CN109317184A - 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用 - Google Patents

双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用 Download PDF

Info

Publication number
CN109317184A
CN109317184A CN201811344345.3A CN201811344345A CN109317184A CN 109317184 A CN109317184 A CN 109317184A CN 201811344345 A CN201811344345 A CN 201811344345A CN 109317184 A CN109317184 A CN 109317184A
Authority
CN
China
Prior art keywords
feooh
preparation
difunctional
nano materials
composite nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811344345.3A
Other languages
English (en)
Inventor
邹菁
方俊雄
江吉周
曹媛
毛冬鹏
邓文明
何小苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201811344345.3A priority Critical patent/CN109317184A/zh
Publication of CN109317184A publication Critical patent/CN109317184A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种双功能β‑FeOOH/eg‑C3N4复合纳米材料的制备方法,以水为溶剂,加入适量eg‑C3N4,调节溶液pH,再加入适量铁盐,超声,洗涤,干燥,得到β‑FeOOH/eg‑C3N4复合纳米材料。本发明的优点是:操作简单易行,反应条件温和,整个过程避免了除原料外其他化学试剂和溶剂的使用,无副产物的生成,实现了复合与纳米晶生长的同步化,成本低廉,绿色环保,可满足产业化应用的要求。通过本发明所述的方法制备的β‑FeOOH/eg‑C3N4纳米棒状复合物催化剂,具有在可见光下光催化降解染性能,同时还有着电催化分解水产氢的能力。

Description

双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用
技术领域
本发明涉及一种双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,属于无机/有机复合纳米材料的绿色制备技术领域。
背景技术
纳米级的铁氧化物由于具有超强的吸附能力、极好的流动稳定性和较低廉价格等优点,已经成为国际水处理剂的研究热点,其中针状β-FeOOH是一类集吸附与光催化于一体的半导体材料,其晶体结构中层与层之间以氢键相结合,并且由于纳米材料独特的自组现象,使其不仅在环境保护、催化剂、生物医学等方面得到了广泛应用,而且是一类极具开发前途的纳米结构材料。但将β-FeOOH用于处理环境污染物降解,存在以下主要缺点:(1)在pH值2.5-3.5范围内进行,需消耗大量酸,且酸性水环境中铁浸出严重;(2)有机复杂因素下芬顿活动价低。近年来,异质光催化和芬顿催化作为降解水体和土壤中有机物的环保型方法得到了广泛的研究,然而,非均相铁基芬顿催化剂由于暴露铁活性位点少,且在非均相芬顿反应过程中Fe(III)/Fe(II)循环缓慢,效率较低,阻碍了其在水环境处理领域的广泛应用。因此,构建稳相、高活性的β-FeOOH复合材料非常有必要。石墨相氮化碳(g-C3N4)由于其廉价、易得的优点,广泛应用于光催化分解水制氢以及光催化降解污染物等领域,但由于其比表面积小、光生载流子易于复合等缺陷,限制了其光电催化活性进一步的提升,因此,将g-C3N4与β-FeOOH复合是提高其稳定性及光电催化活性的有效策略之一。
目前,在制备β-FeOOH通常是采用FeSO4为原料,加入NaOH或Na2CO3或尿素等沉淀剂在碱性条件下制备,步骤比较复杂繁琐,且未见β-FeOOH与g-C3N4复合的制备方法。
发明内容
本发明的目的是提供一种稳态、高活性的β-FeOOH/eg-C3N4具有双功能的纳米复合物催化剂的制备方法,即拥有较高的光电催化析氢(HER)以及优良的光催化降解染料性能。
本发明解决上述技术问题所采用的技术方案是:双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,包括以下步骤:以水为溶剂,加入适量eg-C3N4,调节溶液pH,再加入适量铁盐,超声,洗涤,干燥,得到β-FeOOH/eg-C3N4复合纳米材料。
按上述方案,所述干燥温度为50~80℃,干燥时间10~12h。
按上述方案,所述铁盐为FeCl3·6H2O,Fe2(SO4)3或Fe(NO3)3·9H2O。
按上述方案,调节pH采用盐酸,盐酸浓度为4~8mol/L,调节溶液pH 0.5~3。
按上述方案,所述铁盐与eg-C3N4的质量配比为0.5:1~2:1。
按上述方案,所述的eg-C3N4的制备方法包括有以下步骤:称取适量三聚氰胺第一次煅烧,得到bulk g-C3N4;然后加适量水超声一段时间后干燥,再进行二次煅烧,得到超薄的eg-C3N4
按上述方案,所述的第一次煅烧是以5℃/min速率升温至500~600℃煅烧4~6h,所述的第二次煅烧是快速升温至550℃煅烧4~6h。
按上述方案,所述的超声时间0.5~1h,所述的干燥温度是105~120℃,所述的干燥时间是2h。
上述方案所得的双功能β-FeOOH/eg-C3N4复合纳米材料。
所述的双功能β-FeOOH/eg-C3N4复合纳米材料作为高光电催化析氢(HER)(塔菲尔斜率可达87.2mV/decade)以及优良的光催化降解染料(光照20min,10mg/mL RhB的降解率为100.0%)材料的应用。
本发明仅使用水为溶剂,加入铁盐和eg-C3N4,经过超声波和界面水分子的剧烈反应,制备稳态、高活性的β-FeOOH/eg-C3N4复合纳米材料,所得材料不仅具有良好的处理染料污染水的性能,同时还具有电催化分解水析氢的能力。其中以FeCl3·6H2O为原料制备的β-FeOOH/eg-C3N4的结晶性最高和光吸收能力最强,且FeCl3·6H2O:eg-C3N4的比例为0.5:1、1.0:1、1.5:1、2.0:1,当比例为1.5:1的β-FeOOH/eg-C3N4的塔菲尔斜率最小为87.2mV/decade,10mg/mL RhB溶液光照20min后降解率为100%,具有较好的HER的性能和光催化降解染料的性能。
本发明的优点是:操作简单易行,反应条件温和,整个过程避免了除原料外其他化学试剂和溶剂的使用,无副产物的生成,实现了复合与纳米晶生长的同步化,成本低廉,绿色环保,可满足产业化应用的要求。通过本发明所述的方法制备的β-FeOOH/eg-C3N4纳米棒状复合物催化剂,具有在可见光下光催化降解染性能,同时还有着电催化分解水产氢的能力。
附图说明
图1为实施例1中得到β-FeOOH/eg-C3N4复合材料:(a)TEM图,(b)HRTEM图,(c)电子衍射图;
图2为不同铁源所制备的β-FeOOH/eg-C3N4复合材料的XRD图;
图3为实施例1中得到β-FeOOH/eg-C3N4复合材料:(a)交流阻抗图,(b)光电流图;
图4为不同铁盐和不同比例制备所得到的β-FeOOH/eg-C3N4复合材料的Tafel斜率曲线:(a)不同铁盐,(b)不同比例;
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
(1)eg-C3N4的制备
取18g三聚氰胺于坩埚中,置于马弗炉中以5℃/min的升温速度加热到550℃,煅烧4h,得到黄色Bulk g-C3N4。取6g g-C3N4于坩埚中,加适量水超声1h后置于120℃烘箱中干燥2h,冷却后再置于马弗炉中加热到550℃,继续煅烧4h,冷却后得到eg-C3N4
(2)β-FeOOH/eg-C3N4的制备
取100mg的eg-C3N4粉末放入100ml的烧杯中,随后加入50ml的去离子水,再用6mol/L的盐酸调节pH=2。再加入142mg的FeCl3·6H2O后超声6h,离心分离,产物分别用乙醇和纯水洗涤3次,放入60℃烘箱中干燥12h。
所得产物形貌、结构和成分经透射电镜图(TEM)、高分辨透射电镜图(HRTEM)、选区电子衍射图(SADE)和X射线衍射图(XRD)进行表征。图1a是棒状形貌β-FeOOH掺杂在超薄eg-C3N4片上的TEM图。图1b是棒状β-FeOOH的HRTEM图,图1c是棒状β-FeOOH的SADE图。由图1b得出棒状β-FeOOH的晶格间距分别为0.331nm和0.252nm;从图1c可以看出β-FeOOH为单晶结构,(211)晶面晶格间距为0.255nm,(310)晶面晶格间距为0.333nm;均与四方相β-FeOOHJCPDS No.34-1266标准卡片相吻合,证实已制备出β-FeOOH。
从图2可以看出,在27.4°处有一个明显的衍射峰,层间距d=0.325nm,对应g-C3N4的(002)晶面,为芳香物层间堆积峰,其余的衍射峰均为四方相β-FeOOH的衍射峰,且与JCPDS No.34-1266标准卡片相吻合,进一步证实成功的制备了β-FeOOH/g-C3N4复合物。
实施例2
(1)eg-C3N4的制备
取6g三聚氰胺于坩埚中,置于马弗炉中以5℃/min的升温速度加热到550℃,煅烧4h,得到黄色的eg-C3N4。取3g-C3N4于坩埚中,加适量水超声1h后置于120℃烘箱中干燥2h,冷却后再置于马弗炉中加热到550℃,继续煅烧5h,冷却后得到eg-C3N4
(2)β-FeOOH/eg-C3N4的制备
取50mg eg-C3N4粉末放入100ml的烧杯中,加入50ml的去离子水,再用6mol/L的盐酸调节溶液pH=1,超声1h后,加入94mg的FeCl3·6H2O,继续超声4h,离心分离,产物分别用乙醇和纯水洗涤3次,放入60℃烘箱中干燥12h。
实施例3
(1)eg-C3N4的制备
取9g三聚氰胺于坩埚中,置于马弗炉中以5℃/min的升温速度加热到550℃,煅烧4h,得到黄色Bulk g-C3N4。取3g-C3N4于坩埚中,加适量水超声1h后置于120℃烘箱中干燥2h,冷却后再置于马弗炉中加热到550℃,继续煅烧4h,冷却后得到eg-C3N4
(2)β-FeOOH/eg-C3N4的制备
取200mg的eg-C3N4粉末放入100ml的烧杯中,加入100ml的去离子水,再用6mol/L的盐酸调节溶液pH=0.5,超声1h后,加入378mg FeCl3·6H2O,超声6h,离心分离,产物分别用乙醇和纯水洗涤3次,放入60℃烘箱中干燥12h。
实施例4
(1)eg-C3N4的制备
取3g三聚氰胺于坩埚中,置于马弗炉中以5℃/min的升温速度加热到550℃,煅烧4h,得到黄色Bulk g-C3N4。取3g g-C3N4于坩埚中,加适量水超声0.5~1h后置于120℃烘箱中干燥2h,冷却后再置于马弗炉中加热到550℃,继续煅烧4h,得到淡黄色的产物,记为eg-C3N4
(2)β-FeOOH/eg-C3N4的制备
取25mg的eg-C3N4粉末放入100ml的烧杯中,加入25ml的去离子水,再用6mol/L的盐酸调节溶液pH=0.5,超声0.5h后,加入47mg的FeCl3·6H2O,继续超声2h,离心分离,产物分别用乙醇和纯水洗涤3次,放入60℃烘箱中干燥10h。
实施例5电化学性能测试
(1)β-FeOOH/eg-C3N4/GCE制备:准确称取实施例1中所制备且已研磨好的β-FeOOH/eg-C3N4粉末4mg,将其分散于1mL超纯水中,超声30min使其分散均匀,制成4mg·mL-1的分散液。用微量进样器取5μL上述分散液滴涂在处理好的GCE表面,干燥后即可得到β-FeOOH/eg-C3N4/GCE。
(2)阻抗测试:将处理好的β-FeOOH/eg-C3N4/GCE电极置于5mmoL铁氰化钾+亚铁氰化钾和0.1moL KCl的混合溶液中,用甘汞电极为参比电极,铂丝为对电极,测得复合材料的阻抗如图3a所示,由图可见β-FeOOH/eg-C3N4复合材料的在高频区的能奎斯特半圆弧比eg-C3N4的半圆弧小,纯β-FeOOH和eg-C3N4的阻抗分别是β-FeOOH/eg-C3N4复合材料的2.56倍和1.47倍,表明复合材料具有更小的阻抗值和更强的电子传输能力,表面暴露活性位点的增加,加速了电极表面电子传递速率。
(3)光电流测试:Pt为对电极,Ag/AgCl为参比电极,β-FeOOH/eg-C3N4/GCE电极为工作电极,1mol·L-1硫酸钠为电解液,300w氙灯为光源,测得复合材料的光电流图如图3b所示。eg-C3N4样品产生的光电流值为1.52μA·cm-2,而β-FeOOH与eg-C3N4的复合增强了电极的光电流密度,使其光电流密度增加到2.53μA·cm-2,约为eg-C3N4样品光电流密度的1.6倍,增加了光生e-和h+的分离效率,具有更高的光电催化活性。
(4)Tafel斜率曲线测试:不同条件制备的β-FeOOH/eg-C3N4修饰GCE获得不同的工作电极,分别置于5mL 0.5mol·L-1的硫酸溶液中活化30min,然后以甘汞电极为参比电极,碳棒为对电极,氙灯为光源,测得到复合材料Tafel斜率曲线如图4所示。不同铁盐(FeCl3·6H2O,Fe2(SO4)3,Fe(NO3)3·9H2O)制备的β-FeOOH/eg-C3N4/GCE复合材料Tafel斜率曲线中,以FeCl3·6H2O为原料制备的β-FeOOH/eg-C3N4Tafel斜率最小(图4a),且FeCl3·6H2O:eg-C3N4的比例为1.5:1的β-FeOOH/eg-C3N4的塔菲尔斜率最小为87.2mV/decade(图4b),具有较好的HER的性能。
实施例6光催化性能测试
将25mg的光催化剂(实施例1制备)加入到50mL浓度为10mg/mL的RhB溶液中,暗处搅拌30min,加入2mL 10mmol/L的H2O2,PLS-SXE 300W氙灯光照20min,RhB的降解率为100.0%。

Claims (10)

1.双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,包括以下步骤:以水为溶剂,加入适量eg-C3N4,调节溶液pH,再加入适量铁盐,超声,洗涤,干燥,得到β-FeOOH/eg-C3N4复合纳米材料。
2.根据权利要求1所述的双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,其特征在于所述干燥温度为50~80℃,干燥时间10~12h。
3.根据权利要求1所述的双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,其特征在于所述铁盐为FeCl3·6H2O,Fe2(SO4)3或Fe(NO3)3·9H2O。
4.根据权利要求1所述的双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,其特征在于调节pH采用盐酸,盐酸浓度为4~8mol/L,调节溶液pH 0.5~3。
5.根据权利要求1所述的双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,其特征在于所述铁盐与eg-C3N4的质量配比为0.5:1~2:1。
6.根据权利要求1所述的双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,其特征在于所述的eg-C3N4的制备方法包括有以下步骤:称取适量三聚氰胺第一次煅烧,得到bulkg-C3N4;然后加适量水超声一段时间后干燥,再进行二次煅烧,得到超薄的eg-C3N4
7.根据权利要求6所述的双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,其特征在于所述的第一次煅烧是以5℃/min速率升温至500~600℃煅烧4~6h,所述的第二次煅烧是快速升温至550℃煅烧4~6h。
8.根据权利要求1所述的双功能β-FeOOH/eg-C3N4复合纳米材料的制备方法,其特征在于所述的超声时间0.5~1h,所述的干燥温度是105~120℃,所述的干燥时间是2h。
9.权利要求1-8任一项权利要求所得的双功能β-FeOOH/eg-C3N4复合纳米材料。
10.权利要求9所述的双功能β-FeOOH/eg-C3N4复合纳米材料作为高光电催化析氢或光催化降解染料材料的应用。
CN201811344345.3A 2018-11-13 2018-11-13 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用 Pending CN109317184A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811344345.3A CN109317184A (zh) 2018-11-13 2018-11-13 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811344345.3A CN109317184A (zh) 2018-11-13 2018-11-13 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109317184A true CN109317184A (zh) 2019-02-12

Family

ID=65260814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811344345.3A Pending CN109317184A (zh) 2018-11-13 2018-11-13 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109317184A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999887A (zh) * 2019-04-30 2019-07-12 合肥工业大学 一种β-FeOOH/g-C3N4异质结光催化材料的制备方法
CN111841615A (zh) * 2020-08-20 2020-10-30 盐城工学院 一种g-C3N4/CDs/β-FeOOH光催化材料及其制备方法
CN113083348A (zh) * 2021-04-22 2021-07-09 合肥工业大学 一种棒状α-FeOOH/g-C3N4复合材料光催化剂的制备方法
CN113426465A (zh) * 2021-05-20 2021-09-24 浙江理工大学 一种g-C3N4@FeOOH异质结材料及其制备方法
CN113713754A (zh) * 2021-09-08 2021-11-30 南华大学 一种石墨相氮化碳/磁性针铁矿复合材料的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339560A (zh) * 2017-04-01 2018-07-31 济南大学 一种无定形FeOOHg-C3N4复合纳米材料及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339560A (zh) * 2017-04-01 2018-07-31 济南大学 一种无定形FeOOHg-C3N4复合纳米材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU ZHENG等: "Beta-FeOOH-supported graphitic carbon nitride as an efficient visiblelight photocatalyst", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999887A (zh) * 2019-04-30 2019-07-12 合肥工业大学 一种β-FeOOH/g-C3N4异质结光催化材料的制备方法
CN109999887B (zh) * 2019-04-30 2022-02-08 合肥工业大学 一种β-FeOOH/g-C3N4异质结光催化材料的制备方法
CN111841615A (zh) * 2020-08-20 2020-10-30 盐城工学院 一种g-C3N4/CDs/β-FeOOH光催化材料及其制备方法
CN113083348A (zh) * 2021-04-22 2021-07-09 合肥工业大学 一种棒状α-FeOOH/g-C3N4复合材料光催化剂的制备方法
CN113426465A (zh) * 2021-05-20 2021-09-24 浙江理工大学 一种g-C3N4@FeOOH异质结材料及其制备方法
CN113713754A (zh) * 2021-09-08 2021-11-30 南华大学 一种石墨相氮化碳/磁性针铁矿复合材料的制备方法及其应用
CN113713754B (zh) * 2021-09-08 2022-12-27 南华大学 一种石墨相氮化碳/磁性针铁矿复合材料的制备方法及其应用

Similar Documents

Publication Publication Date Title
Kumar et al. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production
Tang et al. Enhanced photocatalytic degradation of glyphosate over 2D CoS/BiOBr heterojunctions under visible light irradiation
Zhao et al. Study the photocatalytic mechanism of the novel Ag/p-Ag2O/n-BiVO4 plasmonic photocatalyst for the simultaneous removal of BPA and chromium (VI)
CN109317184A (zh) 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用
Jian et al. Photoelectron directional transfer over a gC 3 N 4/CdS heterojunction modulated with WP for efficient photocatalytic hydrogen evolution
Hezam et al. Direct Z-scheme Cs2O–Bi2O3–ZnO heterostructures as efficient sunlight-driven photocatalysts
Veldurthi et al. Heterojunction ZnWO 4/ZnFe 2 O 4 composites with concerted effects and integrated properties for enhanced photocatalytic hydrogen evolution
CN106607063B (zh) 漂浮型可见光光催化剂及制备方法和应用
Zhou et al. Switching charge transfer of g-C3N4/BiVO4 heterojunction from type II to Z-scheme via interfacial vacancy engineering for improved photocatalysis
CN109201065A (zh) 一种泡沫镍复合材料及其制备方法与在光电催化去除水体污染物中的应用
Sun et al. Preparation of the additive-modified α-Fe2O3/g-C3N4 Z-scheme composites with improved visible-light photocatalytic activity
CN112264049B (zh) 一种用于光催化固氮合成氨的Mo或Fe掺杂Zn1-xIn2S4催化剂的制备方法
CN109590022A (zh) 层状UiO-66/g-C3N4/Ag复合材料的制备方法及应用
CN109675607A (zh) Fe3O4@ZnO@N-C复合光催化材料的制备方法
CN105056973B (zh) 化学腐蚀法原位生长制备高效的硫化铋‑铁酸铋复合可见光催化剂及其应用
Zhou et al. Fabrication of Z-scheme heterojunction g-C3N4/Yb3+-Bi5O7I photocatalysts with enhanced photocatalytic performance under visible irradiation for Hg0 removal
CN109647437B (zh) 一种CuS掺杂纳米TiO2光催化剂、制备方法及其应用
CN110327965A (zh) 一种二维钒酸铋/石墨烯/氮化碳复合材料及其制备方法和应用
CN108855131A (zh) 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用
Li et al. AgBr modified TiO 2 nanotube films: highly efficient photo-degradation of methyl orange under visible light irradiation
CN106362742A (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
CN111185204B (zh) 一种可见光催化剂及其制备方法与应用
Shi et al. Improved photocatalytic activity of Bi2MoO6 by modifying the halogen ions (Cl−, Br−, or I−) for photoreduction of N2 into NH3
Yang et al. Synthesis of visible-light driven CeO2/g-C3N5 heterojunction with enhanced photocatalytic performance for organic dyes
Jia et al. Synergistic introduction of oxygen vacancy and silver/silver iodide: Realizing deep structure regulation on bismuth oxybromide for robust carbon dioxide reduction and pollutant oxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190212