CN108884593B - 多晶SiC基板及其制造方法 - Google Patents

多晶SiC基板及其制造方法 Download PDF

Info

Publication number
CN108884593B
CN108884593B CN201780022271.9A CN201780022271A CN108884593B CN 108884593 B CN108884593 B CN 108884593B CN 201780022271 A CN201780022271 A CN 201780022271A CN 108884593 B CN108884593 B CN 108884593B
Authority
CN
China
Prior art keywords
substrate
polycrystalline sic
polycrystalline
sic
sic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780022271.9A
Other languages
English (en)
Other versions
CN108884593A (zh
Inventor
八木邦明
小林元树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sicoxs Corp
Original Assignee
Sicoxs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sicoxs Corp filed Critical Sicoxs Corp
Publication of CN108884593A publication Critical patent/CN108884593A/zh
Application granted granted Critical
Publication of CN108884593B publication Critical patent/CN108884593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/784Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • C04B2235/9638Tolerance; Dimensional accuracy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Abstract

本公开的支承基板(2)是由多晶SiC形成的多晶SiC基板,该多晶SiC基板的基板粒径变化率为0.43%以下,其中,将多晶SiC基板的两个表面中的一个表面称为第1表面,并将另一个表面称为第2表面,基板粒径变化率是用第1表面上的多晶SiC的晶体粒径的平均值与第2表面上的多晶SiC的晶体粒径的平均值之差除以多晶SiC基板的厚度而计算出的数值,并且,多晶SiC基板的曲率半径为142m以上。

Description

多晶SiC基板及其制造方法
相关申请的交叉引用
本国际申请要求2016年4月5日在日本专利局提交的日本发明专利申请第2016-75920号的优先权,所述日本发明专利申请的全部内容通过引用而并入本文。
技术领域
本公开涉及由多晶SiC形成的多晶SiC基板。
背景技术
碳化硅(SiC)是具有2.2~3.3eV的宽禁带宽度的宽带隙半导体,其由于优异的物理化学特性,而作为耐环境性半导体材料被研究开发。尤其是近年来,SiC作为面向高耐压·大功率电子器件、高频电子器件、从蓝色到紫外的短波长光学器件的材料而备受瞩目,从而兴起了SiC的研究开发。不过,SiC难以制造优质的大口径单晶,从而妨碍了以往的SiC器件的实用化。
为了解决上述诸问题,开发了使用SiC单晶基板作为晶种,并进行升华再结晶的改良型瑞利法。若利用该改良型瑞利法,则能够在控制SiC单晶的多晶型(4H-SiC、6H-SiC、15R-SiC等)、形状、载流子类型、以及浓度的同时使SiC单晶生长。通过该改良型瑞利法的优化,晶体缺陷密度大幅度减少,从而实现了在该基板上形成肖特基二极管(SBD)或场效应晶体管(MOSFET)等电子器件。
但是,在以SiC单晶基板作为晶种的改良型瑞利法中,单晶SiC晶体生长速度慢,并且,以SiC单晶锭为主经由包括切割和抛光的工序而将其加工成晶圆状时的加工费用高,因此导致单晶SiC基板的制造成本高。上述高制造成本也是妨碍SiC器件的实用化的主要原因,故而迫切希望对可廉价提供用于半导体器件,特别是用于高耐压·大功率电子元件的SiC基板的技术进行开发。
于是,提供了如下技术,即,仅器件形成层部使用品质好的单晶SiC,并将其通过不导致在接合界面形成氧化膜的接合方法固定在支承基板(具有能够承受器件制造工序的强度·耐热性·清洁度的材料,例如多晶SiC)上,由此制造兼具低成本(支承基板部)和高品质(SiC部)的半导体基板(例如参照专利文献1)。
一般来讲,在器件制造工序上非常重视基板的“翘曲”。这是因为大幅翘曲的基板在曝光过程(光刻过程)中会使得基板面内的一部分偏离焦点,从而不会形成明确的掩膜像。并且电路越微细上述偏离焦点的现象的影响越大。
此外,在高耐压·大功率电子元件中,为了抑制电力损失,要求降低元件的电阻。由于元件的电阻与横穿基板的长度成比例,因此,作为用于高耐压·大功率电子元件的基板迫切希望使基板厚度变薄。然而,使基板变薄却会产生以下缺点,即,无法忽视基板内部的残留应力的影响从而导致基板的翘曲变大,并同时容易出现破裂。
现有技术文献
专利文献
专利文献1:日本特开2015-15401号公报
发明内容
发明要解决的问题
可利用如下方法形成多晶SiC基板,即,通过化学气相沉淀法(CVD:ChemicalVapor Deposition)在例如由碳等形成的基底基材上生长出SiC后再去除基底基材的方法,或者在使用烧结助剂等将SiC微晶粉末加压成形后加热至SiC的升华温度以下的温度而使微晶彼此固着的方法。利用前一种方法形成的多晶SiC基板是杂质浓度明显降低且不存在空孔的细密的基板,而利用后一种方法形成的多晶SiC基板则会残留空孔。因此,作为用于半导体用接合基板的多晶SiC基板,希望为利用前一种方法形成的多晶SiC基板。一般来讲,在化学气相沉淀中,在现实中作为基板而使用的生长膜厚范围(~1mm)内,伴随着生长而会产生晶体粒径的扩大和晶粒彼此结合等现象。由此,在多晶SiC基板产生内部应力,从而使得多晶SiC基板的形状出现翘曲。
本公开在于降低多晶SiC基板的翘曲。
解决问题的技术方案
本公开的一个方面为一种多晶SiC基板,其由多晶SiC形成,该多晶SiC基板的基板粒径变化率为0.43%以下,其中,将多晶SiC基板的两个表面中的一个表面称为第1表面,并将另一个表面称为第2表面,基板粒径变化率是用第1表面上的多晶SiC的晶体粒径的平均值与第2表面上的多晶SiC的晶体粒径的平均值之差除以多晶SiC基板的厚度而计算出的数值,并且,多晶SiC基板的曲率半径为142m以上。
此外,在实现本公开的目的的范围内,多晶SiC可以含有除碳和硅以外的组分。例如,为了降低多晶SiC基板的电阻率,作为杂质可含有氮、磷等。
根据如上构成的本公开的多晶SiC基板,通过使基板内部的晶体粒径变化率变小而降低多晶SiC基板的内部的残留应力的影响,从而能够降低多晶SiC基板的翘曲。
此外,在本公开的多晶SiC基板中,可以使第1表面和第2表面中的至少一个表面的以算术平均粗糙度表示的表面粗糙度为1nm以下。此外,在本公开的多晶SiC基板中,在第1表面和第2表面中的至少一个表面中,可以使形成于该至少一个表面上的所有凹部均形成为,使得该至少一个表面与凹部中的距该至少一个表面最远的地点之间的距离为3nm以下。
根据如上构成的本公开的多晶SiC基板,由于多晶SiC基板的表面的凹凸较小,因此,在将由单晶SiC形成的半导体层贴合到多晶SiC基板上而制造接合基板时,能够提高单晶SiC的半导体层和多晶SiC基板间的接合面的接合强度,从而能够提高接合基板的制造成品率。
此外,在本公开的多晶SiC基板中,可以利用化学气相沉淀法使多晶SiC生长,也可以利用升华法使多晶SiC生长。
此外,本公开的另一方面的多晶SiC基板的制造方法具备基材制造工序、生长工序、以及分离工序,并且,该多晶SiC基板的基材粒径变化率为0.43%以下,其中,基材粒径变化率是用第2基底基材的两个表面中的一个表面上的多晶SiC的晶体粒径平均值与另一个表面上的多晶SiC的晶体粒径的平均值之差除以第2基底基材的厚度而计算出的数值。
在基材制造工序中,按照预先设定的第1生长条件在第1基底基材上生长出多晶SiC之后,将在第1基底基材上生长出的多晶SiC切离出,由此,制造由多晶SiC形成的第2基底基材。在生长工序中,按照预先设定的第2生长条件使多晶SiC在第2基底基材上生长。在分离工序中,从第2基底基材分离在第2基底基材上生长出的多晶SiC的至少一部分,并将分离出的多晶SiC作为多晶SiC基板。
此外,第1生长条件以及第2生长条件是指,为使SiC在基底基材上生长而使用的条件。作为第1生长条件以及第2生长条件,可列举例如用于使SiC生长的生长法、按照该生长法使SiC生长时的生长温度以及原料气体等。
如上构成的本公开的多晶SiC基板的制造方法是用于制造本公开的多晶SiC基板的方法,并能够获得与本公开的多晶SiC基板等同的效果。
附图说明
图1是接合基板1的立体图。
图2A是示出接合基板1的制造方法的流程图;图2B是示出支承基板2的制造方法的剖视图。
图3A是示出在作为基底基材的碳基材21上生长出的多晶SiC22的剖视图;图3B是示出间歇式生长炉30的概略结构的图。
图4是示出从基底基材11的表面生长的多晶SiC12的图。
图5是示出支承基板的曲率半径与晶体粒径变化率之间的相关关系的图。
图6A是示出晶体粒径变化率为0.57%的支承基板的表面上的晶粒的分布的图;图6B是示出晶体粒径变化率为0.57%的支承基板的表面上的晶体粒径的分布的柱形图;图6C是示出晶体粒径变化率为0.57%的支承基板的背面上的晶粒的分布的图;图6D是示出晶体粒径变化率为0.57%的支承基板的背面上的晶体粒径的分布的柱形图。
图7A是示出晶体粒径变化率为1.14%的支承基板的表面上的晶粒的分布的图;图7B是示出晶体粒径变化率为1.14%的支承基板的表面上的晶体粒径的分布的柱形图;图7C是示出晶体粒径变化率为1.14%的支承基板的背面上的晶粒的分布的图;图7D是示出晶体粒径变化率为1.14%的支承基板的背面上的晶体粒径的分布的柱形图。
附图标记的说明
1…接合基板;2…支承基板;3…半导体层;11…基底基材;
12、22…多晶SiC;21…碳基材
具体实施方式
以下参照附图说明本公开的实施方式。
如图1所示,本实施方式的接合基板1具有支承基板2和贴合在支承基板2表面的半导体层3。支承基板2由多晶SiC形成为例如厚度约350μm的圆盘状。其中,支承基板2的多晶SiC由4H-SiC晶体、6H-SiC晶体以及3C-SiC晶体中的任一者,或它们的混合物形成。
半导体层3由单晶SiC形成为例如厚度约1μm的圆盘状。其中,半导体层3的单晶SiC由4H-SiC晶体、6H-SiC晶体以及3C-SiC晶体中的任一者,或它们的混合物形成。
接下来说明接合基板1的制造方法。
如图2A所示,在接合基板1的制造方法中,首先在S10中进行基底基材制造工序。本实施方式的基底基材是指,用于供多晶SiC生长的作为基底的材料。在基底基材制造工序中,首先,如图3A所示,利用化学气相沉淀法(CVD:Chemical Vapor Deposition),在由碳形成为圆盘状的碳基材21的表面上生长出例如厚度为2mm的多晶SiC22。作为Si的原料气体,可列举四氯硅烷、三氯硅烷以及二氯硅烷。作为C的原料气体,可列举乙烷、丙烷以及乙炔。此外,作为原料气体,也可以使用四甲基硅烷等单一气体。该化学气相沉淀法中的生长温度为例如1400℃。在多晶SiC22生长后,对在碳基材21的表面形成有多晶SiC22的圆盘状部件的外周进行磨削。之后,在1000℃的大气气氛中加热该圆盘状部件。由此,碳基材21会在大气气氛中进行燃烧,从而从多晶SiC22中去除碳基材21。接下来,将多晶SiC22的生长最外表面22a磨削例如0.2mm以使其平坦化后,将多晶SiC22中的于碳基材侧的表面22b磨削例如1.45mm。由此,获得厚度为0.35mm的基底基材11(参照图2B的基底基材11)。
然后,在接合基板1的制造方法中,如图2A所示,接下来在S20中进行SiC生长工序。在SiC生长工序中,首先,如图3B所示,将基底基材11装入生长炉30。在装入基底基材11后,利用化学气相沉淀法,生长出例如厚度为400μm的多晶SiC12。由于是使用生长炉的化学气相沉淀法,因此,如图2B所示,多晶SiC12将会在基底基材11的表面和背面生长。作为Si的原料气体,可列举四氯硅烷、三氯硅烷以及二氯硅烷。作为C的原料气体,可列举乙烷、丙烷以及乙炔。此外,作为原料气体,也可以使用四甲基硅烷等单一气体。该化学气相沉淀法中的生长温度为例如1400℃。
基底基材11由多晶SiC形成。由此,如图4所示,从基底基材11的表面生长的多晶SiC12会继承基底基材11的晶体结构,不过,由于基底基材11中的晶粒已经较大且粒径的扩大达到饱和,因此,在基底基材11上生长时的多晶SiC12的粒径变化小。所以,能够获得沿基板的深度方向均质生长的多晶SiC,从而能够使在基板的内部产生的应力变小。其结果能够使由多晶SiC12形成的支承基板2的翘曲变小。
然后,在接合基板1的制造方法中,如图2A所示,接下来在S30中进行剥离工序。在剥离工序中,如图2B所示,向距多晶SiC12的表面深例如400μm的位置照射激光LS(波长532nm),以使SiC升华。接着,沿着基底基材11中的与接触多晶SiC12的接触面平行的面二维扫描激光LS,由此,在距表面400μm的位置处形成切割面,并从基底基材11剥离多晶SiC12。
然后,在接合基板1的制造方法中,如图2A所示,接下来在S40中进行表面抛光工序。在表面抛光工序中,先经过高精度磨削,再经过CMP抛光去除在多晶SiC12的表面形成的非晶质层,并使多晶SiC12的表面变得平滑。将在进行了表面抛光工序后而获得的多晶SiC12作为支承基板2而使用。此外,在S30中,利用在生长炉30内的升温过程中所供给的氢气去除在基底基材11的表面形成的非晶质层。即,为了制造支承基板2可对第2基底基材11进行再利用。
然后,在接合基板1的制造方法中,接下来在S50中进行贴合工序。在贴合工序中,首先,从事先准备好的单晶SiC基板的表面侧向单晶SiC基板的表面而注入氢离子,其中,氢离子的注入能量根据半导体层3的厚度而预先设定。由此,在单晶SiC基板上,从单晶SiC基板的表面至与注入能量相应的规定深度上形成离子注入层。之后,利用表面活性化方法将单晶SiC基板的表面贴合到S40中制造的多晶SiC12的表面上。然后对呈彼此贴合状态的多晶SiC12和单晶SiC基板进行加热。由此,单晶SiC基板会在上述离子注入层处产生断裂,在半导体层3贴合于支承基板2的表面的状态下从单晶SiC基板剥离半导体层3,从而获得接合基板1。
图5是示出支承基板的曲率半径与支承基板的晶体粒径变化率之间的相关关系的图。
基板的曲率半径是与由基板翘曲而产生的弯曲形态最近似的圆的半径。
基板的晶体粒径变化率是用基板的表面上的晶体粒径的平均值与基板的背面上的晶体粒径的平均值之差除以基板的厚度而计算出的数值。晶体粒径是换算成面积与各晶粒相同的圆的直径即作为面积圆当量直径而计算出的。
此外,利用公知的EBSD(Electron BackScatter Diffraction)分析来测量支承基板的表面和背面上的晶体取向等,由此,获得晶粒在支承基板的表面和背面上的分布。
如图5的点P1所示,当晶体粒径变化率为0.57%时的支承基板的曲率半径为69m。此外,如图5的点P2所示,当晶体粒径变化率为1.14%时的支承基板的曲率半径为3m。如图5所示,利用连接点P1和点P2的直线L进行外推,由此推导出通过使晶体粒径变化率为0.43%以下而能够使支承基板的曲率半径为142m以上。
图6A是示出晶体粒径变化率为0.57%的支承基板的表面上的晶粒的分布的图。图6B是示出晶体粒径变化率为0.57%的支承基板的表面上的晶体粒径的分布的柱形图。支承基板的表面上的晶体粒径的平均值为12μm。
图6C是示出晶体粒径变化率为0.57%的支承基板的背面上的晶粒的分布的图。图6D是示出晶体粒径变化率为0.57%的支承基板的背面上的晶体粒径的分布的柱形图。支承基板的背面上的晶体粒径的平均值为10μm。
由于支承基板的厚度为350μm,因此,晶体粒径变化率为(12-10)/350×100=0.57[%]。
图7A是示出晶体粒径变化率为1.14%的支承基板的表面上的晶粒的分布的图。图7B是示出晶体粒径变化率为1.14%的支承基板的表面上的晶体粒径的分布的柱形图。支承基板的表面上的晶体粒径的平均值为11μm。
图7C是示出晶体粒径变化率为1.14%的支承基板的背面上的晶粒的分布的图。图7D是示出晶体粒径变化率为1.14%的支承基板的背面上的晶体粒径的分布的柱形图。支承基板的背面上的晶体粒径的平均值为7μm。
由于支承基板的厚度为350μm,因此,晶体粒径变化率为(11-7)/350×100=1.14[%]。
此外,如上所述,从基底基材11的表面生长的多晶SiC12继承基底基材11的晶体结构。因此,为了制造晶体粒径变化率为0.43%以下的多晶SiC12,在S20的SiC生长工序中需要在晶体粒径变化率为0.43%以下的基底基材11的表面和背面生长多晶SiC12。
如上构成的支承基板2是由多晶SiC形成的多晶SiC基板,其晶体粒径变化率为0.43%以下,且多晶SiC基板的曲率半径为142m以上。
根据如上构成的支承基板2,通过使基板粒径变化率变小而能够降低多晶SiC基板的内部的残留应力的影响,从而能够降低多晶SiC基板的翘曲。
此外,支承基板2的制造方法包括基底基材制造工序、SiC生长工序、以及剥离工序,并且基底基材11的晶体粒径变化率为0.43%以下。
在基底基材制造工序中,按照预先设定的第1生长条件(本实施方式中为生长温度为1400℃的化学气相沉淀法),在由碳形成的碳基材21上生长出多晶SiC22之后,将在碳基材21上生长出的多晶SiC22切离出,由此,制造由多晶SiC形成的基底基材11(S10)。
在SiC生长工序中,按照预先设定的第2生长条件(本实施方式中为生长温度为1400℃的化学气相沉淀法),在基底基材11上生长出多晶SiC12(S20)。在剥离工序中,通过照射激光LS,而从第2基底基材剥离在基底基材11生长出的多晶SiC12。并将剥离的多晶SiC12作为支承基板2(S30)。
在如上的支承基板2的制造方法中,使多晶SiC在由多晶SiC形成的基底基材11上生长。即,基底基材11的材料与在其上生长的SiC相同。由此,在SiC生长工序中,能够实现继承基底基材11的表面上的晶体粒径和晶体定向的SiC生长。并且,在SiC生长工序中,通过使用晶体粒径变化率为0.43%以下的基底基材11,而能够在基底基材11上生长晶体粒径变化率为0.43%以下的多晶SiC。由此,能够降低多晶SiC基板的翘曲。此外,无需为了制造多晶SiC基板而切离出晶体粒径齐整部分的SiC。即,在支承基板2的制造方法中,无需在基底基材上生长不作为多晶SiC基板使用的SiC。这样,支承基板2的制造方法中,由于不需要在基底基材上生长出不用作多晶SiC基板的多余的SiC,也不需要切离出晶体粒径齐整的部分的SiC的工序,故而可使制造工序大幅度简单化。
在以上说明的实施方式中,支承基板2相当于本公开的多晶SiC基板,支承基板2的表面相当于本公开的第1表面,支承基板2的背面相当于本公开的第2表面,支承基板2的晶体粒径变化率相当于本公开的基板粒径变化率。
此外,S10工序相当于本公开的基底基材制造工序,S20工序相当于本公开的SiC生长工序,S30工序相当于本公开的分离工序。
此外,碳基材21相当于本公开的第1基底基材,基底基材11相当于本公开的第2基底基材,基底基材11的晶体粒径变化率相当于本公开的基材粒径变化率。
以上对本公开的一个实施方式进行了说明,不过本公开不限于上述实施方式,在属于本公开的技术范围内可以采用各种方式。
例如在上述实施方式中,示出了通过照射激光而从基底基材11分离多晶SiC12的方式,不过也可以利用由公知的电火花线切割技术或线锯所实施的切割技术来分离多晶SiC12。
此外,在上述实施方式中,示出了在基底基材制造工序中利用化学气相沉淀法使多晶SiC22生长的方式,不过,也可以在该基底基材制造工序中通过向多晶SiC22导入杂质而对基底基材11进行着色。由此,能够向基底基材11与多晶SiC12的界面以高精度照射激光。其结果为,使在剥离工序中多晶SiC12从基底基材11分离之后的基底基材11的表面变得平坦。因此,无需对基底基材11的表面进行抛光处理便可以对基底基材11实施再利用,从而能够使用于对基底基材11进行再利用的处理简单化。
此外,为了在用于高耐压·大功率电子元件的贴合SiC基板上加以使用,需要降低多晶SiC12的电阻率。该情形下,会向多晶SiC12内导入例如氮、磷等杂质,不过通过该杂质的导入会使多晶SiC12着色。即使从多晶SiC12的表面照射激光LS,激光也不会到达基底基材11与多晶SiC12的界面,因此,难以在基底基材11与多晶SiC12之间的界面进行剥离。所以,在本公开中,也可以在预先利用其他方法从基底基材11分离背面侧的多晶SiC12之后,再从基底基材11的背面照射激光LS,以从基底基材11剥离多晶SiC12。
此外,在上述实施方式中,也可以通过预先在基底基材11的背面形成保护件,或通过在不暴露基底基材11的背面的状态下将基底基材11设置在生长炉30内,而仅在基底基材11的表面生长多晶SiC12,并从基底基材11的背面照射激光LS,以从基底基材11剥离多晶SiC12。
此外,上述实施方式示出了在SiC生长工序中利用化学气相沉淀法使多晶SiC12生长的方式,不过,也可以在该SiC生长工序中通过导入用于产生载流子的杂质而使得例如氮或磷均匀地扩散在多晶SiC12内。
此外,上述实施方式示出了通过贴合支承基板2与半导体层3而形成的接合基板1的制造方法。在制造接合基板1时,可以使支承基板2的表面和背面中的至少一方的由算术平均粗糙度表示的表面粗糙度为1nm以下。此外,在多晶SiC12的表面和背面中的至少一方中,也可以使形成于表面和背面中的至少一方的所有凹部形成为,使得表面和背面中的至少一方与凹部中距表面和背面中的至少一方最远的地点之间的距离为3nm以下。根据如上构成的支承基板2,由于支承基板2的表面的凹凸较小,因此,在将由单晶SiC形成的半导体层3贴合到支承基板2上而制造接合基板1时,能够提高半导体层3与支承基板2间的接合面的接合强度,从而能够提高接合基板1的制造成品率。
此外,上述实施方式示出了在基底基材制造工序S10和SiC生长工序S20中利用化学气相沉淀法使多晶SiC生长的方式,不过也可以利用使SiC原料升华后再令其结晶化的升华法使多晶SiC生长。

Claims (6)

1.一种多晶SiC基板,其由多晶SiC形成,所述多晶SiC基板的特征在于,
所述多晶SiC基板的基板粒径变化率为0.43%以下,其中,将所述多晶SiC基板的两个表面中的一个表面称为第1表面,并将另一个表面称为第2表面,所述基板粒径变化率是用所述第1表面上的多晶SiC的晶体粒径的平均值与所述第2表面上的多晶SiC的晶体粒径的平均值之差除以所述多晶SiC基板的厚度而计算出的数值,
所述多晶SiC基板的曲率半径为142m以上,并且
其中所述多晶SiC基板由达单层的多晶SiC形成。
2.根据权利要求1所述的多晶SiC基板,其特征在于,
所述第1表面和所述第2表面中的至少一方的以算术平均粗糙度表示的表面粗糙度为1nm以下。
3.根据权利要求1所述的多晶SiC基板,其特征在于,
在所述第1表面和所述第2表面中的至少一个表面中,形成于所述至少一个表面上的所有凹部均形成为,使得该至少一个表面与所述凹部中的距该至少一个表面最远的地点之间的距离为3nm以下。
4.根据权利要求1~3中任一项所述的多晶SiC基板,其特征在于,
所述多晶SiC基板是通过利用化学气相沉淀法使多晶SiC生长而形成的多晶SiC基板。
5.根据权利要求1~3中任一项所述的多晶SiC基板,其特征在于,
所述多晶SiC基板是通过利用升华法使多晶SiC生长而形成的多晶SiC基板。
6.一种多晶SiC基板的制造方法,其特征在于,包括以下工序:
基材制造工序,按照预先设定的第1生长条件在第1基底基材上生长出多晶SiC之后,将在所述第1基底基材上生长出的多晶SiC切离出,由此制造由多晶SiC形成的第2基底基材;
生长工序,按照预先设定的第2生长条件使单层的多晶SiC在所述第2基底基材上生长;
分离工序,从所述第2基底基材分离在所述第2基底基材上生长出的所述单层的多晶SiC的至少一部分,并将分离出的单层的多晶SiC作为所述多晶SiC基板,
第1表面抛光工序,所述第1表面抛光工序为高精度磨削;并且
第2表面抛光工序,所述第2表面抛光工序为CMP抛光;
其中,所述多晶SiC基板的基材粒径变化率为0.43%以下,其中,所述基材粒径变化率是用所述第2基底基材的两个表面中的一个表面上的多晶SiC的晶体粒径的平均值与另一个表面上的多晶SiC的晶体粒径的平均值之差除以所述第2基底基材的厚度而计算出的数值;并且
其中,所述多晶SiC基板的曲率半径为142m以上。
CN201780022271.9A 2016-04-05 2017-04-05 多晶SiC基板及其制造方法 Active CN108884593B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-075920 2016-04-05
JP2016075920 2016-04-05
PCT/JP2017/014248 WO2017175799A1 (ja) 2016-04-05 2017-04-05 多結晶SiC基板およびその製造方法

Publications (2)

Publication Number Publication Date
CN108884593A CN108884593A (zh) 2018-11-23
CN108884593B true CN108884593B (zh) 2021-03-12

Family

ID=60000403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780022271.9A Active CN108884593B (zh) 2016-04-05 2017-04-05 多晶SiC基板及其制造方法

Country Status (6)

Country Link
US (1) US10934634B2 (zh)
EP (1) EP3441506A4 (zh)
JP (1) JP6619874B2 (zh)
KR (1) KR102109292B1 (zh)
CN (1) CN108884593B (zh)
WO (1) WO2017175799A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107190322B (zh) * 2017-04-01 2019-06-11 中国科学院上海硅酸盐研究所 一种大尺寸电阻率可调的碳化硅多晶陶瓷的生长方法
DE102019111377A1 (de) * 2018-05-28 2019-11-28 Infineon Technologies Ag Verfahren zum Verarbeiten eines Siliziumkarbid-Wafers und ein Siliziumkarbid-Halbleiterbauelement
JP7235456B2 (ja) * 2018-08-14 2023-03-08 株式会社ディスコ 半導体基板の加工方法
JP7322371B2 (ja) * 2018-09-27 2023-08-08 住友金属鉱山株式会社 炭化珪素多結晶基板の製造方法
JPWO2021020574A1 (zh) * 2019-08-01 2021-02-04
US20230357955A1 (en) * 2020-08-28 2023-11-09 Kyocera Corporation SiC POLYCRYSTAL MANUFACTURING METHOD
FR3127330B1 (fr) 2021-09-22 2023-09-22 Soitec Silicon On Insulator Procede de fabrication d’un substrat support en carbure de silicium poly-cristallin
FR3127842A1 (fr) 2021-10-05 2023-04-07 Soitec Structure composite comprenant une couche utile en sic monocristallin sur un substrat support en sic poly-cristallin et procede de fabrication de ladite structure
JP2023061509A (ja) * 2021-10-20 2023-05-02 株式会社サイコックス 多結晶炭化珪素基板の製造方法
FR3134234B1 (fr) 2022-03-30 2024-02-23 Soitec Silicon On Insulator Structure composite comprenant une couche mince monocristalline sur un substrat support en carbure de silicium poly-cristallin et procede de fabrication associe
FR3134228A1 (fr) 2022-03-30 2023-10-06 Mersen France Gennevilliers Procede de fabrication de carbure de silicium polycristallin utilisable pour la fabrication de substrats de circuits integres, et carbure de silicium ainsi obtenu
FR3139413A1 (fr) * 2022-09-05 2024-03-08 Soitec Procédé de traitement d’une plaquette de carbure de silicium polycristallin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188408A (ja) * 1994-12-29 1996-07-23 Toyo Tanso Kk 化学蒸着法による炭化ケイ素成形体及びその製造方法
JP2012146695A (ja) * 2011-01-06 2012-08-02 Denso Corp 炭化珪素半導体基板、炭化珪素半導体装置、炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
JP2013067522A (ja) * 2011-09-21 2013-04-18 Sumitomo Electric Ind Ltd 炭化珪素結晶の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188468A (ja) * 1994-12-29 1996-07-23 Toyo Tanso Kk 化学蒸着法による炭化ケイ素成形体及びその製造方法
JP3524679B2 (ja) * 1996-06-21 2004-05-10 東芝セラミックス株式会社 高純度CVD−SiC質の半導体熱処理用部材及びその製造方法
JPH1179846A (ja) * 1997-09-01 1999-03-23 Tokai Carbon Co Ltd 炭化珪素成形体
JP3648112B2 (ja) * 1999-11-26 2005-05-18 東芝セラミックス株式会社 CVD−SiC自立膜構造体、及びその製造方法
US20100297350A1 (en) * 2003-12-05 2010-11-25 David Thomas Forrest Free-standing silicon carbide articles formed by chemical vapor deposition and methods for their manufacture
JP4974986B2 (ja) * 2007-09-28 2012-07-11 富士フイルム株式会社 太陽電池用基板および太陽電池
EP2657377B1 (en) * 2010-12-24 2018-11-21 Toyo Tanso Co., Ltd. Method for epitaxial growth of monocrystalline silicon carbide
WO2012086237A1 (ja) * 2010-12-24 2012-06-28 東洋炭素株式会社 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP6061251B2 (ja) 2013-07-05 2017-01-18 株式会社豊田自動織機 半導体基板の製造方法
JP6195426B2 (ja) * 2014-04-18 2017-09-13 国立研究開発法人産業技術総合研究所 炭化珪素エピタキシャルウエハおよびその製造方法
US20180005816A1 (en) * 2015-01-13 2018-01-04 Sumitomo Electric Industries, Ltd. Semiconductor laminate
JP6544166B2 (ja) * 2015-09-14 2019-07-17 信越化学工業株式会社 SiC複合基板の製造方法
JP6582779B2 (ja) * 2015-09-15 2019-10-02 信越化学工業株式会社 SiC複合基板の製造方法
JP6515757B2 (ja) * 2015-09-15 2019-05-22 信越化学工業株式会社 SiC複合基板の製造方法
JP6481582B2 (ja) * 2015-10-13 2019-03-13 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
FR3048306B1 (fr) * 2016-02-26 2018-03-16 Soitec Support pour une structure semi-conductrice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188408A (ja) * 1994-12-29 1996-07-23 Toyo Tanso Kk 化学蒸着法による炭化ケイ素成形体及びその製造方法
JP2012146695A (ja) * 2011-01-06 2012-08-02 Denso Corp 炭化珪素半導体基板、炭化珪素半導体装置、炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
JP2013067522A (ja) * 2011-09-21 2013-04-18 Sumitomo Electric Ind Ltd 炭化珪素結晶の製造方法

Also Published As

Publication number Publication date
WO2017175799A1 (ja) 2017-10-12
KR20180126566A (ko) 2018-11-27
EP3441506A1 (en) 2019-02-13
CN108884593A (zh) 2018-11-23
KR102109292B1 (ko) 2020-05-11
US20190153616A1 (en) 2019-05-23
JP6619874B2 (ja) 2019-12-11
US10934634B2 (en) 2021-03-02
JPWO2017175799A1 (ja) 2018-11-08
EP3441506A4 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
CN108884593B (zh) 多晶SiC基板及其制造方法
TWI330206B (en) Seventy five millimeter silicon carbide wafer with low warp, bow, and ttv
US7390695B2 (en) Diamond substrate and manufacturing method thereof
JP4964672B2 (ja) 低抵抗率炭化珪素単結晶基板
US7659207B2 (en) Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafer
JP6232329B2 (ja) SiC種結晶の加工変質層の除去方法、SiC種結晶及びSiC基板の製造方法
CN102686787B (zh) 碳化硅衬底、半导体器件、制造碳化硅衬底的方法和制造半导体器件的方法
TWI792126B (zh) 大直徑碳化矽晶圓
EP2551891B1 (en) Semiconductor device and method for producing same
CN1840748B (zh) 金刚石衬底及其制造方法
CN115298366B (zh) 用于碳化硅晶体材料的位错分布
US20130112995A1 (en) Semiconductor wafer and method for manufacturing the same
US8642153B2 (en) Single crystal silicon carbide substrate and method of manufacturing the same
US11948794B2 (en) Method of manufacturing silicon carbide epitaxial wafer
RU2162902C1 (ru) Монокристаллический карбид кремния sic и способ его получения (варианты)
WO2020059810A1 (ja) デバイス作製用ウエハの製造方法
US11795576B2 (en) Production method of silicon carbide wafer, production method of semiconductor substrate, and production method of silicon carbide semiconductor device
JP7151688B2 (ja) 炭化珪素エピ基板の製造方法及び半導体装置の製造方法
JP7143769B2 (ja) 炭化珪素半導体基板の製造方法及び炭化珪素半導体装置の製造方法
US20230066135A1 (en) Semiconductor device
JP2018203587A (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
TW202332044A (zh) 用於製作包含多晶碳化矽底材及單晶碳化矽主動層之半導體結構之方法
US20110275224A1 (en) Method for manufacturing silicon carbide substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant