 Tokai Carbon Korea Co., Ltd SiC material and method for manufacturing same
CN110218987A (zh) * 2019-07-24 2019-09-10 合肥百思新材料研究院有限公司 一种冷壁法cvd沉积设备及其工作方法
CN114150292A (zh) * 2021-12-14 2022-03-08 武汉理工大学 一种抗热震碳化硅纳米多孔涂层材料及其制备方法与应用
CN114150292B (zh) * 2021-12-14 2023-03-10 武汉理工大学 一种抗热震碳化硅纳米多孔涂层材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN106835071A (zh) 一种cvd碳化硅材料的制备方法
CN113832432B (zh) 一种二维化合物半导体薄膜的制备方法
CN104313684A (zh) 一种制备六方氮化硼二维原子晶体的方法
CN107513698B (zh) 一种立方碳化硅涂层的制备方法
WO2016149934A1 (zh) 石墨烯的生长方法
KR20210018855A (ko) 고효율 화학 기상 증착법 그래핀 주름 제거 방법
CN110387580A (zh) 一种多孔氮化钛单晶材料及其制备方法和应用
Kim et al. Effect of partial pressure of the reactant gas on the chemical vapour deposition of Al2O3
CN103924208A (zh) 一种制备多层石墨烯薄膜的方法
US20150325771A1 (en) Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material by modified mocvd
Chae et al. Ultrafast deposition of microcrystalline Si by thermal plasma chemical vapor deposition
Wrobel et al. Remote hydrogen microwave plasma chemical vapor deposition from methylsilane precursors. 1. Growth mechanism and chemical structure of deposited a-SiC: H films
Hong et al. Effects of annealing temperature on characteristics of amorphous nickel carbon thin film alloys deposited on n-type silicon substrates by reactive sputtering
Xiong et al. Electron cyclotron resonance plasma-assisted atomic layer deposition of amorphous Al2O3 thin films
CN106653572B (zh) 多晶硅薄膜的制备方法以及光电器件
CN108060458A (zh) 一种非极性氮化铟纳米晶薄膜的制备装置和方法
Sentman et al. Self limiting deposition of pyrite absorbers by pulsed PECVD
CN110323126B (zh) 一种Si/SiC/石墨烯材料的制备方法
Seman et al. Enhancement of metal oxide deposition rate and quality using pulsed plasma-enhanced chemical vapor deposition at low frequency
Knoops et al. Remote plasma and thermal ALD of platinum and platinum oxide films
CN1275635A (zh) 纳米金刚石粉预处理的大面积金刚石膜材料的生长工艺
Grossman et al. Deposition of silicon from SiCl4 in an inductive rf low pressure plasma
US7300890B1 (en) Method and apparatus for forming conformal SiNx films
CN113151803A (zh) 一种硼碳氮薄膜的制备方法
US20200083520A1 (en) Method for producing yttrium oxide-containing thin film by atomic layer deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613

RJ01 Rejection of invention patent application after publication