CN108855131A - 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用 - Google Patents

一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用 Download PDF

Info

Publication number
CN108855131A
CN108855131A CN201810488992.5A CN201810488992A CN108855131A CN 108855131 A CN108855131 A CN 108855131A CN 201810488992 A CN201810488992 A CN 201810488992A CN 108855131 A CN108855131 A CN 108855131A
Authority
CN
China
Prior art keywords
tio
silver
titanium dioxide
composite material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810488992.5A
Other languages
English (en)
Other versions
CN108855131B (zh
Inventor
佘厚德
周华
李良善
白文才
苏碧桃
王其召
王磊
黄静伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201810488992.5A priority Critical patent/CN108855131B/zh
Publication of CN108855131A publication Critical patent/CN108855131A/zh
Application granted granted Critical
Publication of CN108855131B publication Critical patent/CN108855131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种银‑镍双金属掺杂二氧化钛纳米复合材料的制备方法,先用过氧化氢处理二氧化钛得过钛酸钛络合物O2‑TiO2,在此基础上通过掺杂金属Ni和Ag,得到银‑镍双金属掺杂的二氧化钛纳米复合材料Ag‑N‑TiO2。与纯TiO2相比,Ag‑Ni‑TiO2用于催化氧化苯甲醇的反应中表现出更好的催化活性。实验结果表明,Ag‑Ni‑TiO2在1个大气压下,300W氙灯照射下,对苯甲醇的转换率可达98.45%,苯甲醛的产率可达94.17%,选择性可达93%,因此,复合材料Ag‑Ni‑TiO2在选择性光催化氧化芳香醛的反应中具有很好的应用前景。

Description

一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用
技术领域
本发明涉及一种TiO2基纳米复合材料,尤其涉及这一种银-镍双金属掺杂二氧化钛纳米复合材料Ag-Ni/TiO2的制备;主要用于芳香醇的催化氧化反应中。
背景技术
芳香醛是合成精细化学品和药物的重要组成部分,广泛应用于染料、香料、农药等领域。其中苯甲醛是最简单的具有活性羰基的芳香醛,是重要的有机反应中间体。在工业上,苯甲醛主要通过使用有害试剂(如Cr6 +,Mn7+,ClO4 -和Cl2)作为氧化剂的液相氧化甲苯来生产的。因此寻找一条环境友好的路线来生产苯甲醛引起了人们的兴趣。到目前为止,光催化技术是解决这个问题最有希望的途径。已经研究的各种光催化材料(CdS,ZnO,CeO2,BiOCl,C3N4,BiVO4),可以从各个方面满足人们的需求(活性,选择性,稳定性成本等)。例如,CdS是一种带隙较窄的经典半导体(Eg=2.4eV),但其容易受到轻度光腐蚀,产生有毒的Cd2+对造成环境损害。CeO2由于带隙能量较宽(Eg=3.2eV),太阳能利用效率较差,使得光催化活性普遍不理想。
TiO2是一种理想的光催化剂,具有良好的光催化活性,稳定性高,成本低,无毒性和较强的空穴氧化能力。然而,由于TiO2带隙(Eg=3.2eV)较宽,只能在紫外线照射(λ<387nm)下使用,仅利用5%的太阳光。现已经研究了各种方法来增强其在可见光下的活性。 例如,根据RaffaeleMarotta 报道,Cu2+掺杂的TiO2可以捕获电子,从而减少电子-空穴复合,并增加苯甲醇选择性氧化成苯甲醛的转化率。Yasuhiro Shiraishi研究了Fe3+掺杂的TiO2光催化剂可以实现较大的电荷分离,并能在环境温度下有效选择性氧化苯甲醇。然而,这些催化剂都只能响应紫外光,不能吸收可见光,且转化效率较低。
发明内容
本发明的目的是针对现有技术催化氧化苯甲醇转化成苯甲醛的反应存在转化率较低的问题,提供一种双金属掺杂Ag-Ni/TiO2纳米材料的制备方法;
中本发明的另一目的是提供该双金属掺杂Ag-Ni/TiO2纳米材料在光催化氧化苯甲醇制备苯甲醛的应用性能。
一、Ag-Ni/TiO2纳米材料的制备
(1)O2-TiO2的合成:将TBOT(钛酸四丁酯)用0~5℃的冷水沉淀,去离子水反复洗涤后,在磁力搅拌下加入去离子水和过氧化氢的混合溶液中,并保持体系在0~5℃下搅拌0.5~1h,得橙色过氧钛酸盐络合物;再将橙色过氧钛酸盐络合物加热至40~50℃反应3~4小时;反应液在80~100℃的空气烘箱中干燥10~15h,得到黄色固体物质;最后将黄色固体物质放入马弗炉中,以10℃/min的速率升温至250~300℃,煅烧1.5~2小时,得到橙色过钛酸钛络合物O2-TiO2
过氧化氢为30%H2O2;去离子水和过氧化氢的混合溶液中,去离子水和过氧化氢的体积比为1:0.5~1:1。
(2)Ni-TiO 2前驱体的制备:将C4H6NiO4·4H2O(四水和乙酸镍)与橙色过钛酸钛络合物以1:100~1:10的质量比混合,加热至40~50℃反应3~4小时;反应液在80~100℃的空气烘箱中干燥10~15h,得到Ni-TiO2前驱体。
(3)Ag-Ni-TiO2的合成:在AgNO3的水溶液中加入NaBH4,搅拌15~20min后,再加入上述前驱体Ni-TiO2,搅拌混匀后将混合液在80~100℃空气烘箱中干燥10~15h,得黄色固体物质;然后将黄色固体物质置于马弗炉中,以10℃/分钟的速度升温至250~300℃,煅烧1.5~2小时,得到Ag-Ni-TiO2
AgNO3与NaBH4的摩尔比为2:1~3:1;AgNO3与Ni-TiO2的质量比为1:200~1:100。
所得样品Ag-Ni-TiO2中,Ag的掺杂浓度为0.25~0.5wt%,Ni的掺杂浓度为0.5~2.0wt%。
二、Ag-Ni-TiO2复合材料表征
1、透射电镜分析
使用配备有整体球的UV-vis分光光度计(PuXin TU-1901)将BaSO4作为空白样品。通过场发射扫描电子显微镜(FE-SEM,Ultra Plus,Carl Zeiss)和透射电子显微镜(TEM,FEITecnai F20显微镜)对光催化剂的形貌进行表征。
图1(a)为Ag(0.5%)-Ni(1%) - TiO2的透射图。可以看出,复合材料具有均匀的表面且具有小球结构,平均粒径为39nm。
图1(b)为Ag(0.5%)-Ni(1%)-TiO2的高倍透射图。0.3520nm和0.2378nm处的特征晶粒充分表明锐钛矿TiO2的(101)和(004)面。说明了金属掺杂并未改变TiO2的晶型。
2、XRD分析
使用Bragg-Brentano Rigaku D / MAX-2200 / PCX衍射仪进行粉末XRD测量。它采用40 kV x 20 mA的电流供电,并配有垂直测角仪,采用Ni过滤CuKα辐射,使用θ-θ几何结构。在2θ= 20~80°范围内收集数据并获得X射线衍射(XRD)图。
图2为TiO2(a)、O2-TiO2(b)和(c)Ag(0.5%)-Ni(1%)-TiO2的XRD图谱。分析了催化剂的XRD以研究样品的晶体结构和晶粒大小。图2可观察到,有尖锐,强烈的衍射峰表明了有结晶良好的样品形成。我们观察到在2θ处:25.28°,38.58°,48.05°,53.92°,55.06°,62.73°和75.03°,与JCPDS文件No.21-1272(标准卡片)进行比较对应的晶面是(101),(112),(020),(010),(211),(420),和(215)。可以判断Ag(0.5%)-Ni(1%)-OTiO2复合材料属于锐钛矿相。由于金属含量较低,所以在光催化剂的衍射图中没有观察到Ag和Ni的衍射峰。根据Scherrer公式计算样品的平均晶粒尺寸。
式中D是沿着垂直于晶面方向的晶粒直径,θ是布拉格衍射角,β是以弧度为单位的半峰宽度,λ是所使用的X射线波长(0.154nm)。计算得样品的平均晶粒尺寸约为39 nm。
3、紫外漫反射分析
图3显示了TiO2,O2-TiO2,Ag-TiO2,Ni-TiO2和Ag-Ni-TiO2样品相应的UV-vis漫反射光谱(DRS)。由图3发现,纯TiO2在可见光波段不被吸收,仅在紫外区域具有强烈的吸收。随着氧被引入到TiO2的晶格中,得到的O2-TiO2被红移到约420nm。在Ag掺杂后,在可见光区(500nm)出现光响应,这应该归因于银纳米颗粒的典型表面等离子体激元共振效应。与Ag-TiO2相比,Ni-TiO2催化剂在可见光波段有较强的吸收,并略有增加。而Ag-Ni-TiO2催化剂在600nm可见光区域表现出最强的吸收。
4、光致发光光谱分析
光致发光(PL)光谱使用F97Pro荧光分光光度计记录,激发波长为300nm,在325-525nm范围内记录光致发光光谱,扫描速度为3000nm / min,PMT电压为650V,激发狭缝宽度为10nm,发射狭缝宽度为10nm。
图4为TiO2,O2-TiO2,Ni-TiO2和Ag-Ni-TiO2光催化剂的光致发光光谱(PL)。与TiO2相比,O2-TiO2显示较低的强度,表明氧改性样品O2-TiO2中载体重组得到改善。当Ni掺杂浓度增加到1.0wt%时,光致发光强度逐渐降低。而当Ag的掺杂浓度为0.5wt%,Ni掺杂浓度为1.0wt%时,Ag-Ni-TiO2表现出最低的PL强度,这是因为催化剂氧化过程形成更多的氧空位和表面缺陷。
5、光电化学(PEC)性能
光电流和电化学阻抗谱(EIS)测量是在含有0.5mol/L Na2SO4(pH=7.5)水溶液的标准三电极电池中进行的,铂电极和饱和Ag/AgCl电极分别作为对电极和参比电极,选择LED灯(λ> 420 nm)作为光源,所有电化学测量均在室温下进行。工作电极由氟化锡(FTO)导体玻璃制成,将少量萘酚溶液(10μl)滴在导电玻璃上,将固体样品(10mg)分散在乙二醇中并超声处理20分钟,然后将其滴在涂有萘酚溶液的FTO导电玻璃上,工作电极在红外光照射下光照1小时。光电化学测试,偏压选取0.6V,通过FTO背面的照明,照明面积约为1.0cm-2
图5显示了电化学阻抗谱(EIS)奈奎斯特图,以进一步确定Ag-Ni-TiO2催化剂相对于O2-TiO2和TiO2在改善载流子转移方面的优势。一般来说,奈奎斯特圆的半径越小,电荷转移阻力就越小。与TiO2相比,Ag-Ni-TiO2显示更小的半圆,表明更快的界面电荷转移到电子受体。表明AgNPs和NiNPs是促进电子-空穴对有效分离和转移的有效途径。因此,可以显示出更好的光催化性能。
三、光催化活性
在50mL自制反应器中进行醇的光催化选择性氧化实验。通常,将光催化剂(80mg)和0.5mmol苯甲醇(反应物)和三氟甲苯(5mL)溶解在石英玻璃瓶(40mm×25mm)中,然后将玻璃瓶注入到反应器中。通入纯O 2使悬浮液饱和5分钟,然后将氧气压力保持在2个大气压。使用300W氙灯(CEL-HXF300,北京金光)作为光源在磁力搅拌下照射悬浮液。反应后,将溶液离心除去催化剂颗粒。取上清液用气相色谱仪(GC9600,中国)进行分析并鉴定有机产物。最后,通过用无水乙醇和去离子水反复洗涤来回收催化剂,并在80℃的烘箱中干燥过夜以进行循环光活性测试。光催化反应温度由室温下的循环水系统控制。 AgNO3,AO,TBA,BQ等自由基清除剂分别被用作光生电子,光生空穴,羟自由基和超氧自由基的清除剂。除了自由基清除剂(0.1mmol)加入到反应体系之外,细节类似于光催化氧化苯甲醇的实验,有机产物经GC9600分析鉴定。醇转化率,醛产率和醛选择性计算如下:
转化率 % = [(C0-C1)/C0]×100% (1)
产率 % = (C2/C0) ×100% (2)
选择性 % = [C2/(C0-C1)] ×100% (3)
其中,C0是照射前的底物醇的初始量;C1是照射1小时后的底物醇的量; C2是照射反应后相应的醛的量。
图6a比较了纯TiO2与掺杂了不同含量Ni的TiO2光催化选择性氧化苯甲醇的性能。1%Ni-TiO2样品的苯甲醇氧化性能较好,转化率为93.04%,产率为88.67%,选择性为93.43%。
为了探索银纳米粒子掺杂对光催化反应的影响,用不同含量的银纳米粒子掺杂Ni-TiO2催化剂,结果如图6b所示。发现只有当Ag,Ni 共掺杂的时候对光催化过程的效率产生了积极影响并增加了催化剂表面的活性位点。其中Ag(0.5%)-Ni(1%)-TiO2对苯甲醇氧化性能最好,转化率为98.45%,产率为94.17%,选择性不变。
图7显示了不同底物对测试结果的影响,分别使用对甲氧基苯甲醇,对氯苯甲醇和苯甲醇作为底物。结果表明,苯环上具有吸电子取代基,如对氯苄醇,转化率高达90%,苯环上有给电子取代基,如对甲氧基苄醇,转化率高达90%。无论取代基是吸电子还是电子给体,只要能够帮助醇的α-氢活化,相应的醇都会有很好的转化率。但是,苯甲醇的转化率和产率及选择性仍然高于其它芳香醇。
为了说明Ag-Ni-TiO2催化剂在苯甲醇选择性氧化反应中的可重复使用性,进行了四个循环实验。结果如图8所示,经过四个循环实验,可以看出,产率、转化率、选择性没有明显变化,说明该物质在所用反应条件下具有良好的稳定性。
为了说明Ag-Ni-TiO2在苯甲醇光催化氧化反应中可能的反应机理,采用不同的自由基清除剂进行了一系列的对照实验。结果发现,当BQ(对苯醌)和IPA(异丙醇)的清除剂被加入到苯甲醇反应体系的光催化氧化中时,苯甲醇的转化率略有下降。当OA(草酸)和AgNO3加入到苯甲醇反应体系的光催化氧化中,苯甲醇的转化率迅速下降。基于以上结果,苯甲醇选择氧化成苯甲醛主要是由e-和h +共同作用引发的。
综上所述,本发明用过氧化氢处理二氧化钛得过钛酸钛络合物O2-TiO2,在此基础上通过掺杂金属Ni和Ag,得到银-镍双金属掺杂的二氧化钛纳米复合材料Ag-N-TiO2。与纯TiO2相比,Ag- Ni- TiO2用于催化氧化苯甲醇的反应中表现出更好的催化活性。实验结果表明,Ag- Ni- TiO2在1个大气压下,300W氙灯照射下,对苯甲醇的转换率可达98.45%,苯甲醛的产率可达94.17%,选择性可达 93%,因此,复合材料Ag-Ni-TiO2在选择性光催化氧化芳香醛的反应中具有很好的应用前景。
附图说明
图1为Ag(0.5%) - Ni(1%) - TiO2的透射图(a)及Ag(0.5%) - Ni(1%) - TiO2的高倍透射图(b)。
图2为TiO2(a)、O2-TiO2(b)、Ag(0.5%) - Ni(1%) - TiO2(c)的XRD图谱。
图3为TiO2(a)、O2-TiO2(b)、Ag(0.5%) - TiO2(c)、Ni(1%) - TiO2(d)和Ag(0.5%)- Ni(1%) - TiO2(e)的紫外漫反射图。
图4为TiO2(a)、O2-TiO2(b)、Ni(1%) - TiO2(c)和Ag(0.5%) - Ni(1%) - TiO2(d)的PL光谱。
图5为在0.5M Na2SO4(pH=7.35)中在开路电位下模拟太阳光照射的阻抗图。
图6为不同比例的Ni-TiO2(a)及不同比例的Ag-Ni-TiO2(b)的光催化氧化性能图。
图7为光催化氧化不同底物的性能图。
图8为Ag-Ni-TiO2催化剂的循环性稳定性测试。
具体实施方式
下面通过具体实施例对本发明复合催化剂Ag-Ni-TiO2的制备、性能和应用做进一步说明。
实施例1
(1)O2-TiO2的合成:取3mL TBOT缓慢加入到50 mL冷水(5℃)中,立即产生白色沉淀;去离子水反复洗涤沉淀后,在磁力搅拌下将沉淀物加入到50ml去离子水和25ml H2O2的混合溶液中,保持温度为5℃下搅拌1小时,得橙色过氧钛酸盐络合物。再将橙色过氧钛酸盐络合物加热至50℃保持4小时;反应液在100℃的空气烘箱中干燥过夜,得到黄色固体物质。然后将黄色固体物质放入马弗炉中,以10℃/min的速率升温至300℃,煅烧处理2小时,得到0.7g橙色过钛酸钛络合物O2-TiO2
(2)Ni-TiO 2前驱体的制备:将0.05g C4H6NiO4·4H2O(四水和乙酸镍)与上述制备的橙色过钛酸钛络合物O2-TiO2混合,加热至50℃反应3小时;反应液在100℃的空气烘箱中干燥10h,得到Ni-TiO2前驱体;
(3)Ag-Ni-TiO2的合成:取0.025g AgNO 3,溶解在50ml去离子水中,并加入0.04g NaBH4(AgNO 3 : NaBH 4 = 2:1),搅拌20分钟后,加入上述Ni-TiO 2前驱体, 搅拌混匀后将混合液在100℃空气烘箱中干燥过夜,得黄色固体物质。将黄色固体物质置于马弗炉中,以10℃/分钟的速度升温至300℃,煅烧2小时,得到Ag-Ni-TiO2。所得样品Ag-Ni-TiO2中,Ag的掺杂浓度为0.5wt%,Ni的掺杂浓度为1.0wt%,标记为:Ag(0.5%)-Ni(1.0%)-TiO2
(4)Ag(0.5%)-Ni(1.0%)-TiO2的催化氧化苯甲醇的性能:在1个大气压下,300W氙灯照射下,对苯甲醇的转换率为98.45%,苯甲醛的产率为94.17%,选择性为 93.00%。
实施例2
(1)O2-TiO2的合成:同实施例1;
(2)Ni-TiO 2前驱体的制备:将0.1g C4H6NiO4·4H2O(四水和乙酸镍)与上述制备的的橙色过钛酸钛络合物O2-TiO2混合,再将橙色过氧钛酸盐络合物加热至50℃反应3小时;反应液在100℃的空气烘箱中干燥10h,得到Ni-TiO2前驱体;
(3)Ag-Ni-TiO2的合成:取0.025g AgNO 3,溶解在50ml去离子水中,并加入0.04g NaBH4(AgNO 3 : NaBH 4 = 2:1),搅拌20分钟后,加入上述Ni-TiO 2前驱体, 搅拌混匀后将混合液在100℃空气烘箱中干燥过夜,得黄色固体物质。将黄色固体物质置于马弗炉中,以10℃/分钟的速度升温至300℃,煅烧2小时,得到Ag-Ni-TiO2。所得样品Ag-Ni-TiO2中,Ag的掺杂浓度为0.5wt%,Ni的掺杂浓度为2.0wt%,标记为:Ag(0.5%)-Ni(2.0%)-TiO2
(4)Ag(0.5%)-Ni(2.0%)-TiO2的催化氧化苯甲醇的性能:在1个大气压下,300W氙灯照射下,对苯甲醇的转换率为65.66%,苯甲醛的产率为60.31%,选择性为93.12%。
实施例3
(1)O2-TiO2的合成:同实施例1;
(2)Ni-TiO 2前驱体的制备:将0.025g C4H6NiO4·4H2O(四水和乙酸镍)与上述制备的橙色过钛酸钛络合物以1:100的质量比混合,再将橙色过氧钛酸盐络合物加热至50℃反应3~4小时;反应液在80~100℃的空气烘箱中干燥10h,得到 Ni-TiO2前驱体;
(3)Ag-Ni-TiO2的合成:取0.025g AgNO 3,溶解在50ml去离子水中,并加入0.04g NaBH4(AgNO 3 : NaBH 4 = 2:1),搅拌20分钟后,加入上述Ni-TiO 2前驱体, 搅拌混匀后将混合液在100℃空气烘箱中干燥过夜,得黄色固体物质。将黄色固体物质置于马弗炉中,以10℃/分钟的速度升温至300℃,煅烧2小时,得到Ag-Ni-TiO2。所得样品Ag-Ni-TiO2中,Ag的掺杂浓度为1.0wt%,Ni的掺杂浓度为1.0wt%,标记为:Ag(1%)-Ni(1%)-TiO2
(4)Ag(1%)-Ni(1%)-TiO2的催化氧化苯甲醇的性能:在1个大气压下,300W氙灯照射下,对苯甲醇的转换率为90.03%,苯甲醛的产率为87.44%,选择性为93.27%。

Claims (6)

1.一种银-镍双金属掺杂二氧化钛纳米复合材料的制备方法,包括以下步骤:
(1)O2-TiO2的合成:将TBOT用0~5℃的冷水沉淀,去离子水反复洗涤后,在磁力搅拌下加入去离子水和过氧化氢的混合溶液中,并保持体系在0~5℃下搅拌0.5~1h,得橙色过氧钛酸盐络合物;再将橙色过氧钛酸盐络合物加热至40~50℃反应3~4小时;反应液在80~100℃的空气烘箱中干燥10~15h,得到黄色固体物质;最后将黄色固体物质放入马弗炉中,以10℃/min的速率升温至250~300℃,煅烧1.5~2小时,得到橙色过钛酸钛络合物O2-TiO2
(2)Ni-TiO 2前驱体的制备:将C4H6NiO4·4H2O与橙色过钛酸钛络合物以1:100~1:10的质量比混合,加热至40~50℃反应3~4小时;反应液在80~100℃的空气烘箱中干燥10~15h,得到Ni-TiO2前驱体;
(3)Ag-Ni-TiO2的合成:在AgNO3的水溶液中加入NaBH4,搅拌15~20min后,再加入上述前驱体Ni-TiO2,搅拌混匀后将混合液在80~100℃空气烘箱中干燥10~15h,得黄色固体物质;然后将黄色固体物质置于马弗炉中,以10℃/分钟的速度升温至250~300℃,煅烧1.5~2小时,得到Ag-Ni-TiO2
2.如权利要求1所述一种银-镍双金属掺杂二氧化钛纳米复合材料的制备方法,其特征在于:步骤(1)中,过氧化氢为30%H2O2;去离子水和过氧化氢的混合溶液中,去离子水和过氧化氢的体积比为1:0.5~1:1。
3.如权利要求1所述一种银-镍双金属掺杂二氧化钛纳米复合材料的制备方法,其特征在于:步骤(3)中,AgNO3与NaBH4 的摩尔比为2:1~3:1。
4.如权利要求1所述一种银-镍双金属掺杂二氧化钛纳米复合材料的制备方法,其特征在于:步骤(3)中,AgNO3与Ni-TiO2的质量比为1:200~1:100。
5.如权利要求1所述方法制备的银-镍双金属掺杂二氧化钛纳米复合材料,其特征在于:所得样品Ag-Ni-TiO2中,Ag的掺杂浓度为0.25~0.5wt%,Ni的掺杂浓度为0.5~2.0wt%。
6.如权利要求5所述一种银-镍双金属掺杂二氧化钛纳米复合材料作为光催化剂在催化氧化芳香醇的反应中。
CN201810488992.5A 2018-05-21 2018-05-21 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用 Active CN108855131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810488992.5A CN108855131B (zh) 2018-05-21 2018-05-21 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810488992.5A CN108855131B (zh) 2018-05-21 2018-05-21 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用

Publications (2)

Publication Number Publication Date
CN108855131A true CN108855131A (zh) 2018-11-23
CN108855131B CN108855131B (zh) 2021-08-27

Family

ID=64332869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810488992.5A Active CN108855131B (zh) 2018-05-21 2018-05-21 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用

Country Status (1)

Country Link
CN (1) CN108855131B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110292918A (zh) * 2019-07-10 2019-10-01 西北师范大学 一种氧缺陷二氧化钛/坡缕石复合材料的制备及应用
CN111450846A (zh) * 2020-05-08 2020-07-28 中国科学院生态环境研究中心 一种用于催化去除甲醛的催化剂及其制备方法和用途
CN112121851A (zh) * 2020-09-17 2020-12-25 哈尔滨理工大学 一种Ni修饰的TS-1分子筛催化剂及其光催化在醇氧化中的应用
CN114425330A (zh) * 2022-01-14 2022-05-03 山东大学 双贵金属负载纳米二氧化钛及其制备方法和应用
CN114515574A (zh) * 2020-11-19 2022-05-20 中国石油化工股份有限公司 一种用于合成过氧化氢的催化剂及其制备方法及应用
CN116060015A (zh) * 2021-10-29 2023-05-05 中国科学院理化技术研究所 一种光热协同吸附催化剂的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559979A (zh) * 2009-05-22 2009-10-21 东华大学 一种超细锐钛矿相二氧化钛纳米棒的制备方法
JP4365168B2 (ja) * 2002-08-30 2009-11-18 エスケー化研株式会社 多孔質光触媒複合粉体の製造方法
CN103332738A (zh) * 2013-07-12 2013-10-02 东北大学 一种可控短流程纳米二氧化钛的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365168B2 (ja) * 2002-08-30 2009-11-18 エスケー化研株式会社 多孔質光触媒複合粉体の製造方法
CN101559979A (zh) * 2009-05-22 2009-10-21 东华大学 一种超细锐钛矿相二氧化钛纳米棒的制备方法
CN103332738A (zh) * 2013-07-12 2013-10-02 东北大学 一种可控短流程纳米二氧化钛的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOHAMMAD REZA ELAHIFARD等: "Photo-deposition of Ag metal particles on Ni-doped TiO2 for photocatalytic application", 《PROGRESS IN REACTION KINETICS AND MECHANISM》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110292918A (zh) * 2019-07-10 2019-10-01 西北师范大学 一种氧缺陷二氧化钛/坡缕石复合材料的制备及应用
CN111450846A (zh) * 2020-05-08 2020-07-28 中国科学院生态环境研究中心 一种用于催化去除甲醛的催化剂及其制备方法和用途
CN112121851A (zh) * 2020-09-17 2020-12-25 哈尔滨理工大学 一种Ni修饰的TS-1分子筛催化剂及其光催化在醇氧化中的应用
CN114515574A (zh) * 2020-11-19 2022-05-20 中国石油化工股份有限公司 一种用于合成过氧化氢的催化剂及其制备方法及应用
CN114515574B (zh) * 2020-11-19 2023-08-29 中国石油化工股份有限公司 一种用于合成过氧化氢的催化剂及其制备方法及应用
CN116060015A (zh) * 2021-10-29 2023-05-05 中国科学院理化技术研究所 一种光热协同吸附催化剂的合成方法
CN116060015B (zh) * 2021-10-29 2024-05-03 中国科学院理化技术研究所 一种光热协同吸附催化剂的合成方法
CN114425330A (zh) * 2022-01-14 2022-05-03 山东大学 双贵金属负载纳米二氧化钛及其制备方法和应用

Also Published As

Publication number Publication date
CN108855131B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN108855131A (zh) 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用
She et al. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol
Zouhier et al. Preparation of ZnFe2O4/ZnO composite: effect of operational parameters for photocatalytic degradation of dyes under UV and visible illumination
Ghosh et al. Graphitic carbon nitride based Z scheme photocatalysts: design considerations, synthesis, characterization and applications
bo Zhong et al. Improved photocatalytic performance of Pd-doped ZnO
Habibi-Yangjeh et al. Anchoring Bi4O5I2 and AgI nanoparticles over g-C3N4 nanosheets: impressive visible-light-induced photocatalysts in elimination of hazardous contaminates by a cascade mechanism
Naghizadeh-Alamdari et al. One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts
Zhang Enhanced photocatalytic activity for titanium dioxide by co-modification with copper and iron
CN106732527B (zh) 一种铋/钒酸铋复合光催化剂及其制备方法和在光催化降解有机物中的应用
Hao et al. Synthesis of NiWO4 powder crystals of polyhedron for photocatalytic degradation of Rhodamine
Yadav et al. Synthesis and photocatalytic applications of functionalized carbon quantum dots
Liu et al. Enhancing hydrogen evolution of water splitting under solar spectra using Au/TiO2 heterojunction photocatalysts
CN107282077A (zh) 一种光催化固氮催化剂的制备方法及其应用
Pouretedal et al. Photodegradation study of congo red, methyl orange, methyl red and methylene blue under simulated solar irradiation catalyzed by ZnS/CdS nanocomposite
AlShehri et al. Efficient photodegradation of methylthioninium chloride dye in aqueous using barium tungstate nanoparticles
Ma et al. Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light
Xie et al. Enhancing visible light photocatalytic activity by transformation of Co3+/Co2+ and formation of oxygen vacancies over rationally Co doped ZnO microspheres
CN108786849A (zh) 一种硫化锡/二氧化钛复合材料的制备和应用
Khalil et al. Formation and textural characterization of size-controlled LaFeO3 perovskite nanoparticles for efficient photocatalytic degradation of organic pollutants
Toloman et al. V-doped ZnO particles: Synthesis, structural, optical and photocatalytic properties
Segovia-Sandoval et al. A novel green synthesis of Bi2WO6-based photocatalysts for efficient pollutants degradation using low-power UV-A LEDs
Chakraborty et al. A benevolent direction to environmental suitability: ionic liquid immobilized MoO 3 nanoparticles used in the efficient visible light-driven photocatalytic degradation of antibiotics
Hailili et al. Tuning the microstructures of ZnO to enhance photocatalytic NO removal performances
Ali et al. Auto-combustion fabrication and optical properties of zinc oxide nanoparticles for degradation of reactive red 195 and methyl orange dyes
Chu et al. Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant