CN113213508A - 一种光催化合成氨的方法 - Google Patents

一种光催化合成氨的方法 Download PDF

Info

Publication number
CN113213508A
CN113213508A CN202110458866.7A CN202110458866A CN113213508A CN 113213508 A CN113213508 A CN 113213508A CN 202110458866 A CN202110458866 A CN 202110458866A CN 113213508 A CN113213508 A CN 113213508A
Authority
CN
China
Prior art keywords
ammonia
nitrogen
cuprous oxide
bismuth oxychloride
photocatalytic synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110458866.7A
Other languages
English (en)
Other versions
CN113213508B (zh
Inventor
倪哲明
夏盛杰
袁鑫鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhua Zhejiang University Of Technology Innovation Joint Research Institute
Original Assignee
Jinhua Zhejiang University Of Technology Innovation Joint Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinhua Zhejiang University Of Technology Innovation Joint Research Institute filed Critical Jinhua Zhejiang University Of Technology Innovation Joint Research Institute
Priority to CN202110458866.7A priority Critical patent/CN113213508B/zh
Publication of CN113213508A publication Critical patent/CN113213508A/zh
Application granted granted Critical
Publication of CN113213508B publication Critical patent/CN113213508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种光催化合成氨的方法,将氯氧化铋负载氧化亚铜光催化剂加入水中,通入氮气,光照下进行催化反应,合成氨。本发明以首次公开的Cu2O/BiOCl材料为催化剂,在简单的光催化条件下,高效催化氮气制备氨。催化剂复合材料的界面促进了氮气的吸附和活化,大大增强了氮气的还原。因此,氨的产率为410.43μmol/g/h,比现有铋基金属氧化物高12倍。这项工作呈现出设计高性能纳米复合材料用于光催化固氮的可行途径。

Description

一种光催化合成氨的方法
技术领域
本发明属于催化剂技术,具体涉及一种光催化合成氨的方法。
背景技术
随着工业化和现代化的快速发展,人类面临越来越多的能源与环境问题。受自然界光合作用启发,人们开发了半导体光催化技术,利用自然界取之不尽的太阳能转化为化学能。半导体光催化剂在光照下激发的电子和空穴可以参与氧化还原反应,用于液相或气相污染物的去除CO2还原为化学燃料、水分解产氢气和氧气、固定N2等反应。氮气是自然界常见气体,由其制备氨是一个很好的路径,但是现有技术存在氨产率低、催化剂制备复杂的问题。
发明内容
本发明公开了一种光催化合成氨的方法,以首次公开的Cu2O/BiOCl材料为催化剂,在简单的光催化条件下,高效催化氮气制备氨。
本发明采用如下技术方案:
一种光催化合成氨的方法,将氯氧化铋负载氧化亚铜光催化剂加入水中,通入氮气,光照下进行催化反应,合成氨。
本发明中,氯氧化铋负载氧化亚铜光催化剂为Cu2O/BiOCl,氧化亚铜的负载量为1~5%,优选为1.5~4%,进一步优选为2~3%。
本发明中,光照为可见光照。优选的,将氯氧化铋负载氧化亚铜光催化剂加入水中,通入氮气,先避光搅拌,再光照进行催化反应,合成氨。
本发明中,氯氧化铋负载氧化亚铜光催化剂、水的用量比为(10~30)mg∶100mL,优选为(15~25)mg∶100mL。氮气的流速为(100~300)mL/min,优选为(150~250)mL/min。
本发明的优点:
由于N≡N键的高稳定性和N2在活性中心的难化学吸附性,在温和的条件下将氮气转化为NH3(氨)是一个巨大的挑战,现有技术采用氯氧化铋负载二氧化钼,光催化下氨产率为32μmol/g/h,较单独催化剂进步很多,但是产率依然偏低;另外,采用碳材料可提高催化效率,但是催化剂制备复杂,成本太高,不利于工业化。本发明以简单的方法制备催化剂,在可见光下,条件温和的将氮气转化为氨,产率达到410.43μmol/g/h,较现有铋催化剂提升显著。
附图说明
图1为实施例2的Cu2O/BiOCl的XRD图;
图2为实施例2中Cu2O/BiOCl的SEM图,100nm;
图3为Cu2O/BiOCl光催化合成氨活性图谱。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面对本发明提供氯氧化铋负载氧化亚铜材料的方法进行详细描述。本发明的原料都是常规产品,具体制备方法以及测试方法都是常规技术,比如搅拌为常规搅拌,干燥为常规干燥,催化剂组分的重量计算以及氨的检测为常规方法。
XRD表征,采用Shimadzu XRD-6000型X射线粉末衍射仪,其中各表征参数设置如下:Co靶,Kα射线,λ为0.15405nm,角度范围5~80°,扫描速度为4°/min。SEM表征,采用Hitachi S-4700型扫描电子显微镜(SEM,加速电压30kV)对材料的表面形貌进行表征。
制备例
分别将4mmol Bi(NO3)3·5H2O和4mmol KCl分散在20mL蒸馏水中,分别为溶液A和溶液B;室温下,将溶液A以5mL/min的速度逐滴滴入溶液B中,再搅拌30min得到混合溶液。然后将混合溶液倒入50mL Teflon的不锈钢高压反应釜中,在150℃下水热反应50h;反应结束后,反应釜冷却至室温过滤反应液,再将滤饼用乙醇和蒸馏水分别洗涤3次,最后在60℃下烘干干燥,得到片状氯氧化铋(BiOCl)。
在搅拌下,将6.7982g BiOCl分散在10mL含5mmol CuSO4·5H2O的去离子水中;再以5mL/min的速度逐滴滴入20mL 0.5mol/L NaOH水溶液,悬浮液的颜色变为蓝色,再搅拌2h;再以5mL/min的速度滴加入25mL 0.1mol/L抗坏血酸水溶液,搅拌30min后,观察到淡黄色沉淀,过滤反应液,再将滤饼用蒸馏水和乙醇分别洗涤三次,然后在60℃真空干燥,得到氯氧化铋负载氧化亚铜光催化剂(5%Cu2O/BiOCl),其中氧化亚铜负载量为5%,负载量为重量比例,氧化亚铜的质量/氯氧化铋负载氧化亚铜光催化剂的质量等于负载量。
在搅拌下,将17.5297g BiOCl粉末分散在10mL含5mmol CuSO4·5H2O的去离子水中;再以5mL/min的速度逐滴滴入20mL 0.5mol/L NaOH水溶液,悬浮液的颜色变为蓝色,再搅拌2h;再以5mL/min的速度滴加入25mL 0.1mol/L抗坏血酸水溶液,搅拌30min后,观察到淡黄色沉淀,过滤反应液,再将滤饼用蒸馏水和乙醇分别洗涤三次,然后在60℃真空干燥,得到氯氧化铋负载氧化亚铜光催化剂(2%Cu2O/BiOCl),其中氧化亚铜负载量为2%。
图1为2%Cu2O/BiOCl的XRD图,从图中可明显看出氧化亚铜的特征峰,此外,材料中还存在BiOCl的衍射峰,说明Cu2O/BiOCl的合成。
图2为2%BiOCl@Cu2O的SEM图,可以清楚发现氧化亚铜均匀分布在在BiOCl表面。
实施例一 光催化合成氨
采用300W氙灯(200<λ<800nm)为模拟可见光源。将20mg2%Cu2O/BiOCl与200mL/minN2通入100mLH2O中,经过30min进行暗处理(避光搅拌),以达到催化剂与N2之间的吸附-脱附平衡。然后打开模拟光源,进行光催化合成氨实验。每30min从石英管中取25mL溶液,加入0.5mL酒石酸钾钠和0.75mL纳氏试剂测其吸光度(通过Shimadzu UV-2600光谱仪在λ=420nm处进行测量吸光度);氮气从实验开始通,到实验结束关闭,实验5小时。常规测试计算氨产率为410.43μmol/g/h。
实施例二 光催化合成氨
采用300W氙灯(200<λ<800nm)为模拟可见光源。将20mg 5%Cu2O/BiOCl与200mL/minN2通入100mLH2O中,经过30min进行暗处理(避光搅拌),以达到催化剂与N2之间的吸附-脱附平衡。然后打开模拟光源,进行光催化合成氨实验。每30min从石英管中取25mL溶液,加入0.5mL酒石酸钾钠和0.75mL纳氏试剂测其吸光度(通过Shimadzu UV-2600光谱仪在λ=420nm处进行测量吸光度);氮气从实验开始通,到实验结束关闭,实验5小时。常规测试计算氨产率为271.3μmol/g/h。
对比例一
单纯的氧化亚铜制备方法:将20mL,2mol/L的NaOH水溶液加入50mLH2O中,在搅拌下滴加10.0mL 0.1mol/L CuCl2·2H2O水溶液,搅拌3min,向溶液中滴加5.0mL 0.1mol/L抗坏血酸,搅拌30min,观察到沉淀,过滤反应液,再将滤饼用蒸馏水和乙醇分别洗涤三次,然后在60℃真空干燥,得到Cu2O;滴加为5mL/min。
采用300W氙灯(200<λ<800nm)为模拟可见光源。将20mg Cu2O与200mL/minN2通入100mLH2O中,经过30min进行暗处理(避光搅拌),以达到催化剂与N2之间的吸附-脱附平衡。然后打开模拟光源,进行光催化合成氨实验。每30min从石英管中取25mL溶液,加入0.5mL酒石酸钾钠和0.75mL纳氏试剂测其吸光度(通过Shimadzu UV-2600光谱仪在λ=420nm处进行测量吸光度);氮气从实验开始通,到实验结束关闭,实验5小时。常规测试未检测到氨。
对比例二
采用300W氙灯(200<λ<800nm)为模拟可见光源。将20mg BiOCl与200mL/minN2通入100mLH2O中,经过30min进行暗处理(避光搅拌),以达到催化剂与N2之间的吸附-脱附平衡。然后打开模拟光源,进行光催化合成氨实验。每30min从石英管中取25mL溶液,加入0.5mL酒石酸钾钠和0.75mL纳氏试剂测其吸光度(通过Shimadzu UV-2600光谱仪在λ=420nm处进行测量吸光度);氮气从实验开始通,到实验结束关闭,实验5小时。常规测试计算氨产率为143.04μmol/g/h。
实施例三 光催化合成氨
采用300W氙灯(200<λ<800nm)为模拟可见光源。将20mg1%Cu2O/BiOCl与200mL/minN2通入100mLH2O中,经过30min进行暗处理(避光搅拌),以达到催化剂与N2之间的吸附-脱附平衡。然后打开模拟光源,进行光催化合成氨实验。每30min从石英管中取25mL溶液,加入0.5mL酒石酸钾钠和0.75mL纳氏试剂测其吸光度(通过Shimadzu UV-2600光谱仪在λ=420nm处进行测量吸光度);氮气从实验开始通,到实验结束关闭,实验5小时。常规测试计算氨产率为182.17μmol/g/h。
以单纯的Cu2O和BiOCl替换Cu2O/BiOCl进行对比实验。图3可知,Cu2O/BiOCl与单纯的Cu2O和BiOCl相比表现出高效的光催化合成氨性能。
实施例四 光催化合成氨
采用300W氙灯(200<λ<800nm)为模拟可见光源。将15mg2%Cu2O/BiOCl与200mL/minN2通入100mLH2O中,经过30min进行暗处理(避光搅拌),以达到催化剂与N2之间的吸附-脱附平衡。然后打开模拟光源,进行光催化合成氨实验。每30min从石英管中取25mL溶液,加入0.5mL酒石酸钾钠和0.75mL纳氏试剂测其吸光度(通过Shimadzu UV-2600光谱仪在λ=420nm处进行测量吸光度);氮气从实验开始通,到实验结束关闭,实验5小时,常规测试计算氨产率。
实施例五 光催化合成氨
采用300W氙灯(200<λ<800nm)为模拟可见光源。将25mg2%Cu2O/BiOCl与200mL/minN2通入100mLH2O中,经过30min进行暗处理(避光搅拌),以达到催化剂与N2之间的吸附-脱附平衡。然后打开模拟光源,进行光催化合成氨实验。每30min从石英管中取25mL溶液,加入0.5mL酒石酸钾钠和0.75mL纳氏试剂测其吸光度(通过Shimadzu UV-2600光谱仪在λ=420nm处进行测量吸光度);氮气从实验开始通,到实验结束关闭,实验5小时,常规测试计算氨产率。
实施例六 光催化合成氨
采用300W氙灯(200<λ<800nm)为模拟可见光源。将20mg2%Cu2O/BiOCl与180mL/minN2通入100mLH2O中,经过30min进行暗处理(避光搅拌),以达到催化剂与N2之间的吸附-脱附平衡。然后打开模拟光源,进行光催化合成氨实验。每30min从石英管中取25mL溶液,加入0.5mL酒石酸钾钠和0.75mL纳氏试剂测其吸光度(通过Shimadzu UV-2600光谱仪在λ=420nm处进行测量吸光度);氮气从实验开始通,到实验结束关闭,实验5小时,常规测试计算氨产率。

Claims (10)

1.一种光催化合成氨的方法,其特征在于,将氯氧化铋负载氧化亚铜光催化剂加入水中,通入氮气,光照下进行催化反应,合成氨。
2.根据权利要求1所述光催化合成氨的方法,其特征在于,氯氧化铋负载氧化亚铜光催化剂中,氧化亚铜的负载量为1~5%。
3.根据权利要求2所述光催化合成氨的方法,其特征在于,氯氧化铋负载氧化亚铜光催化剂中,氧化亚铜的负载量为1.5~4%。
4.根据权利要求3所述光催化合成氨的方法,其特征在于,氯氧化铋负载氧化亚铜光催化剂中,氧化亚铜的负载量为2~3%。
5.根据权利要求1所述光催化合成氨的方法,其特征在于,光照为可见光照。
6.根据权利要求1所述光催化合成氨的方法,其特征在于,将氯氧化铋负载氧化亚铜光催化剂加入水中,通入氮气,先避光搅拌,再光照进行催化反应,合成氨。
7.根据权利要求1所述光催化合成氨的方法,其特征在于,氯氧化铋负载氧化亚铜光催化剂、水的用量比为(10~30)mg∶100mL。
8.根据权利要求7所述光催化合成氨的方法,其特征在于,氯氧化铋负载氧化亚铜光催化剂、水的用量比为(15~25)mg∶100mL。
9.根据权利要求1所述光催化合成氨的方法,其特征在于,氮气的流速为100~300mL/min。
10.根据权利要求9所述光催化合成氨的方法,其特征在于,氮气的流速为150~250mL/min。
CN202110458866.7A 2021-04-27 2021-04-27 一种光催化合成氨的方法 Active CN113213508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110458866.7A CN113213508B (zh) 2021-04-27 2021-04-27 一种光催化合成氨的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110458866.7A CN113213508B (zh) 2021-04-27 2021-04-27 一种光催化合成氨的方法

Publications (2)

Publication Number Publication Date
CN113213508A true CN113213508A (zh) 2021-08-06
CN113213508B CN113213508B (zh) 2022-08-12

Family

ID=77089712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110458866.7A Active CN113213508B (zh) 2021-04-27 2021-04-27 一种光催化合成氨的方法

Country Status (1)

Country Link
CN (1) CN113213508B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956118A (zh) * 2022-04-08 2022-08-30 大连理工大学 一种可见光光催化氮还原为氨的方法
CN115055200A (zh) * 2022-07-06 2022-09-16 杭州师范大学 一种Cu2O/HBN复合材料的制备方法及固氮应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027864A1 (ja) * 2009-09-04 2011-03-10 国立大学法人北海道大学 光還元触媒並びにそれを用いたアンモニアの合成方法および水中の窒素酸化物低減方法
CN107626331A (zh) * 2017-09-19 2018-01-26 四川大学 一种Mn3O4/BiOCl异质结光催化剂及其制备方法
CN109201090A (zh) * 2018-08-03 2019-01-15 江苏大学 碲化铋改性BiOCl形成光响应型花状催化剂的制备方法及其还原固氮产氨的应用
CN109665560A (zh) * 2019-01-24 2019-04-23 长沙学院 一种碳、氮掺杂的全光谱吸收的BiOCl及其制备方法和应用
CN109894126A (zh) * 2019-03-14 2019-06-18 江苏师范大学 一种三维结构的卤氧化铋固氮光催化剂的制备方法
CN111905773A (zh) * 2020-08-19 2020-11-10 三峡大学 一种方块形卤氧化铋光催化剂制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027864A1 (ja) * 2009-09-04 2011-03-10 国立大学法人北海道大学 光還元触媒並びにそれを用いたアンモニアの合成方法および水中の窒素酸化物低減方法
CN107626331A (zh) * 2017-09-19 2018-01-26 四川大学 一种Mn3O4/BiOCl异质结光催化剂及其制备方法
CN109201090A (zh) * 2018-08-03 2019-01-15 江苏大学 碲化铋改性BiOCl形成光响应型花状催化剂的制备方法及其还原固氮产氨的应用
CN109665560A (zh) * 2019-01-24 2019-04-23 长沙学院 一种碳、氮掺杂的全光谱吸收的BiOCl及其制备方法和应用
CN109894126A (zh) * 2019-03-14 2019-06-18 江苏师范大学 一种三维结构的卤氧化铋固氮光催化剂的制备方法
CN111905773A (zh) * 2020-08-19 2020-11-10 三峡大学 一种方块形卤氧化铋光催化剂制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNHUA CAO,等: "Synthesis of novel Cu2O/BiOCl heterojunction nanocomposites andtheir enhanced photocatalytic activity under visible light", 《APPLIED SURFACE SCIENCE》 *
HAO LI,等: "Facet-Dependent Solar Ammonia Synthesis of BiOCl Nanosheets via a Proton-Assisted Electron Transfer Pathway", 《NANOSCALE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956118A (zh) * 2022-04-08 2022-08-30 大连理工大学 一种可见光光催化氮还原为氨的方法
CN115055200A (zh) * 2022-07-06 2022-09-16 杭州师范大学 一种Cu2O/HBN复合材料的制备方法及固氮应用

Also Published As

Publication number Publication date
CN113213508B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
US11224866B2 (en) Tricobalt tetraoxide dodecahedron/carbon nitride nanosheet composite and application thereof in exhaust gas treatment
WO2017012210A1 (zh) 金属氧化物-氮化碳复合材料及其制备方法和应用
CN113213508B (zh) 一种光催化合成氨的方法
CN113145139B (zh) 一种氯氧化铋负载氧化亚铜光催化剂及其制备方法与应用
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN109317184A (zh) 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用
CN111185204B (zh) 一种可见光催化剂及其制备方法与应用
CN111569863A (zh) 一种碳掺杂钼酸铋/凹凸棒石复合材料的制备方法及其在光催化固氮中的应用
CN109847779B (zh) 一种g-C3N4-MP-MoS2复合材料及其制备方法与应用
CN114917932B (zh) 一种用于co2光还原合成co和h2的催化剂、制备方法及应用
CN115025783B (zh) 一种多铌氧簇/zif-67衍生物复合材料的合成方法及应用
CN113717391B (zh) 一种含硼的锆基金属有机框架材料及其制备方法与应用
CN114308015B (zh) 一种硅负载钨酸铋复合光催化剂的制备方法及其应用
CN113600194B (zh) 一种含不同价态钴的纳米光催化剂、制备方法及其应用
CN109126771A (zh) 非贵金属VOCs催化剂及其制备方法
CN114452996A (zh) 一种g-C3N4/WO3·H2O/Pd三元复合光催化剂及其制备方法与应用
CN112371117A (zh) 一种高分散钌负载表面修饰的层状钛酸盐纳米片光催化剂、制备方法及其应用
CN112570030A (zh) 一种Bi4O5Br2/Fe-MIL复合材料光催化剂的制备方法及其用途
CN113649054B (zh) 一种NiFe@NC/Al-SrTiO3复合光催化剂及其应用
CN115254118B (zh) 一种用于光催化还原co2的有机干凝胶纳米材料及其制备方法和应用
CN115121278B (zh) 一种基于GaN:ZnO固溶体的Z型光催化分解水反应体系的构建方法及其应用
CN114289065B (zh) 金属离子掺杂型x-MOF-74光催化剂的制备方法及其应用
CN115805091B (zh) 一种铜-银双单原子对光催化剂的制备方法
CN113019403B (zh) 负载助催剂的双Z型Bi2MoO6/Bi2WO6\AgI\Ag光催化剂及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant